Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97514
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉zh_TW
dc.contributor.advisorShang-Lien Loen
dc.contributor.author紀羽豪zh_TW
dc.contributor.authorYu-Hao Chien
dc.date.accessioned2025-07-02T16:14:46Z-
dc.date.available2025-07-03-
dc.date.copyright2025-07-02-
dc.date.issued2025-
dc.date.submitted2025-06-17-
dc.identifier.citationAdhikari, B., Chowdhury, N. A., Diaz, L. A., Jin, H., Saha, A. K., Shi, M., Klaehn, J. R., & Lister, T. E. (2023). Electrochemical leaching of critical materials from lithium-ion batteries: A comparative life cycle assessment. Resources, Conservation and Recycling, 193, 106973. https://doi.org/https://doi.org/10.1016/j.resconrec.2023.106973
Azimi, G., & Chan, K. H. (2024). A review of contemporary and emerging recycling methods for lithium-ion batteries with a focus on NMC cathodes. Resources, Conservation and Recycling, 209, 107825. https://doi.org/https://doi.org/10.1016/j.resconrec.2024.107825
Balsvik, J. (2020). Life cycle assessment of industrialized lithium-ion battery recycling: Mechanical and hydrometallurgical treatment from an ex-ante perspective. In.
Bao, Y., Zhang, X., Zhang, X., Yang, L., Zhang, X., Chen, H., Yang, M., & Fang, D. (2016). Free-standing and flexible LiMnTiO4/carbon nanotube cathodes for high performance lithium ion batteries. Journal of Power Sources, 321, 120-125. https://doi.org/https://doi.org/10.1016/j.jpowsour.2016.04.121
Chen, W.-S., & Ho, H.-J. (2018). Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods. Metals, 8(5), 321. https://www.mdpi.com/2075-4701/8/5/321
Chen, X., & Zhou, T. (2014). Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media. Waste Management & Research, 32(11), 1083-1093. https://doi.org/10.1177/0734242X14557380
Dai, Q., et al. (2019). "EverBatt: A Closed-loop Battery Recycling Cost and Environmental Impacts Model.". https://doi.org/10.2172/1530874
Das, D., Manna, S., & Puravankara, S. (2023). Electrolytes, Additives and Binders for NMC Cathodes in Li-Ion Batteries—A Review. Batteries, 9(4), 193. https://www.mdpi.com/2313-0105/9/4/193
Deng, D. (2015). Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering, 3(5), 385-418. https://doi.org/https://doi.org/10.1002/ese3.95
Duarte Castro, F., Mehner, E., Cutaia, L., & Vaccari, M. (2022). Life cycle assessment of an innovative lithium-ion battery recycling route: A feasibility study. Journal of Cleaner Production, 368, 133130. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.133130
Fan, E., Li, L., Wang, Z., Lin, J., Huang, Y., Yao, Y., Chen, R., & Wu, F. (2020). Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chemical Reviews, 120(14), 7020-7063. https://doi.org/10.1021/acs.chemrev.9b00535
Fergus, J. W. (2010). Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 195(4), 939-954. https://doi.org/https://doi.org/10.1016/j.jpowsour.2009.08.089
Ferreira, D. A., Prados, L. M. Z., Majuste, D., & Mansur, M. B. (2009). Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. Journal of Power Sources, 187(1), 238-246. https://doi.org/https://doi.org/10.1016/j.jpowsour.2008.10.077
Gao, J., Shi, S.-Q., & Li, H. (2016). Brief overview of electrochemical potential in lithium ion batteries*. Chinese Physics B, 25(1), 018210. https://doi.org/10.1088/1674-1056/25/1/018210
Guimarães, L. F., Botelho Junior, A. B., & Espinosa, D. C. R. (2022). Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent. Minerals Engineering, 183, 107597. https://doi.org/https://doi.org/10.1016/j.mineng.2022.107597
Habashi, F. (2005). A short history of hydrometallurgy. Hydrometallurgy, 79(1), 15-22. https://doi.org/https://doi.org/10.1016/j.hydromet.2004.01.008
Hirayama, M., Ido, H., Kim, K., Cho, W., Tamura, K., Mizuki, J., & Kanno, R. (2010). Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. J Am Chem Soc, 132(43), 15268-15276. https://doi.org/10.1021/ja105389t
IEA. (2021). The Role of Critical Minerals in Clean Energy Transitions.
Iturrondobeitia, M., Vallejo, C., Berroci, M., Akizu-Gardoki, O., Minguez, R., & Lizundia, E. (2022). Environmental Impact Assessment of LiNi1/3Mn1/3Co1/3O2 Hydrometallurgical Cathode Recycling from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 10(30), 9798-9810. https://doi.org/10.1021/acssuschemeng.2c01496
Kallitsis, E., Korre, A., & Kelsall, G. H. (2022). Life cycle assessment of recycling options for automotive Li-ion battery packs. Journal of Cleaner Production, 371, 133636. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.133636
Li, L., Bian, Y., Zhang, X., Guan, Y., Fan, E., Wu, F., & Chen, R. (2018). Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Management, 71, 362-371. https://doi.org/https://doi.org/10.1016/j.wasman.2017.10.028
Li, L., Ge, J., Wu, F., Chen, R., Chen, S., & Wu, B. (2010). Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Journal of Hazardous Materials, 176(1), 288-293. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.11.026
Liu, H., Yang, Y., & Zhang, J. (2007). Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2. Journal of Power Sources, 173(1), 556-561. https://doi.org/https://doi.org/10.1016/j.jpowsour.2007.04.083
Lombardo, G., Ebin, B., Steenari, B.-M., Alemrajabi, M., Karlsson, I., & Petranikova, M. (2021). Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector. Resources, Conservation and Recycling, 164, 105142. https://doi.org/https://doi.org/10.1016/j.resconrec.2020.105142
Machala, M. L., Chen, X., Bunke, S. P., Forbes, G., Yegizbay, A., de Chalendar, J. A., Azevedo, I. L., Benson, S., & Tarpeh, W. A. (2025). Life cycle comparison of industrial-scale lithium-ion battery recycling and mining supply chains. Nature Communications, 16(1), 988. https://doi.org/10.1038/s41467-025-56063-x
Malik, M., Chan, K. H., & Azimi, G. (2022). Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries. Materials Today Energy, 28, 101066. https://doi.org/https://doi.org/10.1016/j.mtener.2022.101066
Megahed, S., & Scrosati, B. (1994). Lithium-ion rechargeable batteries. Journal of Power Sources, 51(1), 79-104. https://doi.org/https://doi.org/10.1016/0378-7753(94)01956-8
Meshram, P., Abhilash, Pandey, B. D., Mankhand, T. R., & Deveci, H. (2016). Comparision of Different Reductants in Leaching of Spent Lithium Ion Batteries. JOM, 68(10), 2613-2623. https://doi.org/10.1007/s11837-016-2032-9
Meshram, P., Pandey, B. D., & Mankhand, T. R. (2014). Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 150, 192-208. https://doi.org/https://doi.org/10.1016/j.hydromet.2014.10.012
Miao, Y., Liu, L., Zhang, Y., Tan, Q., & Li, J. (2022). An overview of global power lithium-ion batteries and associated critical metal recycling. Journal of Hazardous Materials, 425, 127900. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.127900
Mohamed, N., & Allam, N. K. (2020). Recent advances in the design of cathode materials for Li-ion batteries [10.1039/D0RA03314F]. RSC Advances, 10(37), 21662-21685. https://doi.org/10.1039/D0RA03314F
Mohr, M., Peters, J. F., Baumann, M., & Weil, M. (2020). Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. Journal of Industrial Ecology, 24(6), 1310-1322. https://doi.org/https://doi.org/10.1111/jiec.13021
Mousavinezhad, S., Kadivar, S., & Vahidi, E. (2023). Comparative life cycle analysis of critical materials recovery from spent Li-ion batteries. Journal of Environmental Management, 339, 117887. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.117887
Mrozik, W., Rajaeifar, M. A., Heidrich, O., & Christensen, P. (2021). Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science, 14(12), 6099-6121.
Nayl, A. A., Elkhashab, R. A., Badawy, S. M., & El-Khateeb, M. A. (2017). Acid leaching of mixed spent Li-ion batteries. Arabian Journal of Chemistry, 10, S3632-S3639. https://doi.org/https://doi.org/10.1016/j.arabjc.2014.04.001
Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: present and future. Materials Today, 18(5), 252-264. https://doi.org/https://doi.org/10.1016/j.mattod.2014.10.040
Orangi, S., Manjong, N. B., Clos, D. P., Usai, L., Stokke Burheim, O., & Strømman, A. H. (2023). Trajectories for Lithium-Ion Battery Cost Production: Can Metal Prices Hamper the Deployment of Lithium-Ion Batteries? Batteries & Supercaps, 6(12), e202300346. https://doi.org/https://doi.org/10.1002/batt.202300346
Organization, I. S. (1997). ISO 14040: Environmental management-Life cycle assessment-Principles and framework.
Pagnanelli, F., Moscardini, E., Granata, G., Cerbelli, S., Agosta, L., Fieramosca, A., & Toro, L. (2014). Acid reducing leaching of cathodic powder from spent lithium ion batteries: Glucose oxidative pathways and particle area evolution. Journal of Industrial and Engineering Chemistry, 20(5), 3201-3207. https://doi.org/https://doi.org/10.1016/j.jiec.2013.11.066
Palacín, M. R. (2018). Understanding ageing in Li-ion batteries: a chemical issue [10.1039/C7CS00889A]. Chemical Society Reviews, 47(13), 4924-4933. https://doi.org/10.1039/C7CS00889A
Peng, C., Hamuyuni, J., Wilson, B. P., & Lundström, M. (2018). Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system. Waste Management, 76, 582-590. https://doi.org/https://doi.org/10.1016/j.wasman.2018.02.052
Qi, C., & Koenig, G. (2016). High-Performance LiCoO2 Sub-Micrometer Materials from Scalable Microparticle Template Processing. ChemistrySelect, 1, 3992. https://doi.org/10.1002/slct.201600872
Rashedi, A., & Khanam, T. (2020). Life cycle assessment of most widely adopted solar photovoltaic energy technologies by mid-point and end-point indicators of ReCiPe method. Environmental Science and Pollution Research, 27(23), 29075-29090. https://doi.org/10.1007/s11356-020-09194-1
Rashedi, A., Sridhar, I., & Tseng, K. J. (2013). Life cycle assessment of 50MW wind firms and strategies for impact reduction. Renewable and Sustainable Energy Reviews, 21, 89-101. https://doi.org/https://doi.org/10.1016/j.rser.2012.12.045
Rautela, R., Yadav, B. R., & Kumar, S. (2023). A review on technologies for recovery of metals from waste lithium-ion batteries. Journal of Power Sources, 580, 233428. https://doi.org/https://doi.org/10.1016/j.jpowsour.2023.233428
Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., & Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534(7609), 631-639. https://doi.org/10.1038/nature18307
Shih, Y.-J., Chien, S.-K., Jhang, S.-R., & Lin, Y.-C. (2019). Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries. Journal of the Taiwan Institute of Chemical Engineers, 100, 151-159. https://doi.org/https://doi.org/10.1016/j.jtice.2019.04.017
Shin, Y., Kim, S., Park, S., Lee, J., Bae, J., Kim, D., Joo, H., Ban, S., Lee, H., Kim, Y., & Kwon, K. (2023). A comprehensive review on the recovery of cathode active materials via direct recycling from spent Li-ion batteries. Renewable and Sustainable Energy Reviews, 187, 113693. https://doi.org/https://doi.org/10.1016/j.rser.2023.113693
Sobianowska-Turek, A., Urbańska, W., Janicka, A., Zawiślak, M., & Matla, J. (2021). The Necessity of Recycling of Waste Li-Ion Batteries Used in Electric Vehicles as Objects Posing a Threat to Human Health and the Environment. Recycling, 6(2).
Sommerville, R., Zhu, P., Rajaeifar, M. A., Heidrich, O., Goodship, V., & Kendrick, E. (2021). A qualitative assessment of lithium ion battery recycling processes. Resources, Conservation and Recycling, 165, 105219. https://doi.org/https://doi.org/10.1016/j.resconrec.2020.105219
Sun, L., & Qiu, K. (2011). Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. Journal of Hazardous Materials, 194, 378-384. https://doi.org/https://doi.org/10.1016/j.jhazmat.2011.07.114
Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. https://doi.org/10.1038/35104644
Todorovic, M., & Simic, M. (2019). Current State of the Transition to Electrical Vehicles. In G. De Pietro, L. Gallo, R. J. Howlett, L. C. Jain, & L. Vlacic, Intelligent Interactive Multimedia Systems and Services Cham.
Tuncuk, A., Stazi, V., Akcil, A., Yazici, E. Y., & Deveci, H. (2012). Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Minerals Engineering, 25(1), 28-37. https://doi.org/https://doi.org/10.1016/j.mineng.2011.09.019
Wang, M., Liu, K., Yu, J., Zhang, Q., Zhang, Y., Valix, M., & Tsang, D. C. W. (2023). Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal. Global Challenges, 7(3), 2200237. https://doi.org/https://doi.org/10.1002/gch2.202200237
Wani, T. A., & Suresh, G. (2021). A comprehensive review of LiMnPO4 based cathode materials for lithium-ion batteries: current strategies to improve its performance. Journal of Energy Storage, 44, 103307. https://doi.org/https://doi.org/10.1016/j.est.2021.103307
Wu, X., Ma, J., Wang, J., Zhang, X., Zhou, G., & Liang, Z. (2022). Progress, Key Issues, and Future Prospects for Li-Ion Battery Recycling. Global Challenges, 6(12), 2200067. https://doi.org/https://doi.org/10.1002/gch2.202200067
Wyrzykowski, D., & Chmurzyński, L. (2010). Thermodynamics of citrate complexation with Mn2+, Co2+, Ni2+ and Zn2+ ions. Journal of Thermal Analysis and Calorimetry, 102(1), 61-64. https://doi.org/10.1007/s10973-009-0523-4
Xuan, W., Otsuki, A., & Chagnes, A. (2019). Investigation of the leaching mechanism of NMC 811 (LiNi0.8Mn0.1Co0.1O2) by hydrochloric acid for recycling lithium ion battery cathodes [10.1039/C9RA06686A]. RSC Advances, 9(66), 38612-38618. https://doi.org/10.1039/C9RA06686A
Yao, Y., Zhu, M., Zhao, Z., Tong, B., Fan, Y., & Hua, Z. (2018). Hydrometallurgical Processes for Recycling Spent Lithium-Ion Batteries: A Critical Review. ACS Sustainable Chemistry & Engineering, 6(11), 13611-13627. https://doi.org/10.1021/acssuschemeng.8b03545
Yasa, S., Aydin, O., Al-Bujasim, M., Birol, B., & Gencten, M. (2023). Recycling valuable materials from the cathodes of spent lithium-ion batteries: A comprehensive review. Journal of Energy Storage, 73, 109073. https://doi.org/https://doi.org/10.1016/j.est.2023.109073
Yue, Y., Wei, S., Yongjie, B., Chenyang, Z., Shaole, S., & Yuehua, H. (2018). Recovering Valuable Metals from Spent Lithium Ion Battery via a Combination of Reduction Thermal Treatment and Facile Acid Leaching. ACS Sustainable Chemistry & Engineering, 6(8), 10445-10453. https://doi.org/10.1021/acssuschemeng.8b01805
Zhang, P., Yokoyama, T., Itabashi, O., Wakui, Y., Suzuki, T. M., & Inoue, K. (1998). Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries. Hydrometallurgy, 50(1), 61-75. https://doi.org/https://doi.org/10.1016/S0304-386X(98)00046-2
Zhang, Y., Yu, M., Guo, J., Liu, S., Song, H., Wu, W., Zheng, C., & Gao, X. (2023). Recover value metals from spent lithium-ion batteries via a combination of in-situ reduction pretreatment and facile acid leaching. Waste Management, 161, 193-202. https://doi.org/https://doi.org/10.1016/j.wasman.2023.02.034
Zhang, Z., Li, Q., Li, Z., Ma, J., Li, C., Yin, L., & Gao, X. (2016). Partially Reducing Reaction Tailored Mesoporous 3D Carbon Coated NiCo-NiCoO2/Carbon Xerogel Hybrids as Anode Materials for Lithium Ion Battery with Enhanced Electrochemical Performance. Electrochimica Acta, 203, 117-127. https://doi.org/https://doi.org/10.1016/j.electacta.2016.03.037
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97514-
dc.description.abstract隨著電動車及消費性電子產品的普及,鋰離子電池的需求持續攀升,對鋰、鈷、鎳及錳等貴金屬的需求隨之增加。然而,鋰電池壽命有限,且含有多種重金屬及有毒電解液,使其廢棄後對環境的衝擊成為重要議題。本研究探討以硫酸與檸檬酸作為浸出劑,在濕式冶金回收18650 NCM型鋰電池中鎳、鈷及錳等金屬的回收效率,並進行生命週期評估(LCA),比較兩種浸出體系對環境的衝擊差異。
實驗首先以600°C熱裂解法去除陰極材料中的PVDF黏著劑及鋁箔,隨後進行酸浸條件的最佳化,變因包括酸液濃度、液固比、過氧化氫濃度及浸出時間。結果顯示,在硫酸濃度2M、過氧化氫10%、液固比30 ml/g及浸出120分鐘條件下,鋰、鈷、鎳、錳及鈀的萃取率分別達93.03%、97.06%、93.11%、91.86%及97.78%;而在檸檬酸濃度1.5M、過氧化氫10%、溫度60°C、液固比30 ml/g及浸出120分鐘下,鋰、鈷、鎳、錳及鈀的萃取率分別為100%、94.54%、96.12%、86.01%及97.67%。
生命週期評估結果指出,硫酸浸出法的整體環境負荷低於檸檬酸浸出法,儘管其酸性廢液對水體生態具潛在風險。檸檬酸浸出法則因供應鏈涉及糖類原料發酵、能源消耗及水資源使用,造成較高的碳足跡與潛在毒性排放,導致多數環境衝擊類別的結果高於硫酸浸出法。
zh_TW
dc.description.abstractWith the widespread adoption of electric vehicles and consumer electronics, the demand for lithium-ion batteries has surged, driving up the global demand for precious metals such as lithium, cobalt, nickel, and manganese. However, the limited lifespan of these batteries, combined with their content of heavy metals and toxic electrolytes, has raised significant environmental concerns upon disposal. This study investigates the use of sulfuric acid and citric acid as leaching agents in hydrometallurgical recovery of cobalt, nickel, and manganese from 18650-type NCM lithium-ion batteries. Furthermore, a life cycle assessment (LCA) is conducted to compare the environmental impacts of the two leaching systems.
The experiments began with the thermal decomposition of cathode materials at 600°C to remove the PVDF binder and aluminum foil. Subsequent optimization of leaching conditions focused on acid concentration, liquid-to-solid ratio, hydrogen peroxide concentration, and leaching time. Results indicate that under conditions of 2 M sulfuric acid, 10% hydrogen peroxide, a liquid-to-solid ratio of 30 ml/g, and a leaching time of 120 minutes, the extraction efficiencies for lithium, cobalt, nickel, manganese, and palladium reached 93.03%, 97.06%, 93.11%, 91.86%, and 97.78%, respectively. In contrast, using 1.5 M citric acid, 10% hydrogen peroxide, at 60°C, with a liquid-to-solid ratio of 30 ml/g and a leaching time of 120 minutes, extraction efficiencies were 100%, 94.54%, 96.12%, 86.01%, and 97.67%, respectively.
The LCA results reveal that the overall environmental burden of the sulfuric acid leaching method is lower than that of the citric acid leaching method, despite the potential ecological risks associated with acidic effluent discharges. Citric acid leaching exhibited higher impacts across most environmental categories due to factors such as sugar fermentation in its supply chain, high energy consumption, and water use, resulting in a larger carbon footprint and higher potential toxic emissions compared to sulfuric acid leaching.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:14:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-02T16:14:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員會審定書 ......................................... i
誌謝 .................... ii
中文摘要 .............. iii
ABSTRACT ......................................................................................... iv
目次 .................................................................................. vi
圖次 ....................................................................... ix
表次 ............................................................................. xi
第一章 緒論 .......................................................................... 1
1.1. 研究緣起 ........................................................ 1
1.2. 研究目的 ................................................... 2
1.3. 研究內容 ................................................. 2
第二章 文獻回顧 ..................................................... 3
2.1. 鋰電池回收 ..................................................... 3
2.1.1. 鋰電池簡介 ......................................................... 3
2.1.2. 鋰電池回收 ............................................................ 7
2.1.3. 濕式冶金 ...................................................................................... 11
2.2. 生命週期評估 ...................................................................................... 13
2.2.1. 生命週期評估介紹 ................................................................................ 13
2.2.2. 生命週期評估於鋰電池回收中的應用 ................................................ 14
第三章 實驗材料與方法 .................................................................................. 18
3.1. 實驗流程 ................................................. 18
3.2. 鋰電池回收實驗方法 ................................. 19
3.2.1. 鋰電池前處理 ............................................... 19
3.2.2. 鋰電池之定性及定量分析 .................................................................... 19
3.2.3. 金屬萃取 ........................................................ 20
3.3. 生命週期評估方法 ................................................................................ 21
3.3.1. 目標與範疇界定 ................................................ 21
3.3.2. 生命週期盤查 ................................................... 22
3.3.3. 生命週期影響評估 ................................................................................ 23
3.4. 實驗材料及藥品 .................................................................................... 24
3.5. 實驗儀器 ................................................ 26
第四章 結果與討論 .................................................................. 32
4.1. 鋰電池前處理 ............................................................ 32
4.1.1. 鋰電池基本性質 ........................................................... 32
4.1.2. 鋰電池定性定量分析 ....................................................... 32
4.1.3. 鋰電池前處理 .................................................... 37
4.2. 鋰電池回收 ................................................................ 38
4.2.1. 硫酸浸出法 ........................................................... 38
4.2.2. 檸檬酸浸出法 .................................................... 43
4.2.3. 硫酸浸出法與檸檬酸浸出法之比較 ........................ 49
4.3. 生命週期評估 .................................................. 51
4.3.1. 硫酸浸出法生命週期評估 .................................................................... 52
4.3.2. 檸檬酸浸出法生命週期評估 ................................................................ 58
4.3.3. 硫酸與檸檬酸生命週期比較分析 ........................................................ 62
4.4. 兩法之綜合比較 .................................................................................... 66
第五章 結論與建議 ................................................................. 67
5.1. 結論 .................................................................................. 67
5.2. 建議 ............................................................................... 68
參考文獻 ........................................................................................ 69
-
dc.language.isozh_TW-
dc.subject無機酸浸出zh_TW
dc.subject資源循環利用zh_TW
dc.subject金屬回收zh_TW
dc.subject有機酸浸出zh_TW
dc.subject廢棄NMC鋰電池zh_TW
dc.subject濕式冶金zh_TW
dc.subject生命週期評估zh_TW
dc.subjectLife Cycle Assessmenten
dc.subjectMetal Recoveryen
dc.subjectOrganic Acid Leachingen
dc.subjectInorganic Acid Leachingen
dc.subjectHydrometallurgyen
dc.subjectWaste NCM Lithium-ion Batteriesen
dc.subjectResource Circularityen
dc.title檸檬酸與硫酸作為濕式冶金鋰電池回收浸出劑之比較及生命週期評估zh_TW
dc.titleComparison of Citric Acid and Sulfuric Acid as Leaching Agents in Hydrometallurgical Recycling of Lithium-ion Batteries and Life Cycle Assessmenten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor闕蓓德zh_TW
dc.contributor.coadvisorPei-Te Chiuehen
dc.contributor.oralexamcommittee胡景堯;黃于峯zh_TW
dc.contributor.oralexamcommitteeChing-Yao Hu;Yu-Fong Huangen
dc.subject.keyword廢棄NMC鋰電池,濕式冶金,生命週期評估,無機酸浸出,有機酸浸出,金屬回收,資源循環利用,zh_TW
dc.subject.keywordWaste NCM Lithium-ion Batteries,Hydrometallurgy,Inorganic Acid Leaching,Organic Acid Leaching,Metal Recovery,Life Cycle Assessment,Resource Circularity,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202501189-
dc.rights.note未授權-
dc.date.accepted2025-06-18-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved