請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97513完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許良彥 | zh_TW |
| dc.contributor.advisor | Liang-Yan Hsu | en |
| dc.contributor.author | 莊羿廷 | zh_TW |
| dc.contributor.author | Yi-Ting Chuang | en |
| dc.date.accessioned | 2025-07-02T16:14:31Z | - |
| dc.date.available | 2025-07-03 | - |
| dc.date.copyright | 2025-07-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-24 | - |
| dc.identifier.citation | Chapter1:
[1] Hollas, J. M. Modern Spectroscopy, 4th ed.; Wiley: Chichester, England, 2004. [2] Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58, 267–297. [3] Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. Introduction to Spectroscopy, 5th ed.; Cengage Learning: Stamford, CT, USA, 2014. [4] Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; García de Abajo, F. J.; Goodacre, R.; Graham, D.; Haes, A. J.; Haynes, C. L.; Huck, C.; Itoh, T.; Käll, M.; Kneipp, J.; Kotov, N. A.; Kuang, H.; Le Ru, E. C.; Lee, H. K.; Li, J.-F.; Ling, X. Y.; Maier, S. A.; Mayerhöfer, T.; Moskovits, M.; Murakoshi, K.; Nam, J.-M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Perez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G. C.; Shegai, T.; Schlücker, S.; Tay, L.-L.; Thomas, K. G.; Tian, Z.-Q.; Van Duyne, R. P.; Vo-Dinh, T.; Wang, Y.; Willets, K. A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y. S.; Zhao, B.; Liz-Marzán, L. M. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [5] Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nature Materials 2010, 9, 205–213. [6] Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews 2011, 15, 1625–1636. [7] El Chaar, L.; lamont, L.; El Zein, N. Review of photovoltaic technologies. Renewable and Sustainable Energy Reviews 2011, 15, 2165–2175. [8] Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424. [9] Goban, A.; Hung, C.-L.; Hood, J. D.; Yu, S.-P.; Muniz, J. A.; Painter, O.; Kimble, H. J. Superradiance for Atoms Trapped along a Photonic Crystal Waveguide. Phys. Rev. Lett. 2015, 115, 063601. [10] Hood, J. D.; Goban, A.; Asenjo-Garcia, A.; Lu, M.; Yu, S.-P.; Chang, D. E.; Kimble, H. J. Atom–atom interactions around the band edge of a photonic crystal waveguide. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 10507–10512. [11] Zhang, Y.; Luo, Y.; Zhang, Y.; Yu, Y.-J.; Kuang, Y.-M.; Zhang, L.; Meng, Q.-S.; Luo, Y.; Yang, J.-L.; Dong, Z.-C.; Hou, J. G. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 2016, 531, 623–627. [12] Solano, P.; Barberis-Blostein, P.; Fatemi, F. K.; Orozco, L. A.; Rolston, S. L. Super- radiance reveals infinite-range dipole interactions through a nanofiber. Nat. Commun. 2017, 8, 1857. [13] Kim, J.-H.; Aghaeimeibodi, S.; Richardson, C. J. K.; Leavitt, R. P.; Waks, E. Super-Radiant Emission from Quantum Dots in a Nanophotonic Waveguide. Nano Lett. 2018, 18, 4734–4740. [14] Luo, Y.; Chen, G.; Zhang, Y.; Zhang, L.; Yu, Y.; Kong, F.; Tian, X.; Zhang, Y.; Shan, C.; Luo, Y.; Yang, J.; Sandoghdar, V.; Dong, Z.; Hou, J. G. Electrically Driven Single-Photon Superradiance from Molecular Chains in a Plasmonic Nanocavity. Phys. Rev. Lett. 2019, 122, 233901. [15] Pennetta, R.; Blaha, M.; Johnson, A.; Lechner, D.; Schneeweiss, P.; Volz, J.; Rauschenbeutel, A. Collective Radiative Dynamics of an Ensemble of Cold Atoms Coupled to an Optical Waveguide. Phys. Rev. Lett. 2022, 128, 073601. [16] Tiranov, A.; Angelopoulou, V.; van Diepen, C. J.; Schrinski, B.; Sandberg, O. A. D.; Wang, Y.; Midolo, L.; Scholz, S.; Wieck, A. D.; Ludwig, A.; Sørensen, A. S.; Lo- dahl, P. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 2023, 379, 389–393. [17] Andrew, P.; Barnes, W. L. Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons. Science 2004, 306, 1002–1005. [18] Götzinger, S.; de S. Menezes, L.; Mazzei, A.; Kühn, S.; Sandoghdar, V.; Benson, O. Controlled Photon Transfer between Two Individual Nanoemitters via Shared High-Q Modes of a Microsphere Resonator. Nano Lett. 2006, 6, 1151–1154. [19] Lunz, M.; Gerard, V. A.; Gun’ko, Y. K.; Lesnyak, V.; Gaponik, N.; Susha, A. S.; Rogach, A. L.; Bradley, A. L. Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTe Nanocrystal Quantum Dot Monolayers. Nano Lett. 2011, 11, 3341–3345. [20] Coles, D. M.; Somaschi, N.; Michetti, P.; Clark, C.; Lagoudakis, P. G.; Savvidis, P. G.; Lidzey, D. G. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 2014, 13, 712–719. [21] Zhong, X.; Chervy, T.; Wang, S.; George, J.; Thomas, A.; Hutchison, J. A.; Devaux, E.; Genet, C.; Ebbesen, T. W. Nonradiative energy transfer mediated by hybrid light-matter states. Angew. Chem. Int. Ed. 2016, 55, 6202–6206. [22] Zhong, X.; Chervy, T.; Zhang, L.; Thomas, A.; George, J.; Genet, C.; Hutchison, J. A.; Ebbesen, T. W. Energy Transfer between Spatially Separated Entangled Molecules. Angew. Chem. Int. Ed. 2017, 56, 9034–9038. [23] Xiang, B.; Ribeiro, R. F.; Du, M.; Chen, L.; Yang, Z.; Wang, J.; Yuen-Zhou, J.; Xiong, W. Intermolecular vibrational energy transfer enabled by microcavity strong light-matter coupling. Science 2020, 368, 665–667. [24] Georgiou, K.; Jayaprakash, R.; Othonos, A.; Lidzey, D. G. Ultralong-Range polariton-assisted energy transfer in organic microcavities. Angew. Chem., Int. Ed. 2021, 133, 16797–16803. [25] Wang, M.; Hertzog, M.; Börjesson, K. Polariton-assisted excitation energy channeling in organic heterojunctions. Nat. Commun. 2021, 12, 1874. [26] Hutchison, J. A.; Schwartz, T.; Genet, C.; Devaux, E.; Ebbesen, T. W. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 2012, 124, 1624–1628. [27] Thomas, A.; Lethuillier-Karl, L.; Nagarajan, K.; Vergauwe, R. M. A.; George, J.; Chervy, T.; Shalabney, A.; Devaux, E.; Genet, C.; Moran, J.; Ebbesen, T. W. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 2019, 363, 615–619. [28] Sau, A.; Nagarajan, K.; Patrahau, B.; LethuillierKarl, L.; Vergauwe, R. M. A.; Thomas, A.; Moran, J.; Genet, C.; Ebbesen, T. W. Modifying Woodward–Hoffmann Stereoselectivity Under Vibrational Strong Coupling. Angew. Chem. Int. Ed. 2021, 60, 5712–5717. [29] Puro, R.; Van Schenck, J. D. B.; Center, R.; Holland, E. K.; Anthony, J. E.; Ostroverkhova, O. Exciton Polariton-Enhanced Photodimerization of Functionalized Tetracene. J. Phys. Chem. C 2021, 125, 27072–27083. [30] Zeng, H.; Pérez-Sánchez, J. B.; Eckdahl, C. T.; Liu, P.; Chang, W. J.; Weiss, E. A.; Kalow, J. A.; Yuen-Zhou, J.; Stern, N. P. Control of Photoswitching Kinetics with Strong Light–Matter Coupling in a Cavity. J. Am. Chem. Soc. 2023, 145, 19655– 19661. [31] Ahn, W.; Triana, J. F.; Recabal, F.; Herrera, F.; Simpkins, B. S. Modification of ground-state chemical reactivity via light–matter coherence in infrared cavities. Science 2023, 380, 1165–1168. [32] Ribeiro, R. F.; Martínez-Martínez, L. A.; Du, M.; Campos-Gonzalez-Angulo, J.; Yuen-Zhou, J. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci. 2018, 9, 6325–6339. [33] Yuen-Zhou, J.; Menon, V. M. Polariton chemistry: Thinking inside the (photon) box. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 5214–5216. [34] Kéna-Cohen, S.; Yuen-Zhou, J. Polariton Chemistry: Action in the Dark. ACS Cent. Sci. 2019, 5, 386–388. [35] Hirai, K.; Hutchison, J. A.; Ujii, H. Recent Progress in Vibropolaritonic Chemistry. ChemPlusChem 2020, 85, 1981–1988. [36] Xiang, B.; Xiong, W. Molecular vibrational polariton: Its dynamics and potentials in novel chemistry and quantum technology. J. Chem. Phys. 2021, 155, 050901. [37] Yuen-Zhou, J.; Xiong, W.; Shegai, T. Polariton chemistry: Molecules in cavities and plasmonic media. J. Chem. Phys. 2022, 156, 030401. [38] Tavis, M.; Cummings, F. W. Exact Solution for an N-Molecule—Radiation-Field Hamiltonian. Phys. Rev. 1968, 170, 379–384. [39] Wei, Y.-C.; Lee, M.-W.; Chou, P.-T.; Scholes, G. D.; Schatz, G. C.; Hsu, L.-Y. Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor–Acceptor Pair?. J. Phys. Chem. C 2021, 125, 18119–18128. [40] Scully, M. O.; Zubairy, M. S. Quantum Optics; Cambridge University Press, 1997. [41] Vogel, W.; Welsch, D. Quantum Optics; Wiley, 2006. [42] Hughes, S. Modified Spontaneous Emission and Qubit Entanglement from Dipole-Coupled Quantum Dots in a Photonic Crystal Nanocavity. Phys. Rev. Lett. 2005, 94, 227402. [43] Dzsotjan, D.; Sørensen, A. S.; Fleischhauer, M. Quantum emitters coupled to sur- face plasmons of a nanowire: A Green’s function approach. Phys. Rev. B 2010, 82, 075427. [44] Gonzalez-Tudela, A.; Martin-Cano, D.; Moreno, E.; Martin-Moreno, L.; Tejedor, C.; Garcia-Vidal, F. J. Entanglement of Two Qubits Mediated by One-Dimensional Plasmonic Waveguides. Phys. Rev. Lett. 2011, 106, 020501. [45] Gangaraj, S. A. H.; Hanson, G. W.; Antezza, M. Robust entanglement with three-dimensional nonreciprocal photonic topological insulators. Phys. Rev. A 2017, 95, 063807. [46] Domenikou, N.; Thanopulos, I.; Karanikolas, V.; Paspalakis, E. Highly Efficient Coherent Energy Transfer in Molecules near a MoS2 Nanodisk. Phys. Rev. Appl. 2023, 20, 034022. Chapter2: [1] Gruner, T.; Welsch, D.-G. Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics. Phys. Rev. A 1996, 53, 1818–1829. [2] Dung, H. T.; Knöll, L.; Welsch, D.-G. Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics. Phys. Rev. A 1998, 57, 3931–3942. [3] Scheel, S.; Knöll, L.; Welsch, D.-G. QED commutation relations for inhomogeneous Kramers-Kronig dielectrics. Phys. Rev. A 1998, 58, 700–706. [4] Buhmann, S. Y. Dispersion Forces I; Springer Tracts in Modern Physics, Vol. 247; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012. [5] Herrera, F.; Owrutsky, J. Molecular polaritons for controlling chemistry with quantum optics. J. Chem. Phys. 2020, 152, 100902. [6] Scheel, S.; Knöll, L.; Welsch, D.-G. Spontaneous decay of an excited atom in an absorbing dielectric. Phys. Rev. A 1999, 60, 4094–4104. [7] Scheel, S.; Knöll, L.; Welsch, D.-G.; Barnett, S. M. Quantum local-field corrections and spontaneous decay. Phys. Rev. A 1999, 60, 1590–1597. [8] Dung, H. T.; Knöll, L.; Welsch, D.-G. Spontaneous decay in the presence of dispersing and absorbing bodies: General theory and application to a spherical cavity. Phys. Rev. A 2000, 62, 053804. [9] Wang, S.; Scholes, G. D.; Hsu, L.-Y. Quantum dynamics of a molecular emitter strongly coupled with surface plasmon polaritons: A macroscopic quantum electrodynamics approach. J. Chem. Phys. 2019, 151, 014105. [10] Wang, S.; Scholes, G. D.; Hsu, L.-Y. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2020, 11, 5948–5955. [11] Wang, S.; Lee, M.-W.; Chuang, Y.-T.; Scholes, G. D.; Hsu, L.-Y. Theory of molecular emission power spectra. I. Macroscopic quantum electrodynamics formalism. J. Chem. Phys. 2020, 153, 184102. [12] Lee, M.-W.; Chuang, Y.-T.; Hsu, L.-Y. Theory of molecular emission power spectra. II. Angle, frequency, and distance dependence of electromagnetic environment factor of a molecular emitter in plasmonic environments. J. Chem. Phys. 2021, 155, 074101. [13] Dung, H. T.; Knöll, L.; Welsch, D.-G. Intermolecular energy transfer in the presence of dispersing and absorbing media. Phys. Rev. A 2002, 65, 043813. [14] Dung, H. T.; Knöll, L.; Welsch, D.-G. Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings. Phys. Rev. A 2002, 66, 063810. [15] Ding, W.; Hsu, L.-Y.; Schatz, G. C. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach. J. Chem. Phys. 2017, 146, 064109. [16] Hsu, L.-Y.; Ding, W.; Schatz, G. C. Plasmon-Coupled Resonance Energy Transfer. J. Phys. Chem. Lett. 2017, 8, 2357–2367. [17] Ding, W.; Hsu, L.-Y.; Heaps, C. W.; Schatz, G. C. Plasmon-Coupled Resonance Energy Transfer II: Exploring the Peaks and Dips in the Electromagnetic Coupling Factor. J. Phys. Chem. C 2018, 122, 22650–22659. [18] Wu, J.-S.; Lin, Y.-C.; Sheu, Y.-L.; Hsu, L.-Y. Characteristic Distance of Resonance Energy Transfer Coupled with Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2018, 9, 7032–7039. [19] Lee, M.-W.; Hsu, L.-Y. Controllable Frequency Dependence of Resonance Energy Transfer Coupled with Localized Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2020, 11, 6796–6804. [20] Wang, D. S.; Yelin, S. F. A Roadmap Toward the Theory of Vibrational Polariton Chemistry. ACS Photonics 2021, 8, 2818–2826. [21] Wei, Y.-C.; Lee, M.-W.; Chou, P.-T.; Scholes, G. D.; Schatz, G. C.; Hsu, L.-Y. Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor–Acceptor Pair?. J. Phys. Chem. C 2021, 125, 18119–18128. [22] Buhmann, S. Y.; Knöll, L.; Welsch, D.-G.; Dung, H. T. Casimir-Polder forces: A nonperturbative approach. Phys. Rev. A 2004, 70, 052117. [23] Buhmann, S. Y.; Dung, H. T.; Kampf, T.; Knöll, L.; Welsch, D. G. Atoms near Magnetodielectric Bodies: van der Waals Energy and the Casimir–Polder Force. Opt. Spectrosc. 2005, 99, 466. [24] Buhmann, S. Y.; Dung, H. T.; Kampf, T.; Welsch, D.-G. Casimir-Polder interaction of atoms with magnetodielectric bodies. Eur. Phys. J. D 2005, 35, 15–30. [25] Buhmann, S.; Welsch, D.-G. Born expansion of the Casimir–Polder interaction of a ground-state atom with dielectric bodies. Appl. Phys. B 2006, 82, 189–201. [26] Buhmann, S. Y.; Welsch, D.-G. Casimir-Polder forces on excited atoms in the strong atom-field coupling regime. Phys. Rev. A 2008, 77, 012110. [27] Buhmann, S. Y.; Welsch, D.-G.; Kampf, T. Ground-state van der Waals forces in planar multilayer magnetodielectrics. Phys. Rev. A 2005, 72, 032112. [28] Sambale, A.; Buhmann, S. Y.; Welsch, D.-G.; Tomaš, M.-S. Local-field correction to one- and two-atom van der Waals interactions. Phys. Rev. A 2007, 75, 042109. [29] Buhmann, S. Y.; Safari, H.; Dung, H. T.; Welsch, D. G. Two-atom van der Waals interaction between polarizable/magnetizable atoms near magnetoelectric bodies. Opt. Spectrosc. 2007, 103, 374–387. [30] Safari, H.; Welsch, D.-G.; Dung, H. T.; Buhmann, S. Y. Interatomic van der Waals potential in the presence of a magnetoelectric sphere. Phys. Rev. A 2008, 77, 053824. [31] Sambale, A.; Welsch, D.-G.; Dung, H. T.; Buhmann, S. Y. van der Waals interaction and spontaneous decay of an excited atom in a superlens-type geometry. Phys. Rev. A 2008, 78, 053828. [32] Safari, H.; Welsch, D.-G.; Buhmann, S. Y.; Scheel, S. van der Waals potentials of paramagnetic atoms. Phys. Rev. A 2008, 78, 062901. [33] Zhang, X.; Marocico, C. A.; Lunz, M.; Gerard, V. A.; Gun’ko, Y. K.; Lesnyak, V.; Gaponik, N.; Susha, A. S.; Rogach, A. L.; Bradley, A. L. Experimental and Theoretical Investigation of the Distance Dependence of Localized Surface Plasmon Coupled Förster Resonance Energy Transfer. ACS Nano 2014, 8, 1273–1283. [34] Boddeti, A. K.; Guan, J.; Sentz, T.; Juarez, X.; Newman, W.; Cortes, C.; Odom, T. W.; Jacob, Z. Long-Range Dipole–Dipole Interactions in a Plasmonic Lattice. Nano Lett. 2022, 22, 22–28. [35] Feist, J.; Fernández-Domínguez, A. I.; García-Vidal, F. J. Macroscopic QED for quantum nanophotonics: emitter-centered modes as a minimal basis for multiemitter problems. Nanophotonics 2021, 10, 477–489. [36] Power, E. A.; Zienau, S. Coulomb gauge in non-relativistic quantum electro- dynamics and the shape of spectral lines. Phil. Trans. R. Soc. A 1959, 251, 427–454. [37] Sánchez-Barquilla, M.; García-Vidal, F. J.; Fernández-Domínguez, A. I.; Feist, J. Few-mode field quantization for multiple emitters. Nanophotonics 2022, 11, 4363– 4374. [38] Chuang, Y.-T.; Lee, M.-W.; Hsu, L.-Y. Tavis-Cummings model revisited: A perspective from macroscopic quantum electrodynamics. Front. Phys. 2022, 10. [39] Carminati, R.; Cazé, A.; Cao, D.; Peragut, F.; Krachmalnicoff, V.; Pierrat, R.; De Wilde, Y. Electromagnetic density of states in complex plasmonic systems. Surf. Sci. Rep. 2015, 70, 1–41. [40] L. Novotny; Hecht, B. Principle of Nano-Optics; Cambridge University Press: New York, 2012. [41] Canaguier-Durand, A.; Pierrat, R.; Carminati, R. Cross density of states and mode connectivity: Probing wave localization in complex media. Phys. Rev. A 2019, 99, 013835. [42] Palacino, R.; Passante, R.; Rizzuto, L.; Barcellona, P.; Buhmann, S. Y. Tuning the collective decay of two entangled emitters by means of a nearby surface. J. Phys. B: At. Mol. Opt. Phys. 2017, 50, 154001. Chapter3: [1] Chuang, Y.-T.; Lee, M.-W.; Hsu, L.-Y. Tavis-Cummings model revisited: A perspective from macroscopic quantum electrodynamics. Front. Phys. 2022, 10. [2] Röhlsberger, R.; Schlage, K.; Sahoo, B.; Couet, S.; Rüffer, R. Collective Lamb Shift in Single-Photon Superradiance. Science 2010, 328, 1248–1251. [3] Goban, A.; Hung, C.-L.; Hood, J. D.; Yu, S.-P.; Muniz, J. A.; Painter, O.; Kimble, H. J. Superradiance for Atoms Trapped along a Photonic Crystal Waveguide. Phys. Rev. Lett. 2015, 115, 063601. [4] Zhang, Y.; Luo, Y.; Zhang, Y.; Yu, Y.-J.; Kuang, Y.-M.; Zhang, L.; Meng, Q.-S.; Luo, Y.; Yang, J.-L.; Dong, Z.-C.; Hou, J. G. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 2016, 531, 623–627. [5] Kim, J.-H.; Aghaeimeibodi, S.; Richardson, C. J. K.; Leavitt, R. P.; Waks, E. Super-Radiant Emission from Quantum Dots in a Nanophotonic Waveguide. Nano Lett. 2018, 18, 4734–4740. [6] Luo, Y.; Chen, G.; Zhang, Y.; Zhang, L.; Yu, Y.; Kong, F.; Tian, X.; Zhang, Y.; Shan, C.; Luo, Y.; Yang, J.; Sandoghdar, V.; Dong, Z.; Hou, J. G. Electrically Driven Single-Photon Superradiance from Molecular Chains in a Plasmonic Nanocavity. Phys. Rev. Lett. 2019, 122, 233901. [7] Thomas, A.; Lethuillier-Karl, L.; Nagarajan, K.; Vergauwe, R. M. A.; George, J.; Chervy, T.; Shalabney, A.; Devaux, E.; Genet, C.; Moran, J.; Ebbesen, T. W. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 2019, 363, 615–619. [8] Thomas, A.; Jayachandran, A.; Lethuillier-Karl, L.; Vergauwe, R. M.; Nagarajan, K.; Devaux, E.; Genet, C.; Moran, J.; Ebbesen, T. W. Ground state chemistry under vibrational strong coupling: dependence of thermodynamic parameters on the Rabi splitting energy. Nanophotonics 2020, 9, 249–255. [9] Sau, A.; Nagarajan, K.; Patrahau, B.; LethuillierKarl, L.; Vergauwe, R. M. A.; Thomas, A.; Moran, J.; Genet, C.; Ebbesen, T. W. Modifying Woodward–Hoffmann Stereoselectivity Under Vibrational Strong Coupling. Angew. Chem. Int. Ed. 2021, 60, 5712–5717. [10] Tavis, M.; Cummings, F. W. Exact Solution for an N-Molecule—Radiation-Field Hamiltonian. Phys. Rev. 1968, 170, 379–384. [11] Agarwal, G. S. Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity. Phys. Rev. Lett. 1984, 53, 1732–1734. [12] Dung, H. T.; Huyen, N. D. Two Atom-single Mode Radiation Field Interaction. J. Mod. Opt. 1994, 41, 453–469. [13] Deng, G.-W.; Wei, D.; Li, S.-X.; Johansson, J. R.; Kong, W.-C.; Li, H.-O.; Cao, G.; Xiao, M.; Guo, G.-C.; Nori, F.; Jiang, H.-W.; Guo, G.-P. Coupling Two Distant Double Quantum Dots with a Microwave Resonator. Nano Lett. 2015, 15, 6620– 6625. [14] Deçordi, G. L.; Vidiella-Barranco, A. A simple model for a minimal environment: the two-atom Tavis–Cummings model revisited. J. Mod. Opt. 2018, 65, 1879–1889. [15] Ribeiro, R. F.; Martínez-Martínez, L. A.; Du, M.; Campos-Gonzalez-Angulo, J.; Yuen-Zhou, J. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci. 2018, 9, 6325–6339. [16] Evans, R. E.; Bhaskar, M. K.; Sukachev, D. D.; Nguyen, C. T.; Sipahigil, A.; Burek, M. J.; Machielse, B.; Zhang, G. H.; Zibrov, A. S.; Bielejec, E.; Park, H.; Lonar, M.; Lukin, M. D. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 2018, 362, 662–665. [17] Angerer, A.; Streltsov, K.; Astner, T.; Putz, S.; Sumiya, H.; Onoda, S.; Isoya, J.; Munro, W. J.; Nemoto, K.; Schmiedmayer, J.; Majer, J. Superradiant emission from colour centres in diamond. Nat. Phys. 2018, 14, 1168–1172. [18] Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130. [19] Yuen-Zhou, J.; Menon, V. M. Polariton chemistry: Thinking inside the (photon) box. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 5214–5216. [20] Kéna-Cohen, S.; Yuen-Zhou, J. Polariton Chemistry: Action in the Dark. ACS Cent. Sci. 2019, 5, 386–388. [21] Hirai, K.; Hutchison, J. A.; Ujii, H. Recent Progress in Vibropolaritonic Chemistry. ChemPlusChem 2020, 85, 1981-1988. [22] Xiang, B.; Xiong, W. Molecular vibrational polariton: Its dynamics and potentials in novel chemistry and quantum technology. J. Chem. Phys. 2021, 155, 050901. [23] Yuen-Zhou, J.; Xiong, W.; Shegai, T. Polariton chemistry: Molecules in cavities and plasmonic media. J. Chem. Phys. 2022, 156, 030401. [24] Medina, I.; García-Vidal, F. J.; Fernández-Domínguez, A. I.; Feist, J. Few-Mode Field Quantization of Arbitrary Electromagnetic Spectral Densities. Phys. Rev. Lett. 2021, 126, 093601. [25] Wang, S.; Chuang, Y.-T.; Hsu, L.-Y. Simple but accurate estimation of light–matter coupling strength and optical loss for a molecular emitter coupled with photonic modes. J. Chem. Phys. 2021, 155, 134117. [26] Sánchez-Barquilla, M.; García-Vidal, F. J.; Fernández-Domínguez, A. I.; Feist, J. Few-mode field quantization for multiple emitters. Nanophotonics 2022, 11, 4363–4374. [27] Buhmann, S. Y.; Welsch, D.-G. Casimir-Polder forces on excited atoms in the strong atom-field coupling regime. Phys. Rev. A 2008, 77, 012110. [28] Wang, S.; Scholes, G. D.; Hsu, L.-Y. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2020, 11, 5948–5955. [29] Lee, M.-W.; Chuang, Y.-T.; Hsu, L.-Y. Theory of molecular emission power spectra. II. Angle, frequency, and distance dependence of electromagnetic environment factor of a molecular emitter in plasmonic environments. J. Chem. Phys. 2021, 155, 074101. [30] Chew, W. C. Waves and fields in inhomogeneous media; Inst of Electrical &, 1995; Vol. 16. [31] Lumerical Inc.; 2022. "https://www.lumerical.com/products/". [32] Dung, H. T.; Knöll, L.; Welsch, D.-G. Intermolecular energy transfer in the presence of dispersing and absorbing media. Phys. Rev. A 2002, 65, 043813. [33] Wei, Y.-C.; Lee, M.-W.; Chou, P.-T.; Scholes, G. D.; Schatz, G. C.; Hsu, L.-Y. Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor–Acceptor Pair?. J. Phys. Chem. C 2021, 125, 18119–18128. [34] Wu, J.-S.; Lin, Y.-C.; Sheu, Y.-L.; Hsu, L.-Y. Characteristic Distance of Resonance Energy Transfer Coupled with Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2018, 9, 7032–7039. [35] Smith, D. Y.; Segall, B. Intraband and interband processes in the infrared spectrum of metallic aluminum. Phys. Rev. B 1986, 34, 5191–5198. [36] Dung, H. T.; Knöll, L.; Welsch, D.-G. Spontaneous decay in the presence of dispersing and absorbing bodies: General theory and application to a spherical cavity. Phys. Rev. A 2000, 62, 053804. [37] Palacino, R.; Passante, R.; Rizzuto, L.; Barcellona, P.; Buhmann, S. Y. Tuning the collective decay of two entangled emitters by means of a nearby surface. J. Phys. B: At. Mol. Opt. Phys. 2017, 50, 154001. [38] Li, T. E.; Nitzan, A.; Subotnik, J. E. On the origin of ground-state vacuum-field catalysis: Equilibrium consideration. J. Chem. Phys. 2020, 152, 234107. Chapter4: [1] Chuang, Y.-T.; Hsu, L.-Y. Quantum dynamics of molecular ensembles coupled with quantum light: Counter-rotating interactions as an essential component. Phys. Rev. A 2024, 109, 013717. [2] Bonifacio, R.; Schwendimann, P.; Haake, F. Quantum Statistical Theory of Superradiance. I. Phys. Rev. A 1971, 4, 302–313. [3] Bonifacio, R.; Schwendimann, P.; Haake, F. Quantum Statistical Theory of Superradiance. II. Phys. Rev. A 1971, 4, 854–864. [4] Morawitz, H. Cooperative Emission of an Excited Monolayer into Surface Plasmons. IBM J. Res. Dev. 1979, 23, 517–526. [5] Seke, J. Exact solution of collective spontaneous emission from an assembly of N atoms in the case of single-atom excitation. Phys. Rev. A 1986, 33, 739–741. [6] Seke, J. Spontaneous emission from N atoms in a detuned damped cavity in the case of a symmetrical single-atom excitation. Phys. Rev. A 1986, 33, 4409–4411. [7] Kulina, P.; Leonard, C.; Rinkleff, R. H. Collective emission of Ba Rydberg atoms in a resonant cavity. Phys. Rev. A 1986, 34, 227–230. [8] Bashkirov, E.; Le Kien, F.; Shumovsky, A. Collective spontaneous radiation of two atoms in the finite-Q cavity. Phys. A: Stat. Mech. Appl. 1990, 167, 935–944. [9] Alber, G. Photon wave packets and spontaneous decay in a cavity. Phys. Rev. A 1992, 46, R5338–R5341. [10] Kozierowski, M.; Chumakov, S. M. Photon statistics in spontaneous emission for the Dicke model in a lossless cavity and the generation of the Fock state. Phys. Rev. A 1995, 52, 4194–4201. [11] Temnov, V. V.; Woggon, U. Superradiance and Subradiance in an Inhomogeneously Broadened Ensemble of Two-Level Systems Coupled to a Low-Q Cavity. Phys. Rev. Lett. 2005, 95, 243602. [12] Martín-Cano, D.; Martín-Moreno, L.; García-Vidal, F. J.; Moreno, E. Resonance Energy Transfer and Superradiance Mediated by Plasmonic Nanowaveguides. Nano Lett. 2010, 10, 3129–3134. [13] Goban, A.; Hung, C.-L.; Hood, J. D.; Yu, S.-P.; Muniz, J. A.; Painter, O.; Kimble, H. J. Superradiance for Atoms Trapped along a Photonic Crystal Waveguide. Phys. Rev. Lett. 2015, 115, 063601. [14] Zhang, Y.; Luo, Y.; Zhang, Y.; Yu, Y.-J.; Kuang, Y.-M.; Zhang, L.; Meng, Q.-S.; Luo, Y.; Yang, J.-L.; Dong, Z.-C.; Hou, J. G. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 2016, 531, 623–627. [15] Kim, J.-H.; Aghaeimeibodi, S.; Richardson, C. J. K.; Leavitt, R. P.; Waks, E. Super- Radiant Emission from Quantum Dots in a Nanophotonic Waveguide. Nano Lett. 2018, 18, 4734–4740. [16] Luo, Y.; Chen, G.; Zhang, Y.; Zhang, L.; Yu, Y.; Kong, F.; Tian, X.; Zhang, Y.; Shan, C.; Luo, Y.; Yang, J.; Sandoghdar, V.; Dong, Z.; Hou, J. G. Electrically Driven Single-Photon Superradiance from Molecular Chains in a Plasmonic Nanocavity. Phys. Rev. Lett. 2019, 122, 233901. [17] Wang, S.; Hsu, L.-Y. Exploring Superradiance Effects of Molecular Emitters Coupled with Cavity Photons and Plasmon Polaritons: A Perspective from Macroscopic Quantum Electrodynamics. J. Phys. Chem. C 2023, 127, 12904–12912. [18] Gersten, J. I.; Nitzan, A. Accelerated energy transfer between molecules near a solid particle. Chem. Phys. Lett. 1984, 104, 31–37. [19] Gersten, J. I.; Nitzan, A. Photophysics and photochemistry near surfaces and small particles. Surf. Sci. 1985, 158, 165–189. [20] Hua, X. M.; Gersten, J. I.; Nitzan, A. Theory of energy transfer between molecules near solid state particles. J. Chem. Phys. 1985, 83, 3650–3659. [21] Kobayashi, T.; Zheng, Q.; Sekiguchi, T. Resonant dipole-dipole interaction in a cavity. Phys. Rev. A 1995, 52, 2835–2846. [22] Andrew, P.; Barnes, W. L. Förster Energy Transfer in an Optical Microcavity. Science 2000, 290, 785–788. [23] Zhang, J.; Fu, Y.; Lakowicz, J. R. Enhanced Förster Resonance Energy Transfer (FRET) on a Single Metal Particle. J. Phys. Chem. C 2007, 111, 50–56. [24] Govorov, A. O.; Lee, J.; Kotov, N. A. Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys. Rev. B 2007, 76, 125308. [25] Reil, F.; Hohenester, U.; Krenn, J. R.; Leitner, A. Förster-Type Resonant Energy Transfer Influenced by Metal Nanoparticles. Nano Lett. 2008, 8, 4128–4133. [26] Lessard-Viger, M.; Rioux, M.; Rainville, L.; Boudreau, D. FRET Enhancement in Multilayer CoreShell Nanoparticles. Nano Lett. 2009, 9, 3066–3071. [27] Lunz, M.; Gerard, V. A.; Gun’ko, Y. K.; Lesnyak, V.; Gaponik, N.; Susha, A. S.; Rogach, A. L.; Bradley, A. L. Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTe Nanocrystal Quantum Dot Monolayers. Nano Lett. 2011, 11, 3341–3345. [28] Zhong, X.; Chervy, T.; Zhang, L.; Thomas, A.; George, J.; Genet, C.; Hutchison, J. A.; Ebbesen, T. W. Energy Transfer between Spatially Separated Entangled Molecules. Angew. Chem. Int. Ed. 2017, 56, 9034–9038. [29] Ren, J.; Chen, T.; Wang, B.; Zhang, X. Ultrafast coherent energy transfer with high efficiency based on plasmonic nanostructures. J. Chem. Phys. 2017, 146, 144101. [30] Wu, J.-S.; Lin, Y.-C.; Sheu, Y.-L.; Hsu, L.-Y. Characteristic Distance of Resonance Energy Transfer Coupled with Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2018, 9, 7032–7039. [31] Hutchison, J. A.; Schwartz, T.; Genet, C.; Devaux, E.; Ebbesen, T. W. Modifying Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chem. Int. Ed. 2012, 51, 1592–1596. [32] Thomas, A.; George, J.; Shalabney, A.; Dryzhakov, M.; Varma, S. J.; Moran, J.; Chervy, T.; Zhong, X.; Devaux, E.; Genet, C.; Hutchison, J. A.; Ebbesen, T. W. Ground-State Chemical Reactivity under Vibrational Coupling to the Vacuum Electromagnetic Field. Angew. Chem. Int. Ed. 2016, 55, 11462–11466. [33] Thomas, A.; Lethuillier-Karl, L.; Nagarajan, K.; Vergauwe, R. M. A.; George, J.; Chervy, T.; Shalabney, A.; Devaux, E.; Genet, C.; Moran, J.; Ebbesen, T. W. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 2019, 363, 615–619. [34] Lather, J.; Bhatt, P.; Thomas, A.; Ebbesen, T. W.; George, J. Cavity Catalysis by Cooperative Vibrational Strong Coupling of Reactant and Solvent Molecules. Angew. Chem. Int. Ed. 2019, 58, 10635–10638. [35] Vergauwe, R. M. A.; Thomas, A.; Nagarajan, K.; Shalabney, A.; George, J.; Chervy, T.; Seidel, M.; Devaux, E.; Torbeev, V.; Ebbesen, T. W. Modification of Enzyme Activity by Vibrational Strong Coupling of Water. Angew. Chem. Int. Ed. 2019, 58, 15324–15328. [36] Thomas, A.; Jayachandran, A.; Lethuillier-Karl, L.; Vergauwe, R. M.; Nagarajan, K.; Devaux, E.; Genet, C.; Moran, J.; Ebbesen, T. W. Ground state chemistry under vibrational strong coupling: dependence of thermodynamic parameters on the Rabi splitting energy. Nanophotonics 2020, 9, 249–255. [37] Sau, A.; Nagarajan, K.; Patrahau, B.; LethuillierKarl, L.; Vergauwe, R. M. A.; Thomas, A.; Moran, J.; Genet, C.; Ebbesen, T. W. Modifying Woodward–Hoffmann Stereoselectivity Under Vibrational Strong Coupling. Angew. Chem. Int. Ed. 2021, 60, 5712–5717. [38] Galego, J.; Garcia-Vidal, F. J.; Feist, J. Cavity-Induced Modifications of Molecular Structure in the Strong-Coupling Regime. Phys. Rev. X 2015, 5, 041022. [39] Herrera, F.; Spano, F. C. Cavity-Controlled Chemistry in Molecular Ensembles. Phys. Rev. Lett. 2016, 116, 238301. [40] Wu, N.; Feist, J.; Garcia-Vidal, F. J. When polarons meet polaritons: Exciton- vibration interactions in organic molecules strongly coupled to confined light fields. Phys. Rev. B 2016, 94, 195409. [41] Ribeiro, R. F.; Martínez-Martínez, L. A.; Du, M.; Campos-Gonzalez-Angulo, J.; Yuen-Zhou, J. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci. 2018, 9, 6325–6339. [42] Semenov, A.; Nitzan, A. Electron transfer in confined electromagnetic fields. J. Chem. Phys. 2019, 150, 174122. [43] Spano, F. C. Exciton–phonon polaritons in organic microcavities: Testing a simple ansatz for treating a large number of chromophores. J. Chem. Phys. 2020, 152, 204113. [44] Du, M.; Yuen-Zhou, J. Catalysis by Dark States in Vibropolaritonic Chemistry. Phys. Rev. Lett. 2022, 128, 096001. [45] Scully, M. O.; Zubairy, M. S. Quantum Optics; Cambridge University Press, 1997. [46] Vogel, W.; Welsch, D. Quantum Optics, 3rd ed.; John Wiley & Sons, 2006. [47] Zaheer, K.; Zubairy, M. S. Atom-field interaction without the rotating-wave approximation: A path-integral approach. Phys. Rev. A 1988, 37, 1628–1633. [48] Klimov, A. B.; Romero, J. L.; Saavedra, C. General properties of quantum systems interacting with a field mode in a low-Q cavity. Phys. Rev. A 2001, 64, 063802. [49] Larson, J. Dynamics of the Jaynes–Cummings and Rabi models: old wine in new bottles. Phys. Scr. 2007, 76, 146. [50] Irish, E. K. Generalized Rotating-Wave Approximation for Arbitrarily Large Coupling. Phys. Rev. Lett. 2007, 99, 173601. [51] Werlang, T.; Dodonov, A. V.; Duzzioni, E. I.; Villas-Bôas, C. J. Rabi model beyond the rotating-wave approximation: Generation of photons from vacuum through decoherence. Phys. Rev. A 2008, 78, 053805. [52] Zueco, D.; Reuther, G. M.; Kohler, S.; Hänggi, P. Qubit-oscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation. Phys. Rev. A 2009, 80, 033846. [53] Agarwal, G. S. Rotating-Wave Approximation and Spontaneous Emission. Phys. Rev. A 1971, 4, 1778–1781. [54] Knight, P. L.; Allen, L. Rotating-Wave Approximation in Coherent Interactions. Phys. Rev. A 1973, 7, 368–370. [55] Friedberg, R.; Manassah, J. T. Effects of including the counterrotating term and virtual photons on the eigenfunctions and eigenvalues of a scalar photon collective emission theory. Phys. Lett. A 2008, 372, 2514–2521. [56] Fleming, C.; Cummings, N. I.; Anastopoulos, C.; Hu, B. L. The rotating-wave approximation: consistency and applicability from an open quantum system analysis. J. Phys. A Math. Theor. 2010, 43, 405304. [57] Jørgensen, M. A.; Wubs, M. Quantifying the breakdown of the rotating-wave approximation in single-photon superradiance. J. Phys. B: At. Mol. Opt. Phys. 2022, 55, 195401. [58] Wei, Y.-C.; Lee, M.-W.; Chou, P.-T.; Scholes, G. D.; Schatz, G. C.; Hsu, L.-Y. Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor-Acceptor Pair?. J. Phys. Chem. C 2021, 125, 18119–18128. [59] Wang, S.; Scholes, G. D.; Hsu, L.-Y. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. J. Chem. Phys. 2020, 11, 5948–5955. [60] Hsu, L.-Y.; Ding, W.; Schatz, G. C. Plasmon-Coupled Resonance Energy Transfer. J. Chem. Phys. 2017, 8, 2357–2367. [61] Gruner, T.; Welsch, D.-G. Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics. Phys. Rev. A 1996, 53, 1818–1829. [62] Dung, H. T.; Knöll, L.; Welsch, D.-G. Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics. Phys. Rev. A 1998, 57, 3931–3942. [63] Scheel, S.; Knöll, L.; Welsch, D.-G. QED commutation relations for inhomogeneous Kramers-Kronig dielectrics. Phys. Rev. A 1998, 58, 700–706. [64] Hughes, S. Modified Spontaneous Emission and Qubit Entanglement from Dipole-Coupled Quantum Dots in a Photonic Crystal Nanocavity. Phys. Rev. Lett. 2005, 94, 227402. [65] Dzsotjan, D.; Sørensen, A. S.; Fleischhauer, M. Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach. Phys. Rev. B 2010, 82, 075427. [66] Dzsotjan, D.; Kästel, J.; Fleischhauer, M. Dipole-dipole shift of quantum emitters coupled to surface plasmons of a nanowire. Phys. Rev. B 2011, 84, 075419. [67] Gonzalez-Tudela, A.; Martin-Cano, D.; Moreno, E.; Martin-Moreno, L.; Tejedor, C.; Garcia-Vidal, F. J. Entanglement of Two Qubits Mediated by One-Dimensional Plasmonic Waveguides. Phys. Rev. Lett. 2011, 106, 020501. [68] Gangaraj, S. A. H.; Hanson, G. W.; Antezza, M. Robust entanglement with three-dimensional nonreciprocal photonic topological insulators. Phys. Rev. A 2017, 95, 063807. [69] Varguet, H.; Díaz-Valles, A. A.; Guérin, S.; Jauslin, H. R.; Colas des Francs, G. Collective strong coupling in a plasmonic nanocavity. J. Chem. Phys. 2021, 154, 084303. [70] Wang, S.; Chuang, Y.-T.; Hsu, L.-Y. Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. I. Formalism. J. Chem. Phys. 2022, 157, 184107. [71] Chuang, Y.-T.; Wang, S.; Hsu, L.-Y. Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. II. Polariton-mediated population dynamics in a dimer system. J. Chem. Phys. 2022, 157, 234109. [72] Domenikou, N.; Thanopulos, I.; Karanikolas, V.; Paspalakis, E. Highly Efficient Coherent Energy Transfer in Molecules near a MoS2 Nanodisk. Phys. Rev. Appl. 2023, 20, 034022. [73] Frisk Kockum, A.; Miranowicz, A.; De Liberato, S.; Savasta, S.; Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 2019, 1, 19–40. [74] Weisskopf, V.; Wigner, E. Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z. Phys. 1930, 63, 54–73. [75] Svidzinsky, A. A.; Chang, J.-T.; Scully, M. O. Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators. Phys. Rev. A 2010, 81, 053821. [76] Stephen, M. J. First Order Dispersion Forces. J. Chem. Phys. 1964, 40, 669–673. [77] Craig, D. P.; Thirunamachandran, T. Molecular quantum electrodynamics: An introduction to radiation-molecule interactions; Dover Publication, 1998. [78] Dung, H. T.; Knöll, L.; Welsch, D.-G. Intermolecular energy transfer in the presence of dispersing and absorbing media. Phys. Rev. A 2002, 65, 043813. [79] Dung, H. T.; Knöll, L.; Welsch, D.-G. Spontaneous decay in the presence of dispersing and absorbing bodies: General theory and application to a spherical cavity. Phys. Rev. A 2000, 62, 053804. [80] Wang, S.; Scholes, G. D.; Hsu, L.-Y. Quantum dynamics of a molecular emitter strongly coupled with surface plasmon polaritons: A macroscopic quantum electrodynamics approach. J. Chem. Phys. 2019, 151, 014105. [81] Buhmann, S. Y. Dispersion Forces I; Springer Tracts in Modern Physics, Vol. 247; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012. [82] Buhmann, S. Y. Dispersion Forces II; Springer Tracts in Modern Physics, Vol. 248; Springer Berlin Heidelberg, 2012. [83] Power, E. A.; Zienau, S.; Massey, H. S. W. Coulomb gauge in non-relativistic quantum electro-dynamics and the shape of spectral lines. Phil. Trans. R. Soc. A 1959, 251, 427–454. [84] Scheel, S.; Knöll, L.; Welsch, D.-G. Spontaneous decay of an excited atom in an absorbing dielectric. Phys. Rev. A 1999, 60, 4094–4104. [85] L. Novotny; Hecht, B. Principle of Nano-Optics; Cambridge University Press: New York, 2012. [86] Chew, W. C. Waves and fields in inhomogeneous media; Inst of Electrical &, 1995; Vol. 16. [87] Lee, M.-W.; Chuang, Y.-T.; Hsu, L.-Y. Theory of molecular emission power spectra. II. Angle, frequency, and distance dependence of electromagnetic environment factor of a molecular emitter in plasmonic environments. J. Chem. Phys. 2021, 155, 074101. [88] Wang, S.; Scholes, G. D.; Hsu, L.-Y. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2020, 11, 5948–5955. Chapter5: [1] Chuang, Y.-T.; Hsu, L.-Y. Anomalous Giant Superradiance in Molecular Aggregates Coupled to Polaritons. Phys. Rev. Lett. 2024, 133, 128001. [2] Dicke, R. H. Coherence in Spontaneous Radiation Processes. Phys. Rev. 1954, 93, 99–110. [3] Gross, M.; Fabre, C.; Pillet, P.; Haroche, S. Observation of Near-Infrared Dicke Superradiance on Cascading Transitions in Atomic Sodium. Phys. Rev. Lett. 1976, 36, 1035–1038. [4] DeVoe, R. G.; Brewer, R. G. Observation of Superradiant and Subradiant Spontaneous Emission of Two Trapped Ions. Phys. Rev. Lett. 1996, 76, 2049–2052. [5] Goban, A.; Hung, C.-L.; Hood, J. D.; Yu, S.-P.; Muniz, J. A.; Painter, O.; Kimble, H. J. Superradiance for Atoms Trapped along a Photonic Crystal Waveguide. Phys. Rev. Lett. 2015, 115, 063601. [6] Ulusoy, I. S.; Gomez, J. A.; Vendrell, O. Many-photon excitation of organic molecules in a cavity—Superradiance as a measure of coherence. J. Chem. Phys. 2020, 153, 244107. [7] Chen, H.-T.; Zhou, Z.; Sukharev, M.; Subotnik, J. E.; Nitzan, A. Interplay between disorder and collective coherent response: Superradiance and spectral motional narrowing in the time domain. Phys. Rev. A 2022, 106, 053703. [8] Scheibner, M.; Schmidt, T.; Worschech, L.; Forchel, A.; Bacher, G.; Passow, T.; Hommel, D. Superradiance of Quantum Dots. Nat. Phys. 2007, 3, 106–110. [9] Tighineanu, P.; Daveau, R. S.; Lehmann, T. B.; Beere, H. E.; Ritchie, D. A.; Lodahl, P.; Stobbe, S. Single-Photon Superradiance from a Quantum Dot. Phys. Rev. Lett. 2016, 116, 163604. [10] Pulé, J. V.; Verbeure, A.; Zagrebnov, V. A. Models for equilibrium BEC superradiance. J. Phys. A Math. Gen. 2004, 37, L321. [11] Rezende, S. M. Theory of microwave superradiance from a Bose-Einstein condensate of magnons. Phys. Rev. B 2009, 79, 060410. [12] Mi, C.; Nawaz, K. S.; Chen, L.; Wang, P.; Cai, H.; Wang, D.-W.; Zhu, S.-Y.; Zhang, J. Time-resolved interplay between superradiant and subradiant states in superradiance lattices of Bose-Einstein condensates. Phys. Rev. A 2021, 104, 043326. [13] McRae, E. G.; Kasha, M. Enhancement of Phosphorescence Ability upon Aggregation of Dye Molecules. J. Chem. Phys. 1958, 28, 721–722. [14] Kasha, M. Relation between Exciton Bands and Conduction Bands in Molecular Lamellar Systems. Rev. Mod. Phys. 1959, 31, 162–169. [15] Kasha, M. Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiat. Res. 1963, 20, 55–70. [16] Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 1965, 11, 371–392. [17] Grad, J.; Hernandez, G.; Mukamel, S. Radiative decay and energy transfer in molecular aggregates: The role of intermolecular dephasing. Phys. Rev. A 1988, 37, 3835–3846, [18] Spano, F. C.; Mukamel, S. Superradiance in molecular aggregates. J. Chem. Phys. 1989, 91, 683–700. [19] Spano, F. C. The Spectral Signatures of Frenkel Polarons in H- and J-Aggregates. Acc. Chem. Res. 2010, 43, 429–439. [20] Doria, S.; Sinclair, T. S.; Klein, N. D.; Bennett, D. I. G.; Chuang, C.; Freyria, F. S.; Steiner, C. P.; Foggi, P.; Nelson, K. A.; Cao, J.; Aspuru-Guzik, A.; Lloyd, S.; Caram, J. R.; Bawendi, M. G. Photochemical Control of Exciton Superradiance in Light- Harvesting Nanotubes. ACS Nano 2018, 12, 4556–4564. [21] Andrew, P.; Barnes, W. L. Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons. Science 2004, 306, 1002–1005. [22] Coles, D. M.; Somaschi, N.; Michetti, P.; Clark, C.; Lagoudakis, P. G.; Savvidis, P. G.; Lidzey, D. G. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 2014, 13, 712–719. [23] Zhong, X.; Chervy, T.; Zhang, L.; Thomas, A.; George, J.; Genet, C.; Hutchison, J. A.; Ebbesen, T. W. Energy Transfer between Spatially Separated Entangled Molecules. Angew. Chem. Int. Ed. 2017, 56, 9034–9038. [24] Wu, J.-S.; Lin, Y.-C.; Sheu, Y.-L.; Hsu, L.-Y. Characteristic Distance of Resonance Energy Transfer Coupled with Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2018, 9, 7032–7039. [25] Hutchison, J. A.; Schwartz, T.; Genet, C.; Devaux, E.; Ebbesen, T. W. Modifying Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chem. Int. Ed. 2012, 51, 1592–1596. [26] Semenov, A.; Nitzan, A. Electron transfer in confined electromagnetic fields. J. Chem. Phys. 2019, 150, 174122. [27] Thomas, A.; Lethuillier-Karl, L.; Nagarajan, K.; Vergauwe, R. M. A.; George, J.; Chervy, T.; Shalabney, A.; Devaux, E.; Genet, C.; Moran, J.; Ebbesen, T. W. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 2019, 363, 615–619. [28] Chuang, Y.-T.; Hsu, L.-Y. Quantum dynamics of molecular ensembles coupled with quantum light: Counter-rotating interactions as an essential component. Phys. Rev. A 2024, 109, 013717. [29] Gruner, T.; Welsch, D.-G. Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics. Phys. Rev. A 1996, 53, 1818–1829. [30] Dung, H. T.; Knöll, L.; Welsch, D.-G. Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics. Phys. Rev. A 1998, 57, 3931–3942. [31] Buhmann, S. Y. Dispersion Forces I; Springer Tracts in Modern Physics, Vol. 247; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012. [32] Hestand, N. J.; Spano, F. C. Molecular Aggregate Photophysics beyond the Kasha Model: Novel Design Principles for Organic Materials. Acc. Chem. Res. 2017, 50, 341–350. [33] Melikyan, A. O.; Kryzhanovsky, B. V. Modeling of the optical properties of silver with use of six fitting parameters. Opt. Mem. Neural Netw. 2014, 23, 1–5. [34] Johnson, P. B.; Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [35] Wang, S.; Scholes, G. D.; Hsu, L.-Y. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2020, 11, 5948–5955. [36] Canaguier-Durand, A.; Pierrat, R.; Carminati, R. Cross density of states and mode connectivity: Probing wave localization in complex media. Phys. Rev. A 2019, 99, 013835. [37] Malyshev, V.; Moreno, P. Hidden structure of the low-energy spectrum of a one- dimensional localized Frenkel exciton. Phys. Rev. B 1995, 51, 14587–14593. [38] Buhmann, S. Y. Dispersion Forces II; Springer Tracts in Modern Physics, Vol. 248; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012. [39] Spano, F. C.; Kuklinski, J. R.; Mukamel, S. Temperature-dependent superradiant decay of excitons in small aggregates. Phys. Rev. Lett. 1990, 65, 211–214. [40] Bender, C. M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [41] El-Ganainy, R.; Makris, K. G.; Khajavikhan, M.; Musslimani, Z. H.; Rotter, S.; Christodoulides, D. N. Non-Hermitian physics and PT symmetry. Nat. Phys. 2018, 14, 11-19. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97513 | - |
| dc.description.abstract | 分子與電磁極化子(即被介電環境修飾的光子)之間的交互作用,近年來在化學與物理領域引起廣泛關注,因其開啟了操控分子性質的全新可能性。然而,由於介電介質中光與物質耦合的複雜性,準確描述電磁極化子效應仍是一項重大理論挑戰。本論文以「宏觀量子電動力學(macroscopic quantum electrodynamics, MQED)」為基礎,系統探討複雜介電環境中量子光-物質交互作用,旨在釐清現有理論模型中的模糊之處,並揭示電磁極化子所引發的前沿物理現象。本論文聚焦於三項核心議題:(i) 從 MQED 的觀點重新檢視 TavisCummings (TC) 模型;(ii) 探討光-物質交互作用中的反旋轉項在分子與電磁極化子耦合動力學中的關鍵角色;(iii) 揭示分子聚集體與表面電漿極化子耦合下出現的異常巨大超輻射現象。本研究不僅深化我們對介電環境中光-物質交互作用的理解,也突顯電磁極化子在驅動新穎量子現象中的潛力。
在第一部分中,我們建立了 MQED 與耗散性 TC 模型之間的理論連結,並提出適用性準則:當廣義譜密度矩陣元素與分子位置無關,且呈現羅倫茲線形時,耗散 TC 模型可有效描述光-物質混合系統。此準則被進一步用於三類系統的比較分析,包含銀製 Fabry-Pérot 共振腔、銀表面與鋁製球形共振腔。結果顯示,僅有鋁製球形共振腔同時滿足上述兩項條件,顯示在使用 TC 模型時必須審慎評估其適用性。第二部分探討反旋轉項在分子量子動力學中的影響。解析結果顯示,在弱耦合極限下,若忽略反旋轉項,將導致基態分子的能量位移缺失,且近場極限下的分子間偶極-偶極作用可能出現高達 50% 的誤差。我們進一步針對一對相同分子位於電漿材料表面附近的情境,進行數值模擬與解析分析。結果顯示,在強耦合與弱耦合兩種情況下,忽略反旋轉項皆會顯著改變由偶極交互作用所引發的振盪動態,顯示在多分子系統中使用旋轉波近似時需格外謹慎。第三部分則揭示一種異常的超輻射現象,出現在分子聚集體與表面電漿極化子耦合的情況下。透過 MQED 導出的動力學方程式,我們發現電磁極化子能大幅放大超輻射效應,其規模遠超出 Dicke 預測的 N 倍放大律。為了探究此一機制,我們導出適用於任意色散與吸收性介質中之分子聚集體的超輻射速率通用解析式,並指出分子間偶極-偶極作用為觸發該異常行為的關鍵參數。本研究為理解分子聚集體中超輻射的基本機制與潛在應用提供了嶄新視角。 | zh_TW |
| dc.description.abstract | The interaction between molecules and polaritons (photons dressed by dielectric environments) has recently gained significant attention in both chemistry and physics as it offers new avenues for manipulating molecular properties. However, accurately modeling the effect of polaritons remains a complex theoretical challenge due to the intricate nature of light-matter interactions in dielectric media. This thesis provides a comprehensive theoretical study of quantum light-matter interactions in complex dielectric environments, employing the macroscopic quantum electrodynamics (MQED) framework for quantizing electromagnetic fields in media. Using this framework, the thesis addresses ambiguities in widely used theoretical models and investigates novel phenomena mediated by polaritons. The content is organized into three main topics: (i) revisiting the Tavis-Cummings (TC) model from the perspective of MQED, (ii) examining the essential role of counter-rotating interactions in the quantum dynamics of molecular ensembles coupled with polaritons, and (iii) exploring anomalous giant superradiance in molecular aggregates coupled to polaritons. This study deepens our understanding of light-matter interactions in complex dielectric environments and highlights the potential to uncover new phenomena driven by polaritons.
In the first section, a connection between MQED and the dissipative TC model is established, formulating a guideline to assess when the TC model is applicable. This guideline specifies that the dissipative TC model can accurately represent a hybrid light-matter system if the elements of the generalized spectral density are position-independent and exhibit a Lorentzian profile. The guideline is applied to analyze the generalized spectral density's position dependence and lineshape in three systems: a silver Fabry-Pérot cavity, a silver surface, and an aluminum spherical cavity. Our findings reveal that only the aluminum spherical cavity satisfies both conditions, highlighting that the TC model's applicability requires careful consideration. In the second section, the role of counter-rotating interactions in the quantum dynamics of molecular ensembles within complex dielectric environments is investigated using MQED. The analytical analysis reveals that, in the weak coupling regime, omitting counter-rotating interactions results in the absence of medium-assisted energy shifts in ground-state molecules and significantly alters intermolecular dipole-dipole interactions-by 50% in the near-field zone. A case study on the population dynamics of a pair of identical molecules near a plasmonic surface is also conducted, showing through analytical and numerical analyses that neglecting counter-rotating interactions notably impacts the oscillatory behavior induced by dipole-dipole interactions in both strong and weak coupling regimes. These findings underscore the need for careful consideration of the rotating-wave approximation in systems with multiple molecules coupled to quantum light. Finally, in the third section, an unusual superradiance phenomenon in molecular aggregates coupled to surface plasmon polaritons is revealed. Using the dynamical equation based on MQED, it is shown that polaritons can dramatically amplify superradiance, leading to behavior that highly surpasses Dicke's N-scaling law. To elucidate the mechanism behind this phenomenon, a general analytical expression for the superradiance rate, applicable to molecular aggregates in any dispersive and absorbing medium, is derived. Additionally, the study highlights the critical role of intermolecular dipole-dipole interactions in driving this exceptional superradiance. This study paves the way for new explorations into the fundamental mechanisms of superradiance in molecular aggregates and its potential applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:14:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-02T16:14:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iv Contents vii List of Figures x Denotation xii Chapter 1 Introduction 1 References 4 Chapter 2 Macroscopic Quantum Electrodynamics 11 2.1 Introduction 11 2.2 Method 12 2.2.1 Macroscopic Quantum Electrodynamics in Multipolar Coupling Scheme 12 2.2.2 Long-Wavelength Approximation 15 2.2.3 Two-Level Approximation 17 2.2.4 Generalized Spectral Density 19 References 20 Chapter 3 Tavis-Cummings Model Revisited: A Perspective from Macroscopic Quantum Electrodynamics 26 3.1 Introduction 26 3.2 Method 28 3.2.1 Effective Dissipative Cavity Quantum Electrodynamics Model 28 3.2.2 Effective Dissipative Tavis-Cummings Model 29 3.3 Numerical Demonstration and Discussion 31 3.3.1 Silver Fabry-Pérot Cavity 32 3.3.2 Silver Surface 35 3.3.3 Aluminum Spherical Cavity 36 3.4 Conclusion 38 References 39 Chapter 4 Quantum Dynamics of Molecular Ensembles Coupled with Polaritons: Counter-Rotating Interactions as an Essential Component 44 4.1 Introduction 44 4.2 Method 48 4.2.1 State Vector 48 4.2.2 Equation of Motion 50 4.2.3 Rotating-Wave Approximation 52 4.3 Energy Shift, Decay Rate and Dipole-Dipole Interaction in Weak Coupling Regime 53 4.4 Numerical Demonstration and Discussion 58 4.5 Conclusion 62 References 63 Chapter 5 Anomalous Giant Superradiance in Molecular Aggregates Coupled to Polaritons 74 5.1 Introduction 74 5.2 Method 75 5.2.1 Hamiltonian and State Vector 75 5.2.2 Equation of Motion 76 5.3 Numerical Demonstration and Discussion 77 5.3.1 Superradiance in One-Dimensional Linear Aggregates 77 5.3.2 General Formula of Superradiance Rate and Physical Interpretation 80 5.3.3 Effects of Intermolecular Distance 84 5.4 Conclusions 86 References 87 Chapter 6 Conclusion 92 Appendix A — Derivation of Equation of Motion in Eq. (4.3) 94 Appendix B — Derivation of Superradiance Rate Formula in Eq. (5.4) 96 | - |
| dc.language.iso | en | - |
| dc.subject | Tavis-Cummings 模型 | zh_TW |
| dc.subject | 旋轉波近似 | zh_TW |
| dc.subject | 量子動力學 | zh_TW |
| dc.subject | 超輻射 | zh_TW |
| dc.subject | 分子聚集體 | zh_TW |
| dc.subject | 電磁極化子 | zh_TW |
| dc.subject | 宏觀量子電動力學 | zh_TW |
| dc.subject | Molecular Aggregate | en |
| dc.subject | Macroscopic Quantum Electrodynamics | en |
| dc.subject | Polariton | en |
| dc.subject | Tavis-Cummings Model | en |
| dc.subject | Rotating-Wave Approximation | en |
| dc.subject | Quantum Dynamics | en |
| dc.subject | Superradiance | en |
| dc.title | 分子與電磁極化子耦合之量子動力學:宏觀量子電動力學觀點與其在分子超輻射的應用 | zh_TW |
| dc.title | Quantum Dynamics of Molecules Coupled to Polaritons: Perspective from Macroscopic Quantum Electrodynamics with Application to Molecular Superradiance | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 周佳駿;陳應誠;任祥華;陸駿逸 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Chun Chou;Ying-Cheng Chen;Hsiang-Hua Jen;Chun-Yi David Lu | en |
| dc.subject.keyword | 宏觀量子電動力學,電磁極化子,Tavis-Cummings 模型,旋轉波近似,量子動力學,超輻射,分子聚集體, | zh_TW |
| dc.subject.keyword | Macroscopic Quantum Electrodynamics,Polariton,Tavis-Cummings Model,Rotating-Wave Approximation,Quantum Dynamics,Superradiance,Molecular Aggregate, | en |
| dc.relation.page | 106 | - |
| dc.identifier.doi | 10.6342/NTU202501107 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-25 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2025-07-03 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
