請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97499完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧中仁 | zh_TW |
| dc.contributor.advisor | Chung-Jen Lu | en |
| dc.contributor.author | 陳貞羽 | zh_TW |
| dc.contributor.author | Chen-Yu Chen | en |
| dc.date.accessioned | 2025-07-02T16:10:49Z | - |
| dc.date.available | 2025-07-03 | - |
| dc.date.copyright | 2025-07-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-24 | - |
| dc.identifier.citation | Ribrant, J., & Bertling, L. M. (2007). Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. IEEE Transactions on Energy Conversion, 22(1), 167-173. https://doi.org/10.1109/TEC.2006.889614
Hahn, B., Durstewitz, M., & Rohrig, K. (2007). Reliability of wind turbines. In J. Peinke, P. Schaumann, & S. Barth (Eds.), Wind Energy: Proceedings of the Euromech Colloquium (pp. 331-332). Springer. https://doi.org/10.1007/978-3-540-33866-6SS Cho, J.-R., Jeong, K.-Y., Park, M.-H., Shin, D.-S., Lim, O.-K., & Park, N.-G. (2013). Finite element structural analysis of wind turbine gearbox considering tooth contact of internal gear system. Journal of Mechanical Science and Technology, 27(7), 2053–2059. https://doi.org/10.1007/s12206-013-0521-0 Lias, M. R., Awang, M., Talib, M. N., Senawi, A. R., & Samad, M. A. (2018). Investigation of axial misalignment effects to the gear tooth strength properties using FEM model. Journal of Mechanical Engineering and Sciences, 12(2), 3581-3592. https://doi.org/10.15282/jmes.12.2.2018.5.0317:contentReference[oaicite:0]{index=0} Bazeos, N., Hatzigeorgiou, G. D., Hondros, I. D., Karamaneas, H., Karabalis, D. L., & Beskos, D. E. (2002). Static, seismic and stability analyses of a prototype wind turbine steel tower. Engineering Structures, 24(8), 1015-1025. https://doi.org/10.1016/S0141-0296(02)00022-4:contentReference[oaicite:0]{index=0} Bozca, M. (2018). Helix angle effect on the helical gear load carrying capacity. World Journal of Engineering and Technology, 6(4), 825–838. https://doi.org/10.4236/wjet.2018.64055 Zhu, X. (2012). Tutorial on Hertz contact stress. OPTI 521. University of Arizona. https://opti521.arizona.edu Budynas, R. G., & Nisbett, J. K. (2011). Shigley's mechanical engineering design (10th ed.). McGraw-Hill. Marciniec, A., & Pawlowicz, A. (2009). The bending and contact stress analysis of spur gears. Journal of KONES Powertrain and Transport, 16(3), 243–250. Collins, J. A. (1981). Failure of materials in mechanical design: Analysis, prediction, prevention (2nd ed.). John Wiley & Sons. Bi, Y. (2024). Design and analysis of gearboxes for wind power systems. Preprints. https://doi.org/10.21203/rs.3.rs-3910282/v1 Amzallag, C., Gerey, J. P., Robert, J. L., & Bahuaud, J. (1994). Standardization of the rainflow counting method for fatigue analysis. Fatigue & Fracture of Engineering Materials & Structures, 16(6), 287–293. Murakami, Y., Takagi, T., Wada, K., & Matsunaga, H. (2021). Essential structure of S-N curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter. International Journal of Fatigue, 146, 106138. https://doi.org/10.1016/j.ijfatigue.2020.106138 Miner, M. A. (1945). Cumulative damage in fatigue. Journal of Applied Mechanics, 12(3), A159–A164. Ebeling, C. E. (1997). An introduction to reliability and maintainability engineering. McGraw-Hill. Savage, M., Paridon, C. A., & Coy, J. J. (1983). Reliability model for planetary gear trains. Journal of Mechanisms, Transmissions, and Automation in Design, 105(3), 291–297. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second International Symposium on Information Theory (pp. 267–281). Akademiai Kiado. Hau, E. (2006). Wind turbines: Fundamentals, technologies, application, economics (2nd ed.). Springer. Dirscherl, C., Hackl, C. M., & Schechner, K. (2015). Modeling and control of modern wind turbine systems: An introduction. In D. Schröder (Ed.), Elektrische Antriebe – Regelung von Antriebssystemen (4th ed., pp. 1540–1614). Springer. Srikanth, P., & Sekhar, A. S. (2015). Dynamic analysis of wind turbine drive train subjected to nonstationary wind load excitation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(3), 429–446. https://doi.org/10.1177/0954406214536547 Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2009). Wind energy explained: Theory, design and application (2nd ed.). Wiley. Wind-Turbine-Models.com. (n.d.). GE Vernova GE 1.5sle wind turbine. Retrieved April 20, 2025, from https://en.wind-turbine-models.com/turbines/655-ge-vernova-ge-1.5sle Wilson, C. E., & Sadler, J. P. (2014). Kinematics and dynamics of machinery (3rd ed.). Pearson Education Limited. MatWeb, LLC. (n.d.). Ovako 18CrNiMo7-6 ref steel. MatWeb - Material Property Data. Retrieved April 22, 2025, from https://www.matweb.com/search/datasheet.aspx?matguid=c5e2ab81b1be42ecb0c8916475b5497b Kim, Y., & Hwang, W. (2019). High-cycle, low-cycle, extremely low-cycle fatigue and monotonic fracture behaviors of low-carbon steel and its welded joint. Materials, 12(24), 4111. https://doi.org/10.3390/ma12244111 Feijóo, A., & Villanueva, D. (2016). Assessing wind speed simulation methods. Renewable and Sustainable Energy Reviews, 56, 473–483. https://doi.org/10.1016/j.rser.2015.11.094 Leu, T.-S., Yo, J.-M., Tsai, Y.-T., Miau, J.-J., Wang, T.-C., & Tseng, C.-C. (2014). Assessment of IEC 61400-1 normal turbulence model for wind conditions in Taiwan West Coast areas. International Journal of Modern Physics: Conference Series, 34, 1460382. https://doi.org/10.1142/S2010194514603822 環境部監測資訊司。(2024年)。縣市(彰化縣)小時值 - 每小時(資料集)。取自https://data.moenv.gov.tw/dataset/detail/AQX_P_143 Cheng, K.-S., Ho, C.-Y., & Teng, J.-H. (2020). Wind characteristics in the Taiwan Strait: A case study of the first offshore wind farm in Taiwan. Energies, 13(24), 6492. https://doi.org/10.3390/en13246492 Johnson, K. E. (2004). Adaptive torque control of variable speed wind turbines (NREL Report No. TP-500-36265). National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy04osti/36265.pdf 劉瑞弘、沈毓泰。(2018)。風力發電系統自我故障診斷研究 [Self-fault diagnosis technology research of a wind turbine system]。南臺科技大學。 Ardema, M. D. (2004). Newton–Euler dynamics. Springer. Mo, S., Zhang, T., Jin, G., Cao, X., & Gao, H. (2020). Analytical investigation on load sharing characteristics of herringbone planetary gear train with flexible support and floating sun gear. Mechanism and Machine Theory, 144, 103670. https://doi.org/10.1016/j.mechmachtheory.2019.103670 Litvin, F. L., & Fuentes, A. (2004). Gear geometry and applied theory (2nd ed.). Cambridge University Press. Qiu, Y., Chen, L., Feng, Y., & Xu, Y. (2017). An approach of quantifying gear fatigue life for wind turbine gearboxes using supervisory control and data acquisition data. Energies, 10(7), 1084. https://doi.org/10.3390/en10081084 Elasha, F., Mba, D., Togneri, M., Masters, I., & Teixeira, J. A. (2017). A hybrid prognostic methodology for tidal turbine gearboxes. Renewable Energy, 114, 1051–1061. https://doi.org/10.1016/j.renene.2017.07.093 Bejger, A., Frank, E., & Bartoszko, P. (2021). Failure analysis of wind turbine planetary gear. Energies, 14(20), 6768. https://doi.org/10.3390/en14206768 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97499 | - |
| dc.description.abstract | 風力發電機齒輪箱為承載變動負載並傳遞動力之關鍵傳動組件,其維修成本高昂,故於設計階段進行可靠度評估應屬重要。為此,本研究建立一套結合動態模擬與疲勞壽命預測之可靠度分析流程,以提供風力發電機齒輪箱設計階段之壽命預測與可靠度評估。本研究首先導入彰化線西地區實測逐時風速資料,據以模擬齒輪系統於隨機風場變化下之動態響應,進而計算各齒輪赫茲接觸應力與齒根彎曲應力;所得應力歷程再透過雨流計數法 (Rainflow Counting Method)、應力壽命法 (Stress-Life Method) 與 Miner 累積損傷法則 (Miner's Rule) 換算成疲勞累積損傷指標,據以評估風力發電機齒輪箱之壽命分布與可靠度。
鑑於風速具高度隨機性,齒輪損傷與壽命亦呈現顯著不確定性,本研究應用蒙地卡羅法 (Monte Carlo Method) 產生大量失效樣本,先依經驗分析法(Empirical Method) 建立可靠度函數,而後結合最大概似估計法 (Maximum Likelihood Estimation, MLE) 與 Akaike 資訊量準則 (Akaike Information Criterion, AIC),比較多種機率分布模型之適配性。模擬分析結果顯示,風力發電機齒輪箱壽命最符合對數常態分布,平均失效年限為 29.26 年,且於第 29 年後可靠度顯著下降。本研究所建構之分析流程兼具可操作性與擴展潛力,除可應用於風力發電機齒輪箱在特定隨機風場下之壽命分布與可靠度評估外,亦兼可作為齒輪箱之預防性維護與壽命管理決策之輔助工具。 | zh_TW |
| dc.description.abstract | The wind turbine gearbox is a critical transmission component that bears variable loads and transmits mechanical power. Due to its high maintenance cost, conducting reliability assessment during the design phase is essential. This study establishes a reliability analysis framework that integrates dynamic simulation and fatigue life prediction to support lifetime estimation and reliability evaluation in early design stages. Real hourly wind speed data from Xianxi, Changhua, are used to simulate the dynamic response of the gear system under stochastic wind field variations. Time-varying Hertzian contact stress and tooth root bending stress are calculated and converted into cumulative fatigue damage indicators using the rainflow counting method, stress-life method, and Miner’s rule, enabling the estimation of lifetime distribution and system reliability.
Given the high stochasticity of wind speeds, gear damage and lifetime show significant uncertainty. The Monte Carlo Method is employed to generate a large number of failure samples. An empirical reliability function is constructed, followed by statistical fitting using the maximum likelihood estimation (MLE) method and comparison via the Akaike information criterion (AIC). Simulation results indicate that the gearbox lifetime best fits a lognormal distribution, with an average failure time of approximately 29.26 years and a notable drop in reliability after year 29. The proposed framework demonstrates strong operability and extensibility. It can be applied not only to reliability evaluation under specific stochastic wind conditions but also as a decision-support tool for preventive maintenance and lifetime management of wind turbine gear systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:10:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-02T16:10:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 iv 圖次 vi 表次 ix 符號說明 x 1.緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 1 1.3 論文架構 3 2.研究方法 4 2.1 齒輪接觸應力 5 2.1.1 赫茲接觸應力 6 2.1.2 齒根彎曲應力 7 2.2 疲勞壽命分析 9 2.2.1 交變應力 10 2.2.2 雨流計數法 13 2.2.3 應力壽命法 17 2.2.4 Miner 累積損傷法則 18 2.3 可靠度基本理論 19 2.3.1 基本定義 19 2.3.2 系統可靠度 22 2.3.3 應用機率分布函數於可靠度分析 23 2.3.3.1 典型機率函數 24 2.3.3.2 經驗分析法 29 2.3.3.3 最大概似估計法與Akaike資訊量準則 30 3.風力發電機齒輪箱動態模型建構 32 3.1 風力發電機齒輪箱之動態建模參數 32 3.1.1 風力發電機設計參數 34 3.1.2 風力發電機之傳動齒輪設計參數 37 3.1.3 風速模型 40 3.1.3.1 短時間風速模擬(瞬時風速生成) 40 3.1.3.2 長時間風速統計模型 43 3.2 風力發電機之控制系統 46 3.2.1 葉片俯仰角控制與轉子輸入扭矩特性 47 3.2.2 風力發電機轉子轉速之低通濾波處理 53 3.3 動態方程式建立 55 4.疲勞可靠度分析 66 4.1 應力-損傷分析 66 4.2 疲勞累積損傷 72 4.3 可靠度分析 77 5.結論與未來展望 83 參考文獻 85 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 蒙地卡羅法 | zh_TW |
| dc.subject | 風力發電機齒輪箱 | zh_TW |
| dc.subject | 疲勞累積損傷 | zh_TW |
| dc.subject | 動態響應 | zh_TW |
| dc.subject | 可靠度評估 | zh_TW |
| dc.subject | cumulative fatigue damage | en |
| dc.subject | Monte Carlo Method | en |
| dc.subject | dynamic response | en |
| dc.subject | reliability assessment | en |
| dc.subject | wind turbine gearbox | en |
| dc.title | 風力發電機傳動齒輪之動態分析與疲勞可靠度評估 | zh_TW |
| dc.title | Dynamic Analysis and Fatigue Reliability Assessment of Wind Turbine Transmission Gears | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳文方;蔡孟勳 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Fang Wu;Meng-Shiun Tsai | en |
| dc.subject.keyword | 風力發電機齒輪箱,可靠度評估,動態響應,疲勞累積損傷,蒙地卡羅法, | zh_TW |
| dc.subject.keyword | wind turbine gearbox,reliability assessment,dynamic response,cumulative fatigue damage,Monte Carlo Method, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202501064 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-06-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-07-03 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
