Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97509
標題: 從重金屬生物吸附劑到活性碳:以真菌 Fusarium solani 為例
From Heavy Metal Biosorbents to Activated Carbon: A Case Study of the Fungus Fusarium solani
作者: 陳仕依
Shih-Yi Chen
指導教授: 于昌平
Chang-Ping Yu
關鍵字: 真菌修復,生物質衍生活性碳,再生資源,電化學性能,複合電極,
Mycoremediation,Biomass-Derived Activated Carbons,Renewable Resources,Electrochemical Performance,Composite Electrode,
出版年 : 2025
學位: 碩士
摘要: 隨著人口快速成長與科技的日新月異,重金屬污染相關的環境問題日益受到重視。傳統的重金屬污染整治技術往往面臨成本高昂、易產生二次污染等限制,真菌修復 (mycoremediation) 因具備針對低濃度污染物之去除能力、現地處理潛力,以及成本低廉且環境友善的特性,成為備受矚目的替代方案。此外,人類社會對環境友善且永續的儲能材料需求持續增加,以生物質衍生碳材料及其複合材料作為低污染、高效、安全且經濟的電極材料,已成為研究焦點之一。
本研究選用真菌Fusarium solani作為研究對象,探討其活菌對不同重金屬的耐受性及其乾燥生物質之吸附效率。透過逐步提高培養環境中重金屬濃度的耐受試驗,驗證F. solani在嚴苛環境下之適應性與耐受能力;而使用乾燥真菌生物質進行的吸附實驗結果顯示,不同重金屬的去除機制與吸附效率存在差異,提供未來現地應用多元真菌修復策略的參考價值。為進一步探討吸附重金屬後之真菌生物質的資源化潛力,本研究透過化學活化與高溫熱裂解法製備真菌生物質活性碳,並以複合材料形式評估其電化學性能表現,同時利用材料特性分析探討不同重金屬參雜對材料性質的影響。結果顯示,活菌對鎳與鈷的耐受性明顯優於銅,而乾燥真菌生物質對銅則具有最高的吸附去除效率。此外,吸附銅後之乾燥真菌生物質經轉化成複合碳材料後,展現三種金屬中最佳的電化學性能;而未吸附重金屬之乾燥真菌生物質衍生的碳材料,其電容及電阻表現與商業活性碳相近,甚至在充放電循環測試中具有更優異的比電容保持率。
本研究證實F. solani具有重金屬移除與資源回收再利用的潛力,且其衍生活性碳材料具備作為儲能材料及污染控制應用的可行性,提供了一種創新且永續的環境污染解決方案。
With rapid population growth and advancements in technology, environmental issues related to heavy metal pollution are increasingly gaining attention. Traditional remediation technologies for heavy metal contamination often face limitations such as high costs and the potential for secondary pollution. Mycoremediation has emerged as a promising alternative due to its capability of removing low-concentration pollutants, feasibility for in-situ treatment, cost-effectiveness, and environmental friendliness. Concurrently, there is a growing global demand for sustainable and environmentally friendly energy storage materials. Biomass-derived carbon materials and their composites have become significant research topics due to their advantages of low pollution, high efficiency, safety, and cost-effectiveness.
In this study, a fungus Fusarium solani was selected as the subject to investigate the heavy metal tolerance of its living cells and the adsorption efficiency of its dried biomass. Through tolerance tests involving gradually increasing concentrations of heavy metals, the adaptability and resistance of F. solani under harsh environmental conditions were verified. Adsorption experiments with dried fungal biomass indicated variations in removal mechanisms and efficiencies among different heavy metals, providing valuable references for future diversified in-situ mycoremediation strategies.
To further explore the resource recovery potential of fungal biomass adsorbents after heavy metal adsorption, activated carbon was prepared from fungal biomass using chemical activation and high-temperature pyrolysis methods. The electrochemical performance of the resulting composite materials was evaluated, while material characterization was employed to investigate the effects of different heavy metal incorporations. The results revealed that living cells exhibited superior tolerance to nickel and cobalt compared to copper, whereas dried fungal biomass showed the highest adsorption efficiency for copper. Moreover, dried fungal biomass adsorbent loaded with copper exhibited the best electrochemical performance among the three metals upon conversion into composite carbon materials. Additionally, carbon materials derived from dried fungal biomass without adsorbed heavy metals demonstrated comparable capacitance and resistance performance to commercial activated carbon, even exhibiting superior specific capacitance retention in charge-discharge cycling tests.
This research confirms that F. solani holds significant potential for heavy metal removal and resource recovery. Furthermore, the derived activated carbon materials demonstrate feasibility for application in energy storage and pollution control, offering an innovative and sustainable environmental solution.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97509
DOI: 10.6342/NTU202501244
全文授權: 同意授權(全球公開)
電子全文公開日期: 2025-07-03
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.82 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved