Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97521
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾郁仁zh_TW
dc.contributor.advisorLarry Y. Tzengen
dc.contributor.author尚浩嶽zh_TW
dc.contributor.authorHao-Yueh Shangen
dc.date.accessioned2025-07-02T16:16:44Z-
dc.date.available2025-07-03-
dc.date.copyright2025-07-02-
dc.date.issued2025-
dc.date.submitted2025-06-17-
dc.identifier.citationAbiad, A. and Qureshi, I. A. (2023). The macroeconomic effects of oil price uncertainty. Energy Economics, 125:106839.
Alexander, C. and Dakos, M. (2020). A critical investigation of cryptocurrency data and analysis. Quantitative Finance, 20(2):173–188.
Amengual, D. and Xiu, D. (2018). Resolution of policy uncertainty and sudden declines in volatility. Journal of Econometrics, 203(2):297–315.
Asgharian, H., Hou, A. J., and Javed, F. (2013). The importance of the macroeconomic variables in forecasting stock return variance: A garch-midas approach. Journal of Forecasting, 32(7):600–612.
Aysan, A. F., Demir, E., Gozgor, G., and Lau, C. K. M. (2019). Effects of the geopolitical risks on bitcoin returns and volatility. Research in International Business and Finance, 47:511–518.
Baker, S. R., Bloom, N., and Davis, S. J. (2016). Measuring economic policy uncertainty. The quarterly journal of economics, 131(4):1593–1636.
Bekaert, G., Hoerova, M., and Duca, M. L. (2013). Risk, uncertainty and monetary policy. Journal of Monetary Economics, 60(7):771–788.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3):307–327.
Bonaparte, Y. (2023). Introducing the cryptocurrency vix: Cvix. Finance Research Letters, 54:103712.
Caldara, D. and Iacoviello, M. (2022). Measuring geopolitical risk. American economic review, 112(4):1194–1225.
Chernov, M., Gallant, A. R., Ghysels, E., and Tauchen, G. (2003). Alternative models for stock price dynamics. Journal of Econometrics, 116(1-2):225–257.
Conrad, C., Custovic, A., and Ghysels, E. (2018). Long-and short-term cryptocurrency volatility components: A garch-midas analysis. Journal of Risk and Financial Management, 11(2):23.
Conrad, C. and Kleen, O. (2020). Two are better than one: volatility forecasting using multiplicative component garch-midas models. Journal of Applied Econometrics, 35(1):19–45.
Conrad, C. and Loch, K. (2015). Anticipating long-term stock market volatility. Journal of Applied Econometrics, 30(7):1090–1114.
Ding, Z. and Granger, C. W. (1996). Modeling volatility persistence of speculative returns: a new approach. Journal of econometrics, 73(1):185–215.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica: Journal of the econometric society, pages 987–1007.
Engle, R. F. and Bollerslev, T. (1986). Modelling the persistence of conditional variances. Econometric reviews, 5(1):1–50.
Engle, R. F., Ghysels, E., and Sohn, B. (2013). Stock market volatility and macroeconomic fundamentals. Review of Economics and Statistics, 95(3):776–797.
Engle, R. F. and Rangel, J. G. (2008). The spline-garch model for low-frequency volatility and its global macroeconomic causes. The review of financial studies, 21(3):1187–1222.
Fama, E. F. (1990). Stock returns, expected returns, and real activity. The journal of finance, 45(4):1089–1108.
Fang, T., Su, Z., and Yin, L. (2020). Economic fundamentals or investor perceptions? the role of uncertainty in predicting long-term cryptocurrency volatility. International Review of Financial Analysis, 71:101566.
Gaies, B., Nakhli, M. S., Sahut, J.-M., and Schweizer, D. (2023). Interactions between investors'fear and greed sentiment and bitcoin prices. The North American Journal of Economics and Finance, 67:101924.
Gallant, A. R., Hsu, C.-T., and Tauchen, G. (1999). Using daily range data to calibrate volatility diffusions and extract the forward integrated variance. Review of Economics and Statistics, 81(4):617–631.
Gavriilidis, K. (2021). Measuring climate policy uncertainty. Available at SSRN 3847388.
Ghysels, E., Sinko, A., and Valkanov, R. (2007). Midas regressions: Further results and new directions. Econometric reviews, 26(1):53–90.
Giacomini, R. and White, H. (2006). Tests of conditional predictive ability. Econometrica, 74(6):1545–1578.
Husted, L., Rogers, J., and Sun, B. (2020). Monetary policy uncertainty. Journal of Monetary Economics, 115:20–36.
Jin, D. and Yu, J. (2023). Predicting cryptocurrency market volatility: Novel evidence from climate policy uncertainty. Finance Research Letters, 58:104520.
Jones, C. M., Lamont, O., and Lumsdaine, R. L. (1998). Macroeconomic news and bond market volatility. Journal of financial economics, 47(3):315–337.
Kim, A., Trimborn, S., and Härdle, W. K. (2021). Vcrix—a volatility index for cryptocurrencies. International Review of Financial Analysis, 78:101915.
Kraaijeveld, O. and De Smedt, J. (2020). The predictive power of public twitter sentiment for forecasting cryptocurrency prices. Journal of International Financial Markets, Institutions and Money, 65:101188.
Lee, G. G. and Engle, R. F. (1993). A permanent and transitory component model of stock return volatility. Available at SSRN 5848.
Lin, X., Meng, Y., and Zhu, H. (2023). How connected is the crypto market risk to investor sentiment? Finance Research Letters, 56:104177.
Liu, L. and Zhang, T. (2015). Economic policy uncertainty and stock market volatility. Finance Research Letters, 15:99–105.
López-Cabarcos, M. Á., Pérez-Pico, A. M., Piñeiro-Chousa, J., and Šević, A. (2021). Bitcoin volatility, stock market and investor sentiment. are they connected? Finance Research Letters, 38:101399.
Lucey, B. M., Vigne, S. A., Yarovaya, L., and Wang, Y. (2022). The cryptocurrency uncertainty index. Finance Research Letters, 45:102147.
Merton, R. C. (1980). On estimating the expected return on the market: An exploratory investigation. Journal of financial economics, 8(4):323–361.
Mincer, J. A. and Zarnowitz, V. (1969). The evaluation of economic forecasts. In Economic forecasts and expectations: Analysis of forecasting behavior and performance, pages 3–46. NBER.
Mokni, K. (2021). When, where, and how economic policy uncertainty predicts bitcoin returns and volatility? a quantiles-based analysis. The Quarterly Review of Economics and Finance, 80:65–73.
Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160(1):246–256.
Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, pages 461–464.
Schwert, G. W. (1989). Why does stock market volatility change over time? The journal of finance, 44(5):1115–1153.
Vidal-Tomás, D. (2022). Which cryptocurrency data sources should scholars use? International Review of Financial Analysis, 81:102061.
Walther, T., Klein, T., and Bouri, E. (2019). Exogenous drivers of bitcoin and cryptocurrency volatility–a mixed data sampling approach to forecasting. Journal of International Financial Markets, Institutions and Money, 63:101133.
Wu, C.-C., Ho, S.-L., and Wu, C.-C. (2022). The determinants of bitcoin returns and volatility: Perspectives on global and national economic policy uncertainty. Finance research letters, 45:102175.
Xia, Y., Sang, C., He, L., and Wang, Z. (2023). The role of uncertainty index in forecasting volatility of bitcoin: fresh evidence from garch-midas approach. Finance Research Letters, 52:103391.
Yin, L., Nie, J., and Han, L. (2021). Understanding cryptocurrency volatility: The role of oil market shocks. International Review of Economics & Finance, 72:233–253.
Yu, M. (2019). Forecasting bitcoin volatility: The role of leverage effect and uncertainty. Physica A: Statistical Mechanics and Its Applications, 533:120707.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97521-
dc.description.abstract本研究旨在應用多變量 GARCH-MIDAS 模型,探討比特幣市場波動率的來源及其預測能力。傳統的 GARCH 模型雖然能有效捕捉短期波動,但在納入不同頻率資料(如每月總體經濟變數與每日加密貨幣報酬)時存在限制。GARCH-MIDAS 模型能夠整合不同頻率的資料,並區分短期與長期波動來源,提供更全面的波動率建模架構。

本研究納入共 21 個潛在解釋變數,涵蓋四大類型:一般波動指標(如實現波動度Realized Volatility與恐慌指數 VIX)、美國總體經濟變數(如美國 CPI、PPI 等)、不確定性相關指數(如 EPU、MPU、GRI),以及加密貨幣專屬變數(如 UCRY、VCRIX、CFGI)。資料期間涵蓋 2019 年 7 月至 2024 年 7 月,特意避開早期市場尚未成熟的階段。

研究核心在於驗證兩項假說:(1)加密貨幣專屬變數相較於傳統金融變數更能有效解釋與預測比特幣波動率;(2)結合多種潛在波動來源的模型預測能力優於單一來源模型。實證結果顯示,VIX、美國總體經濟指標與某些不確定性相關指數(如 GRI)在單變數模型中展現顯著解釋力,而加密貨幣專屬變數(如 UCRY、CFGI)雖也有顯著解釋力,但模型表現不佳,反而是在預測能力方面表現優異。最終,雙變數模型整合 VIX 與其他解釋變數後,顯著提升了模型整體預測準確度。因此,本研究指出考量加密貨幣市場的獨特特性與波動結構,運用多變量 GARCH-MIDAS 模型進行分層式波動來源建模,能更有效解釋並預測其波動率,對風險管理與資產配置具有實務意涵。
zh_TW
dc.description.abstractThis thesis examines Bitcoin volatility using the multivariate GARCH-MIDAS model, which integrates variables sampled at different frequencies by separating short- and long-term volatility components. The study uses data from July 2019 to July 2024—a period when the cryptocurrency market became more mature—and incorporates 21 explanatory variables from four categories: traditional volatility measures (e.g., realized volatility, VIX), U.S. macroeconomic indicators, policy uncertainty indices, and crypto-specific variables (e.g., UCRY, CFGI).

Two hypotheses are tested: (1) crypto-specific variables offer better explanatory power than traditional financial indicators, and (2) models combining multiple sources of volatility outperform single-source models. Results show that while variables like VIX and U.S. CPI have strong explanatory power, crypto-specific indices such as UCRY and CFGI also contribute significantly to forecasting accuracy.

The study further demonstrates that two-variable GARCH-MIDAS models—especially those combining VIX with crypto-specific variables—outperform single-variable models in both in-sample and out-of-sample forecasts. These findings emphasize the need to consider both traditional and market-specific factors when modeling cryptocurrency volatility, offering practical insights for risk management and financial decision-making in digital asset markets.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:16:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-02T16:16:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝i
摘要iii
Abstract iv
Contents v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Model Specification 6
2.1 Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Short-run component of volatility . . . . . . . . . . . . . . . . . . . . 6
2.3 Long-run component of volatility . . . . . . . . . . . . . . . . . . . . 7
Chapter 3 Model Evaluation 10
3.1 Bayesian Information Criterion, BIC . . . . . . . . . . . . . . . . . . 10
3.2 Variance Ratio, VR . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Chapter 4 Evaluation of Forecast Performance 12
Chapter 5 Data 13
5.1 Bitcoin returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Explanatory variables . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2.1 Volatility measures . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.2 Macroeconomic variables . . . . . . . . . . . . . . . . . . . . 16
5.2.3 Uncertainty Indices . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.4 Crypto-specific variables . . . . . . . . . . . . . . . . . . . . 20
Chapter 6 Empirical Results 24
6.1 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1.1 One-variable model . . . . . . . . . . . . . . . . . . . . . . . 25
6.1.2 Two-variable model . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.3 More-variable model . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Forecasting performance . . . . . . . . . . . . . . . . . . . . . . . . . 35
Chapter 7 Conclusion 44
References 48
Appendix A — Time series plots 53
A.1 Other explanatory variables . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 Other one-variable GARCH-MIDAS models . . . . . . . . . . . . . . 56
-
dc.language.isoen-
dc.subjectGARCH-MIDAS模型zh_TW
dc.subject時間序列zh_TW
dc.subject波動度預測zh_TW
dc.subject加密貨幣zh_TW
dc.subject虛擬貨幣zh_TW
dc.subjectTime seriesen
dc.subjectCryptocurrencyen
dc.subjectVolatility forecasten
dc.subjectGARCH-MIDAS modelen
dc.title虛擬貨幣之波動度預測 - 多變量 GARCH-MIDAS 模型zh_TW
dc.titleMore Than Just One Variable: Cryptocurrency Volatility Forecast Using Multivariate GARCH-MIDAS Modelen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃瑞卿;陳姿穎zh_TW
dc.contributor.oralexamcommitteeRachel J. Huang;Tzu-Ying Chenen
dc.subject.keyword虛擬貨幣,加密貨幣,波動度預測,GARCH-MIDAS模型,時間序列,zh_TW
dc.subject.keywordCryptocurrency,Volatility forecast,GARCH-MIDAS model,Time series,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202501167-
dc.rights.note未授權-
dc.date.accepted2025-06-17-
dc.contributor.author-college管理學院-
dc.contributor.author-dept財務金融學系-
dc.date.embargo-liftN/A-
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved