Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97485
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許良彥zh_TW
dc.contributor.advisorLiang-Yan Hsuen
dc.contributor.author沈智恩zh_TW
dc.contributor.authorChih-En Shenen
dc.date.accessioned2025-07-02T16:06:52Z-
dc.date.available2025-07-03-
dc.date.copyright2025-07-02-
dc.date.issued2025-
dc.date.submitted2025-06-20-
dc.identifier.citation[1] Shen, C.-E.; Tsai, H.-S.; Hsu, L.-Y. Non-Adiabatic Quantum Electrodynamic Effects on Electron-Nucleus-Photon Systems: Single Photonic Mode vs Infinite Photonic Modes. J. Chem. Phys. 2025, 162, 034107.
[2] Jablonski, A. Efficiency of Anti-Stokes Fluorescence in Dyes. Nature 1933, 131, 839–840.
[3] Kasha, M. Characterization of Electronic Transitions in Complex Molecules. Discuss. Faraday Soc. 1950, 9, 14–19.
[4] Lin, S. H. Rate of Interconversion of Electronic and Vibrational Energy. J. Chem. Phys. 1966, 44, 3759–3767.
[5] Lin, S. H.; Bersohn, R. Effect of Partial Deuteration and Temperature on Triplet‐State Lifetimes. J. Chem. Phys. 1968, 48, 2732–2736.
[6] Lin, S. H. Energy Gap Law and Franck-Condon Factor in Radiationless Transitions. J. Chem. Phys. 1970, 53, 3766–3767.
[7] Bixon, M.; Jortner, J. Intramolecular Radiationless Transitions. J. Chem. Phys. 1968, 48, 715–726.
[8] Bixon, M.; Jortner, J.; Cortes, J.; Heitele, H.; Michel-Beyerle, M. E. Energy Gap Law for Nonradiative and Radiative Charge Transfer in Isolated and in Solvated Supermolecules. J. Phys. Chem. 1994, 98, 7289–7299.
[9] Englman, R.; Jortner, J. The Energy Gap Law for Radiationless Transitions in Large Molecules. Mol. Phys. 1970, 18, 145–164.
[10] Nitzan, A.; Jortner, J. What Is the Nature of Intramolecular Coupling Responsible for Internal Conversion in Large Molecules?. Chem. Phys. Lett. 1971, 11, 458–463.
[11] Gillispie, G. D. An Energy-Gap Correlation of Internal Conversion Rates. Chem. Phys. Lett. 1979, 63, 193–198.
[12] Maciejewski, A.; Safarzadeh-Amiri, A.; Verrall, R.; Steer, R. Radiationless Decay of the Second Excited Singlet States of Aromatic Thiones: Experimental Verification of the Energy Gap Law. Chem. Phys. 1984, 87, 295–303.
[13] Griesser, H. J.; Wild, U. P. The Energy Gap Dependence of the Radiationless Transition Rates in Azulene and Its Derivatives. Chem. Phys. 1980, 52, 117–131.
[14] Kober, E. M.; Caspar, J. V.; Lumpkin, R. S.; Meyer, T. J. Application of the Energy Gap Law to Excited-State Decay of Osmium(ii)-Polypyridine Complexes: Calculation of Relative Nonradiative Decay Rates from Emission Spectral Profiles. J. Phys. Chem. 1986, 90, 3722–3734.
[15] Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484.
[16] Takahashi, S.; Takatsuka, K. On the Validity Range of the Born-Oppenheimer Approximation: A Semiclassical Study for All-Particle Quantization of Three-Body Coulomb Systems. J. Chem. Phys. 2006, 124, 144101.
[17] Born, M.; Huang, K. Dynamical Theory of Crystal Lattices.; Oxford University Press, 1954.
[18] Hutchison, J. A.; Schwartz, T.; Genet, C.; Devaux, E.; Ebbesen, T. W. Modifying Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chem. Int. Ed. 2012, 51, 1592–1596.
[19] Flick, J.; Ruggenthaler, M.; Appel, H.; Rubio, A. Atoms and Molecules in Cavities, from Weak to Strong Coupling in Quantum-Electrodynamics (QED) Chemistry. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 3026–3034.
[20] Schäfer, C.; Ruggenthaler, M.; Rubio, A. Ab Initio Nonrelativistic Quantum Electrodynamics: Bridging Quantum Chemistry and Quantum Optics from Weak to Strong Coupling. Phys. Rev. A 2018, 98, 043801.
[21] Rokaj, V.; Welakuh, D. M.; Ruggenthaler, M.; Rubio, A. Light-Matter Interaction in the Long-Wavelength Limit: No Ground-State Without Dipole Self-Energy. J. Phys. B: At., Mol. Opt. Phys. 2018, 51, 034005.
[22] Hoffmann, N. M.; Appel, H.; Rubio, A.; Maitra, N. T. Light-Matter Interactions via the Exact Factorization Approach. Eur. Phys. J. B 2018, 91.
[23] Schäfer, C.; Ruggenthaler, M.; Rokaj, V.; Rubio, A. Relevance of the Quadratic Diamagnetic and Self-Polarization Terms in Cavity Quantum Electrodynamics. ACS Photonics 2020, 7, 975–990.
[24] Ruggenthaler, M.; Tancogne-Dejean, N.; Flick, J.; Appel, H.; Rubio, A. From a Quantum-Electrodynamical Light-Matter Description to Novel Spectroscopies. Nat. Rev. Chem. 2018, 2, 0118.
[25] Ruggenthaler, M.; Sidler, D.; Rubio, A. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chem. Rev. 2023, 123, 11191–11229.
[26] Chervy, T.; Xu, J.; Duan, Y.; Wang, C.; Mager, L.; Frerejean, M.; Münninghoff, J. A. W.; Tinnemans, P.; Hutchison, J. A.; Genet, C.; Rowan, A. E.; Rasing, T.; Ebbesen, T. W. High-Efficiency Second-Harmonic Generation from Hybrid Light-Matter States. Nano Lett. 2016, 16, 7352–7356.
[27] Thomas, A.; Lethuillier-Karl, L.; Nagarajan, K.; Vergauwe, R. M. A.; George, J.; Chervy, T.; Shalabney, A.; Devaux, E.; Genet, C.; Moran, J.; Ebbesen, T. W. Tilting a Ground-State Reactivity Landscape by Vibrational Strong Coupling. Science 2019, 363, 615–619.
[28] Sau, A.; Nagarajan, K.; Patrahau, B.; Lethuillier‐Karl, L.; Vergauwe, R. M. A.; Thomas, A.; Moran, J.; Genet, C.; Ebbesen, T. W. Modifying Woodward-Hoffmann Stereoselectivity Under Vibrational Strong Coupling. Angew. Chem. Int. Ed. 2021, 60, 5712–5717.
[29] Fukushima, T.; Yoshimitsu, S.; Murakoshi, K. Inherent Promotion of Ionic Conductivity via Collective Vibrational Strong Coupling of Water with the Vacuum Electro- magnetic Field. J. Am. Chem. Soc. 2022, 144, 12177–12183.
[30] Wang, S.; Scholes, G. D.; Hsu, L.-Y. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2020, 11, 5948–5955.
[31] Lee, M.-W.; Chuang, Y.-T.; Hsu, L.-Y. Theory of Molecular Emission Power Spectra. II. Angle, Frequency, and Distance Dependence of Electromagnetic Environment Factor of a Molecular Emitter in Plasmonic Environments. J. Chem. Phys. 2021, 155, 074101.
[32] Hsu, L.-Y.; Ding, W.; Schatz, G. C. Plasmon-Coupled Resonance Energy Transfer. J. Phys. Chem. Lett. 2017, 8, 2357–2367.
[33] Zhong, X.; Chervy, T.; Zhang, L.; Thomas, A.; George, J.; Genet, C.; Hutchi- son, J. A.; Ebbesen, T. W. Energy Transfer Between Spatially Separated Entangled Molecules. Angew. Chem. Int. Ed. 2017, 56, 9034–9038.
[34] Cao, J. Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities. J. Phys. Chem. Lett. 2022, 13, 10943.
[35] Li, T. E.; Hammes-Schiffer, S. QM/MM Modeling of Vibrational Polariton Induced Energy Transfer and Chemical Dynamics. J. Am. Chem. Soc. 2023, 145, 377.
[36] Wei, Y.-C.; Hsu, L.-Y. Cavity-Free Quantum-Electrodynamic Electron Transfer Reactions. J. Phys. Chem. Lett. 2022, 13, 9695–9702.
[37] Semenov, A.; Nitzan, A. Electron Transfer in Confined Electromagnetic Fields. J. Chem. Phys. 2019, 150, 174122.
[38] Pavošević, F.; Hammes-Schiffer, S.; Rubio, A.; Flick, J. Cavity-Modulated Proton Transfer Reactions. J. Am. Chem. Soc. 2022, 144, 4995–5002.
[39] Li, T. E.; Tao, Z.; Hammes-Schiffer, S. Semiclassical Real-Time Nuclear-Electronic Orbital Dynamics for Molecular Polaritons: Unified Theory of Electronic and Vibrational Strong Couplings. J. Chem. Theory Comput. 2022, 18, 2774.
[40] Li, X.; Mandal, A.; Huo, P. Cavity Frequency-Dependent Theory for Vibrational Polariton Chemistry. Nat. Commun. 2021, 12, 1315.
[41] Poh, Y. R.; Pannir-Sivajothi, S.; Yuen-Zhou, J. Understanding the Energy Gap Law Under Vibrational Strong Coupling. J. Phys. Chem. C 2023, 127, 5491–5501.
[42] Ou, Q.; Shao, Y.; Shuai, Z. Enhanced Reverse Intersystem Crossing Promoted by Triplet Exciton-Photon Coupling. J. Am. Chem. Soc. 2021, 143, 17786–17792.
[43] Tsai, H.-S.; Shen, C.-E.; Hsu, S.-C.; Hsu, L.-Y. Effects of Non-Adiabatic Electromagnetic Vacuum Fluctuations on Internal Conversion. J. Phys. Chem. Lett. 2023, 14, 5924–5931.
[44] Craig, D. P.; Thirunamachandran, T. Molecular Quantum Electrodynamics; Courier Corporation, 2012.
[45] Salam, A. Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions; Wiley, 2010.
[46] Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Photons and Atoms: Introduction to Quantum Electrodynamics; Wiley, 1989.
[47] Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press, 2012.
[48] Mebel, A. M.; Hayashi, M.; Liang, K. K.; Lin, S. H. Ab Initio Calculations of Vibronic Spectra and Dynamics for Small Polyatomic Molecules: Role of Duschinsky Effect. J. Phys. Chem. A 1999, 103, 10674–10690.
[49] Wendel, M.; Kumorkiewicz, A.; Wybraniec, S.; Ziółek, M.; Burdziński, G. Impact of S1→S0 Internal Conversion in Betalain-Based Dye Sensitized Solar Cells. Dyes Pigm. 2017, 141, 306–315.
[50] Peng, Q.; Fan, D.; Duan, R.; Yi, Y.; Niu, Y.; Wang, D.; Shuai, Z. Theoretical Study of Conversion and Decay Processes of Excited Triplet and Singlet States in a Thermally Activated Delayed Fluorescence Molecule. J. Phys. Chem. C 2017, 121, 13448– 13456.
[51] Shi, L.; Xie, X.; Troisi, A. Rapid Calculation of Internal Conversion and Intersystem Crossing Rate for Organic Materials Discovery. J. Chem. Phys. 2022, 157, 134106.
[52] Chen, J.-X.; Wang, K.; Zheng, C.-J.; Zhang, M.; Shi, Y.-Z.; Tao, S.-L.; Lin, H.; Liu, W.; Tao, W.-W.; Ou, X.-M.; Zhang, X.-H. Red Organic Light-Emitting Diode with External Quantum Efficiency beyond 20% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Adv. Sci. 2018, 5, 1800436.
[53] Sun, J. W.; Lee, J.-H.; Moon, C.-K.; Kim, K.-H.; Shin, H.; Kim, J.-J. A Fluorescent Organic Light-Emitting Diode with 30% External Quantum Efficiency. Adv. Mater. 2014, 26, 5684–5688.
[54] Cai, X.; Su, S.-J. Marching toward Highly Efficient, Pure-Blue, and Stable Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes. Adv. Funct. Mater. 2018, 28, 1802558.
[55] Minotto, A.; Bulut, I.; Rapidis, A. G.; Carnicella, G.; Patrini, M.; Lunedei, E.; Anderson, H. L.; Cacialli, F. Towards Efficient Near-Infrared Fluorescent Organic Light-Emitting Diodes. Light Sci. Appl. 2021, 10, 18.
[56] Zhang, H.; Chen, Z.; Zhu, L.; Wu, Y.; Xu, Y.; Chen, S.; Wong, W. High Performance NIR OLEDs with Emission Peak beyond 760 nm and Maximum EQE of 6.39%. Adv. Opt. Mater. 2022, 10, 2200111.
[57] Pan, Y.; Li, W.; Zhang, S.; Yao, L.; Gu, C.; Xu, H.; Yang, B.; Ma, Y. High Yields of Singlet Excitons in Organic Electroluminescence through Two Paths of Cold and Hot Excitons. Adv. Opt. Mater. 2014, 2, 510–515.
[58] Zampetti, A.; Minotto, A.; Cacialli, F. Near-Infrared (NIR) Organic Light-Emitting Diodes (OLEDs): Challenges and Opportunities. Adv. Funct. Mater. 2019, 29, 1807623.
[59] Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. Excited State Radiationless Decay Process with Duschinsky Rotation Effect: Formalism and Implementation. J. Chem. Phys. 2007, 126, 114302.
[60] Lax, M. A Study of the Franck-Condon Principle. J. Chem. Phys. 1936, 4, 193.
[61] Condon, E. The Franck-Condon Principle and Related Topics. Am. J. Phys. 1947, 15, 365.
[62] Lax, M. The Franck‐Condon Principle and Its Application to Crystals. J. Chem. Phys. 1952, 20, 1752–1760.
[63] Wang, S.; Scholes, G. D.; Hsu, L.-Y. Quantum Dynamics of a Molecular Emitter Strongly Coupled with Surface Plasmon Polaritons: A Macroscopic Quantum Electrodynamics Approach. J. Chem. Phys. 2019, 151, 014105.
[64] Oraevsky, A. N. Spontaneous Emission in a Cavity. Phys.-Usp. 1994, 37, 393–405.
[65] Iachello, F.; Ibrahim, M. Analytic and Algebraic Evaluation of Franck−Condon Overlap Integrals. J. Phys. Chem. A 1998, 102, 9427–9432.
[66] Scully, M. O.; Zubairy, M. S. Quantum Optics; Cambridge University Press, 2008.
[67] Hugall, J. T.; Singh, A.; van Hulst, N. F. Plasmonic Cavity Coupling. ACS Photonics 2018, 5, 43–53.
[68] Wei, Y. C.; Lee, M. W.; Chou, P.; Scholes, G. D.; Schatz, G. C.; Hsu, L.-Y. Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor-Acceptor Pair? J. Phys. Chem. C 2021, 125, 18119–18128.
[69] Hutchison, J. A.; Schwartz, T.; Genet, C.; Devaux, E.; Ebbesen, T. W. Modifying Chemical Landscapes By Coupling to Vacuum Fields. Angew. Chem. Int. Ed. 2012, 51, 1592–1596.
[70] Zhong, X.; Chervy, T.; Wang, S.; George, J.; Thomas, A.; Hutchison, J. A.; Devaux, E.; Genet, C.; Ebbesen, T. W. Non-Radiative Energy Transfer Mediated By Hybrid Light-Matter States. Angew. Chem. Int. Ed. 2016, 55, 6202–6206.
[71] Bahsoun, H.; Chervy, T.; Thomas, A.; Börjesson, K.; Hertzog, M.; George, J.; De- vaux, E.; Genet, C.; Hutchison, J. A.; Ebbesen, T. W. Electronic Light-Matter Strong Coupling in Nanofluidic Fabry-pérot Cavities. ACS Photonics 2017, 5, 225–232.
[72] Verdelli, F.; Wei, Y.-C.; Joseph, K.; Abdelkhalik, M. S.; Goudarzi, M.; Askes, S. H.; Baldi, A.; Meijer, E. W.; Gomez Rivas, J. Polaritonic Chemistry Enabled by Non-Local Metasurfaces. Angew. Chem. Int. Ed. 2024, e202409528.
[73] Gruner, T.; Welsch, D.-G. Green-Function Approach to the Radiation-Field Quantization for Homogeneous and Inhomogeneous Kramers-Kronig Dielectrics. Phys. Rev. A 1996, 53, 1818–1829.
[74] Dung, H. T.; Knöll, L.; Welsch, D.-G. Three-Dimensional Quantization of the Electromagnetic Field in Dispersive and Absorbing Inhomogeneous Dielectrics. Phys. Rev. A 1998, 57, 3931–3942.
[75] Buhmann, S. Y. Dispersion Forces I; Springer, 2012.
[76] Svendsen, M. K.; Thygesen, K. S.; Rubio, A.; Flick, J. Ab Initio Calculations of Quantum Light-Matter Interactions in General Electromagnetic Environments. J. Chem. Theory Comput. 2024, 20, 926.
[77] Svendsen, M. K.; Kurman, Y.; Schmidt, P.; Koppens, F.; Kaminer, I.; Thygesen, K. S. Combining Density Functional Theory with Macroscopic QED for Quantum Light-Matter Interactions in 2D Materials. Nat. Commun. 2021, 12, 2778.
[78] Tsai, H.-S.; Shen, C.-E.; Hsu, L.-Y. Generalized Born-Huang Expansion Under Macroscopic Quantum Electrodynamics Framework. J. Chem. Phys. 2024, 160.
[79] Sánchez-Barquilla, M.; García-Vidal, F. J.; Fernández-Domínguez, A. I.; Feist, J. Few-Mode Field Quantization for Multiple Emitters. Nanophotonics 2022, 11, 4363.
[80] Medina, I.; García-Vidal, F. J.; Fernández-Domínguez, A. I.; Feist, J. Few-Mode Field Quantization of Arbitrary Electromagnetic Spectral Densities. Phys. Rev. Lett. 2021, 126, 093601.
[81] Feist, J.; Fernández-Domínguez, A. I.; García-Vidal, F. J. Macroscopic QED for Quantum Nanophotonics: Emitter-Centered Modes as a Minimal Basis for Multiemitter Problems. Nanophotonics 2021, 10, 477.
[82] Lee, M.-W.; Hsu, L.-Y. Controllable Frequency Dependence of Resonance Energy Transfer Coupled with Localized Surface Plasmon Polaritons.. J. Phys. Chem. Lett. 2020, 11, 6796–6804.
[83] Lee, M.-W.; Hsu, L.-Y. Polariton-Assisted Resonance Energy Transfer beyond Resonant Dipole-Dipole Interaction: a Transition-Current-Density Approach. Phys. Rev. A 2023, 107, 053709.
[84] Wei, Y.-C.; Hsu, L.-Y. Wide-Dynamic-Range Control of Quantum-Electrodynamic Electron Transfer Reactions in the Weak Coupling Regime. J. Phys. Chem. Lett. 2024, 15, 7403–7410.
[85] Wang, S.; Hsu, L.-Y. Exploring Superradiance Effects of Molecular Emitters Coupled with Cavity Photons and Plasmon Polaritons: a Perspective from Macroscopic Quantum Electrodynamics. J. Phys. Chem. C 2023, 127, 12904–12912.
[86] Wang, S.; Chuang, Y.-T.; Hsu, L.-Y. Simple but Accurate Estimation of Light-Matter Coupling Strength and Optical Loss for a Molecular Emitter Coupled with Photonic Modes. J. Chem. Phys. 2021, 155, 134117.
[87] Chuang, Y.-T.; Lee, M.-W.; Hsu, L.-Y. Tavis-Cummings Model Revisited: a Perspective from Macroscopic Quantum Electrodynamics. Front. Phys. 2022, 10.
[88] Wei, Y.-C.; Hsu, L.-Y. Polaritonic Huang-Rhys factor: Basic Concepts and Quantifying Light-matter Interactions in Media. J. Phys. Chem. Lett. 2023, 14, 2395–2401.
[89] Chuang, Y.-T.; Hsu, L.-Y. Microscopic Theory of Exciton-Polariton Model Involving Multiple Molecules: Macroscopic Quantum Electrodynamics Formulation and Essence of Direct Intermolecular Interactions. J. Chem. Phys. 2024, 160, 114105.
[90] Chuang, Y.-T.; Wang, S.; Hsu, L.-Y. Macroscopic Quantum Electrodynamics Approach to Multichromophoric Excitation Energy Transfer. II. Polariton-Mediated Population Dynamics in a Dimer System. J. Chem. Phys. 2022, 157, 234109.
[91] Wang, S.; Chuang, Y.-T.; Hsu, L.-Y. Macroscopic Quantum Electrodynamics Approach to Multichromophoric Excitation Energy Transfer. I. Formalism. J. Chem. Phys. 2022, 157, 184107.
[92] Peng, Q.; Niu, Y.; Shi, Q.; Gao, X.; Shuai, Z. Correlation Function Formalism for Triplet Excited State Decay: Combined Spin-Orbit and Nonadiabatic Couplings. J. Chem. Theory Comput. 2013, 9, 1132–1143.
[93] Azumi, T.; Matsuzaki, K. What Does the Term “Vibronic Coupling” Mean? Photochem. Photobiol. 1977, 25, 315–326.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97485-
dc.description.abstract量子電動力學非絕熱輻射(quantum electrodynamic non-adiabatic emission, QED-NAE)是一種新穎的輻射機制,驅動此過程的是電子、原子核與光子之間的非絕熱交互作用。本論文發展了一套完整的理論框架,用以分析 QED-NAE ,並將此機制的理論從單一共振腔光子模式(single cavity photonic mode, SCM)情形擴展至包含無限多光子模式(infinite photonic modes, IPM)的情形,後者貼切地描述了真空狀態。我們利用一般性波恩-黃展開(generalized Born-Huang expansion),推導出包含所有分子與光子交互作用的非絕熱耦合(non-adiabatic coupling),並結合費米黃金定則(Fermi's golden rule),即可定量計算 QED-NAE 之速率常數。

透過第一原理計算,我們分析了9-氰基蒽在 SCM 與 IPM 兩種情境下的 QED-NAE 速率常數。計算結果揭示了影響 QED-NAE 過程的三個主要因素:決定光物質耦合強度的模態體積(mode volume);反映分子振動、電子躍遷與光子偏振間相對取向的質量加權取向因子 (mass-weighted orientation factor);以及描述電磁模式的光子態密度(photonic density of states)。

結果指出,即使 IPM 情境提供了無限多的光子模式, QED-NAE 速率的整體提升仍十分有限。這種限制主要來自真空中光與物質本質上的微弱耦合,故只有在特定條件下, QED 效應才可能顯著改變非絕熱過程。因此,本論文不僅提供了一個理解非絕熱 QED 效應的統一理論基礎,亦為未來實驗與理論上進一步探索光子對化學過程的影響提供了可能的途徑。
zh_TW
dc.description.abstractQuantum electrodynamic non-adiabatic emission (QED-NAE) is a novel radiative mechanism driven by non-adiabatic interactions among electrons, nuclei, and photons. In this thesis, we develop a comprehensive theoretical framework to analyze QED-NAE, extending the analysis from a single cavity photonic mode (SCM) scenario to infinite photonic modes (IPM) scenario, which realistically represents free-space conditions. Utilizing generalized Born-Huang expansion approach, we derive explicit expressions for non-adiabatic couplings (NACs) that incorporate all photon-molecule interactions. These NACs, when applied within Fermi's golden rule, enable quantitative calculations of the QED-NAE rate constants.

Employing first-principles computations, we specifically investigated the QED-NAE rate constants of 9-cyanoanthracene under both SCM and IPM scenarios. Our results identify three primary factors influencing the QED-NAE process: the mode volume, which determines the strength of light-matter coupling; the mass-weighted orientation factor, reflecting alignment between molecular vibrations, electronic transitions, and photonic polarization; and the photonic density of states, characterizing the availability of resonant electromagnetic modes.

The comparative analysis demonstrates that although the IPM scenario provides an infinite number of photonic modes, the overall enhancement in the QED-NAE rate remains limited. This limitation arises primarily due to inherently weak light-matter coupling strengths in free space, underscoring that significant QED-induced modifications to non-adiabatic processes are only feasible under specific conditions. Thus, this thesis not only offers a unified theoretical foundation for understanding non-adiabatic QED effects but also provides a possible avenue for future experimental and theoretical explorations of photonic influences on chemical processes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:06:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-02T16:06:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures x
List of Tables xi
Denotation xii

Chapter 1 Introduction 1
1.1 Jabłoński Diagram and Non-Radiative Process 1
1.2 Internal Conversion 2
1.2.1 Born-Huang Expansion 3
1.2.2 Non-Adiabatic Couplings and Internal Conversion Rates 4
1.3 Non-Relativistic Quantum Electrodynamics and Polariton Chemistry 6
1.4 Motivation and Objective 9

Chapter 2 Generalized Born-Huang Expansion in Non-Relativistic QED 11
2.1 Theoretical Met 12
2.1.1 Hamiltonian 12
2.1.2 Basis Set and Completeness Relation 15
2.1.2.1 Photonic Subspace 15
2.1.2.2 Electronic Subspace 18
2.1.2.3 Nuclear Subspace 19
2.2 Generalized Born-Huang Expansion 20
2.2.1 Wavefunction Expansion 20
2.2.2 Non-Adiabatic Couplings 21

Chapter 3 Quantum Electrodynamic Non-Adiabatic Emission Process 26
3.1 Definition of Transition Process 28
3.2 Non-Adiabatic Coupling Matrix Elements 29
3.2.1 Approximations on Non-Adiabatic Coupling Matrix Elements 29
3.2.2 Photonic Derivative Couplings 31
3.2.3 Photonic-Electronic Non-Adiabatic Couplings 33
3.2.4 Photonic-Nuclear Non-Adiabatic Couplings 35
3.3 Quantum Electrodynamic Non-Adiabatic Emission Rate Formulas 37
3.3.1 Approximations on Vibrational Overlap 38
3.3.2 Single Cavity Photonic Mode Scenario 39
3.3.3 Infinite Photonic Modes Scenario 42
3.3.3.1 Photonic Mode Continuation 42
3.3.3.2 Rate Constant in Infinite Photonic Modes Scenario 44
3.4 Comparative Analysis 46
3.4.1 Light-Matter Coupling Strength 46
3.4.2 Mass-Weighted Orientation Factor 49
3.4.3 Photonic Density of States 50

Chapter 4 Conclusion and Outlook 53

References 56

Appendix A — Supplementary Derivations of Non-Adiabatic Couplings 68
A.1 Derivation of Eq. (2.39) 68
A.2 Derivation of Eqs. (3.6a) and (3.6b) 72
A.2.1 Photonic Derivative Coupling with respect to Electronic Coordinate 72
A.2.2 Photonic Derivative Coupling with respect to Nuclear Coordinates 74

Appendix B — Supplementary Derivations of Coupled Equation for Electronic Degrees of Freedom 76
B.1 Derivation of Time-Independent Schrödinger Equation of Electronic Degrees of Freedom 76

Appendix C — Supplementary Derivations of Rate Constants 79
C.1 Derivation of Fluorescence Rate Constant 79
C.2 Derivation of Nuclear Quantum Electrodynamic Non-Adiabatic Emission Rate Constant 80
C.3 Derivation of Nuclear-Electronic Quantum Electrodynamic Non-Adiabatic Emission Rate Constant 81

Appendix D — Supplementary Derivations of Ratio of Mass-Weighted Orientation Factor 82
D.1 Derivation of Equation (3.48) 82

Appendix E — Supplementary Information of Computational Results 85
E.1 Computational Details of Electronic Derivative Couplings 85
E.2 Computational Details of Vibrational Overlap 86
-
dc.language.isoen-
dc.subject非絕熱耦合zh_TW
dc.subject非絕熱輻射zh_TW
dc.subject分子內轉換zh_TW
dc.subject光子模zh_TW
dc.subject量子電動力學zh_TW
dc.subjectNon-Adiabatic Emissionen
dc.subjectQuantum Electrodynamicen
dc.subjectPhotonic Modesen
dc.subjectMolecular Internal Conversionen
dc.subjectNon-Adiabatic Couplingsen
dc.title電子-核-光子系統的非絕熱量子電動力學效應zh_TW
dc.titleNon-Adiabatic Quantum Electrodynamic Effects on Electron-Nucleus-Photon Systemsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭原忠;林倫年zh_TW
dc.contributor.oralexamcommitteeYuan-Chung Cheng;Michitoshi Hayashien
dc.subject.keyword量子電動力學,光子模,分子內轉換,非絕熱耦合,非絕熱輻射,zh_TW
dc.subject.keywordQuantum Electrodynamic,Photonic Modes,Molecular Internal Conversion,Non-Adiabatic Couplings,Non-Adiabatic Emission,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202500981-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-06-20-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2028-06-13-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.59 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved