請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97477
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張麗冠 | zh_TW |
dc.contributor.advisor | Li-Kwan Chang | en |
dc.contributor.author | 郭姿筠 | zh_TW |
dc.contributor.author | Tzu-Yun Kuo | en |
dc.date.accessioned | 2025-06-18T16:19:10Z | - |
dc.date.available | 2025-06-19 | - |
dc.date.copyright | 2025-06-18 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-05-28 | - |
dc.identifier.citation | 1. Zamora MR. DNA Viruses (CMV, EBV, and the Herpesviruses). Semin Respir Crit Care Med. 2011;32(04):454-70. doi: 10.1055/s-0031-1283285.
2. Epstein MA, Achong BG, Barr YM. Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma. The Lancet. 1964;283(7335):702-3. doi: 10.1016/S0140-6736(64)91524-7. 3. Lieberman PM. Virology. Epstein-Barr virus turns 50. Science. 2014;343(6177):1323-5. doi: 10.1126/science.1252786. 4. Houen G, Trier NH. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol. 2020;11:587380. doi: 10.3389/fimmu.2020.587380. 5. Henle W, Henle G. Epstein-Barr Virus and Infectious Mononucleosis. New Engl J Med. 1973;288(5):263-4. doi: 10.1056/NEJM197302012880512. 6. Klein G, Giovanella BC, Lindahl T, Fialkow PJ, Singh S, Stehlin JS. Direct Evidence for the Presence of Epstein-Barr Virus DNA and Nuclear Antigen in Malignant Epithelial Cells from Patients with Poorly Differentiated Carcinoma of the Nasopharynx. Proc Natl Acad Sci USA. 1974;71(12):4737-41. doi: 10.1073/pnas.71.12.4737. 7. Zur Hausen H, Schulte-holthausen H, Klein G, Henle G, Henle W, Clifford P, et al. Epstein-Barr virus in Burkitt’s lymphoma and nasopharyngeal carcinoma. [ii] EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature. 1970;228:1056–8. doi: 10.1038/2281056a0. 8. Weiss LM, Movahed LA, Warnke RA, Sklar J. Detection of Epstein–Barr Viral Genomes in Reed–Sternberg Cells of Hodgkin's Disease. New Engl J Med. 1989;320(8):502-6. doi: 10.1056/NEJM198902233200806. 9. Imai S, Koizumi S, Sugiura M, Tokunaga M, Uemura Y, Yamamoto N, et al. Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci USA. 1994;91(19):9131-5. doi: doi:10.1073/pnas.91.19.9131. 10. Bjornevik K, Münz C, Cohen JI, Ascherio A. Epstein–Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol. 2023;19(3):160-71. doi: 10.1038/s41582-023-00775-5. 11. James JA, Neas BR, Moser KL, Hall T, Bruner GR, Sestak AL, et al. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. 2001;44(5):1122-6. 12. Szakonyi G, Klein MG, Hannan JP, Young KA, Ma RZ, Asokan R, et al. Structure of the Epstein-Barr virus major envelope glycoprotein. Nat Struct Mol Biol. 2006;13(11):996-1001. doi: 10.1038/nsmb1161. 13. Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res. 2023;15:200260. doi: 10.1016/j.tvr.2023.200260. 14. Young LS, Arrandand JR, Murray PG. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al., editors. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge: Cambridge University Press Copyright © Cambridge University Press 2007.; 2007. 15. Corvalan A, Ruedlinger Standen J, de Mayo T, Polakovičová I, Gonzalez-Hormazabal P, Aguayo F. The Phylogeographic Diversity of EBV and Admixed Ancestry in the Americas–Another Model of Disrupted Human-Pathogen Co-Evolution. Cancers. 2019;11. doi: 10.3390/cancers11020217. 16. Dambaugh T, Beisel C, Hummel M, King W, Fennewald S, Cheung A, et al. Epstein-Barr virus (B95-8) DNA VII: molecular cloning and detailed mapping. Proc Natl Acad Sci USA. 1980;77(5):2999-3003. doi: 10.1073/pnas.77.5.2999. 17. Tugizov SM, Berline JW, Palefsky JM. Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med. 2003;9(3):307-14. doi: 10.1038/nm830. 18. Maruo S, Yang L, Takada K. Roles of Epstein-Barr virus glycoproteins gp350 and gp25 in the infection of human epithelial cells. J Gen Virol. 2001;82(Pt 10):2373-83. doi: 10.1099/0022-1317-82-10-2373. 19. Chesnokova LS, Nishimura SL, Hutt-Fletcher LM. Fusion of epithelial cells by Epstein–Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins αvβ6 or αvβ8. Proc Natl Acad Sci USA. 2009;106(48):20464-9. doi: doi:10.1073/pnas.0907508106. 20. Chen J, Longnecker R. Epithelial cell infection by Epstein-Barr virus. FEMS Microbiol Rev. 2019;43(6):674-83. doi: 10.1093/femsre/fuz023. 21. Li Q, Spriggs MK, Kovats S, Turk SM, Comeau MR, Nepom B, et al. Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol. 1997;71(6):4657-62. doi: 10.1128/jvi.71.6.4657-4662.1997. 22. Lindahl T, Adams A, Bjursell G, Bornkamm GW, Kaschka-Dierich C, Jehn U. Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. J Mol Biol. 1976;102(3):511-30. doi: 10.1016/0022-2836(76)90331-4. 23. Adams A, Lindahl T. Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. Proc Natl Acad Sci USA. 1975;72(4):1477-81. doi: 10.1073/pnas.72.4.1477. 24. Kang MS, Kieff E. Epstein-Barr virus latent genes. Exp Mol Med. 2015;47(1):e131. doi: 10.1038/emm.2014.84. 25. Murata T, Sato Y, Kimura H. Modes of infection and oncogenesis by the Epstein-Barr virus. Rev Med Virol. 2014;24(4):242-53. doi: 10.1002/rmv.1786. 26. Roughan JE, Thorley-Lawson DA. The intersection of Epstein-Barr virus with the germinal center. J Virol. 2009;83(8):3968-76. doi: 10.1128/jvi.02609-08. 27. Laichalk LL, Thorley-Lawson DA. Terminal Differentiation into Plasma Cells Initiates the Replicative Cycle of Epstein-Barr Virus In Vivo. J Virol. 2005;79(2):1296-307. doi: 10.1128/jvi.79.2.1296-1307.2005. 28. Nandakumar A, Uwatoko F, Yamamoto M, Tomita K, Majima HJ, Akiba S, et al. Radiation-induced Epstein-Barr virus reactivation in gastric cancer cells with latent EBV infection. Tumour Biol. 2017;39(7):1010428317717718. doi: 10.1177/1010428317717718. 29. Westphal EM, Blackstock W, Feng W, Israel B, Kenney SC. Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Res. 2000;60(20):5781-8. 30. zur Hausen H, O'Neill FJ, Freese UK, Hecker E. Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature. 1978;272(5651):373-5. doi: 10.1038/272373a0. 31. Chang L-K, Liu S-T. Activation of the BRLF1 promoter and lytic cycle of Epstein–Barr virus by histone acetylation. Nucleic Acids Res. 2000;28(20):3918-25. doi: 10.1093/nar/28.20.3918. 32. Takada K, Ono Y. Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. J Virol. 1989;63(1):445-9. doi: 10.1128/jvi.63.1.445-449.1989. 33. Yap LF, Wong AKC, Paterson IC, Young LS. Functional Implications of Epstein-Barr Virus Lytic Genes in Carcinogenesis. Cancers (Basel). 2022;14(23). doi: 10.3390/cancers14235780. 34. Honess RW, Roizman B. Regulation of Herpesvirus Macromolecular Synthesis I. Cascade Regulation of the Synthesis of Three Groups of Viral Proteins. J Virol. 1974;14(1):8-19. doi: 10.1128/jvi.14.1.8-19.1974. 35. McKenzie J, El-Guindy A. Epstein-Barr Virus Lytic Cycle Reactivation. In: Münz C, editor. Epstein Barr Virus Volume 2: One Herpes Virus: Many Diseases. Cham: Springer International Publishing; 2015. p. 237-61. 36. Fixman ED, Hayward GS, Hayward SD. trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol. 1992;66(8):5030-9. doi: 10.1128/jvi.66.8.5030-5039.1992. 37. Kalla M, Hammerschmidt W. Human B cells on their route to latent infection – Early but transient expression of lytic genes of Epstein-Barr virus. Eur J Cell Biol. 2012;91(1):65-9. doi: 10.1016/j.ejcb.2011.01.014. 38. Morales-Sánchez A, Fuentes-Panana EM. The Immunomodulatory Capacity of an Epstein-Barr Virus Abortive Lytic Cycle: Potential Contribution to Viral Tumorigenesis. Cancers (Basel). 2018;10(4). doi: 10.3390/cancers10040098. 39. Hwang S-P, Huang L-C, Wang W-H, Lin M-H, Kuo C-W, Huang H-H, et al. Expression of Rta in B Lymphocytes during Epstein–Barr Virus Latency. J Mol Biol. 2020;432(19):5227-43. doi: 10.1016/j.jmb.2020.07.011. 40. Wen W, Iwakiri D, Yamamoto K, Maruo S, Kanda T, Takada K. Epstein-Barr Virus BZLF1 Gene, a Switch from Latency to Lytic Infection, Is Expressed as an Immediate-Early Gene after Primary Infection of B Lymphocytes. J Virol. 2007;81(2):1037-42. doi: 10.1128/jvi.01416-06. 41. Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, et al. DNA sequence and expression of the B95-8 Epstein—Barr virus genome. Nature. 1984;310(5974):207-11. doi: 10.1038/310207a0. 42. Manet E, Gruffat H, Trescol-Biemont MC, Moreno N, Chambard P, Giot JF, et al. Epstein-Barr virus bicistronic mRNAs generated by facultative splicing code for two transcriptional trans-activators. EMBO J. 1989;8(6):1819-26. doi: 10.1002/j.1460-2075.1989.tb03576.x. 43. Manet E, Rigolet A, Gruffat H, Giot JF, Sergeant A. Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic Acids Res. 1991;19(10):2661-7. doi: 10.1093/nar/19.10.2661. 44. Hsu T-Y, Chang Y, Wang P-W, Liu M-Y, Chen M-R, Chen J-Y, et al. Reactivation of Epstein–Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol. 2005;86(2):317-22. doi: doi.org/10.1099/vir.0.80556-0. 45. Gruffat H, Sergeant A. Characterization of the DNA-binding site repertoire for the Epstein-Barr virus transcription factor R. Nucleic Acids Res. 1994;22(7):1172-8. doi: 10.1093/nar/22.7.1172. 46. Chang LK, Chung JY, Hong YR, Ichimura T, Nakao M, Liu ST. Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res. 2005;33(20):6528-39. doi: 10.1093/nar/gki956. 47. Ragoczy T, Miller G. Autostimulation of the Epstein-Barr virus BRLF1 promoter is mediated through consensus Sp1 and Sp3 binding sites. J Virol. 2001;75(11):5240-51. doi: 10.1128/jvi.75.11.5240-5251.2001. 48. Yeh H-M. Activation of AP-1-mediated transcription by Rta of Epstein-Barr virus: Kaoshiung Medical University; 2006. 49. Chang LK, Chuang JY, Nakao M, Liu ST. MCAF1 and synergistic activation of the transcription of Epstein-Barr virus lytic genes by Rta and Zta. Nucleic Acids Res. 2010;38(14):4687-700. doi: 10.1093/nar/gkq243. 50. Huang H-H, Wang W-H, Feng T-H, Chang L-K. Rta is an Epstein-Barr virus tegument protein that improves the stability of capsid protein BORF1. Biochem Biophys Res Commun. 2020;523(3):773-9. doi: 10.1016/j.bbrc.2020.01.017. 51. Hwang S-P. Promotion of BZLF1 translation by Rta from the BRLF1-BZLF1 bicistronic mRNA of Epstein-Barr virus: National Taiwan University; 2018. 52. Huang L-C. Regulation of translation by Rta of Epstein-Barr virus: National Taiwan University; 2019. 53. Lin Y-P. Rta of Epstein-Barr virus as an IRES trans-acting factor to control translation: National Taiwan University; 2021. 54. Tsai H-H. Role of Rta of Epstein-Barr virus in mitochondria: National Taiwan University; 2016. 55. Hu J-Y. Role of Epstein-Barr virus Rta on mitophagy: National Taiwan University; 2024. 56. Huang HH, Chen CS, Wang WH, Hsu SW, Tsai HH, Liu ST, et al. TRIM5α Promotes Ubiquitination of Rta from Epstein-Barr Virus to Attenuate Lytic Progression. Front Microbiol. 2016;7:2129. doi: 10.3389/fmicb.2016.02129. 57. Chen C-Y. Role of USP11 in the ubiquitination of Rta and Zta of Epstein-Barr Virus: National Taiwan University; 2017. 58. Lee Y-K. Deubiquitination of Epstein-Barr virus Rta and minor capsid proteins by USP11: National Taiwan University; 2025. 59. Negishi H, Taniguchi T, Yanai H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harbor Perspectives in Biology. 2018;10(11). doi: 10.1101/cshperspect.a028423. 60. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci. 1987;7(5):429-38. doi: 10.1098/rspb.1957.0048. 61. Cantell K, Hirvonen S, Kauppinen H-L, Myllylä G. [4] Production of interferon in human leukocytes from normal donors with the use of Sendai virus. Methods Enzymol. 78: Academic Press; 1981. p. 29-38. 62. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87-103. doi: 10.1038/nri3787. 63. Vénéreau E, Ceriotti C, Bianchi ME. DAMPs from Cell Death to New Life. Front Immunol. 2015;6:422. doi: 10.3389/fimmu.2015.00422. 64. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science. 2013;339(6121):786-91. doi: 10.1126/science.1232458. 65. Stetson DB, Medzhitov R. Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity. 2006;24(1):93-103. doi: 10.1016/j.immuni.2005.12.003. 66. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5(7):730-7. doi: 10.1038/ni1087. 67. Uematsu S, Akira S. Toll-like Receptors and Type I Interferons*. J Biol Chem. 2007;282(21):15319-23. doi: 10.1074/jbc.R700009200. 68. Novick D, Cohen B, Rubinstein M. The human interferon alpha/beta receptor: characterization and molecular cloning. Cell. 1994;77(3):391-400. doi: 10.1016/0092-8674(94)90154-6. 69. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36-49. doi: 10.1038/nri3581. 70. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998;67:227-64. doi: 10.1146/annurev.biochem.67.1.227. 71. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Biochem. 2014;32:513-45. doi: 10.1146/annurev-immunol-032713-120231. 72. Schoggins JW. Interferon-Stimulated Genes: What Do They All Do? Annu Rev Virol. 2019;6(1):567-84. doi: 10.1146/annurev-virology-092818-015756. 73. Tao J, Zhang X-W, Jin J, Du X-X, Lian T, Yang J, et al. Nonspecific DNA Binding of cGAS N Terminus Promotes cGAS Activation. J Immunol. 2017;198(9):3627-36. doi: 10.4049/jimmunol.1601909. 74. Luecke S, Holleufer A, Christensen MH, Jønsson KL, Boni GA, Sørensen LK, et al. cGAS is activated by DNA in a length-dependent manner. EMBO Rep. 2017;18(10):1707-15. doi: 10.15252/embr.201744017. 75. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520(7548):553-7. doi: 10.1038/nature14156. 76. Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550(7676):402-6. doi: 10.1038/nature24050. 77. Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548(7668):461-5. doi: 10.1038/nature23449. 78. Hopfner K-P, Hornung V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat Rev Mol Cell Biol. 2020;21(9):501-21. doi: 10.1038/s41580-020-0244-x. 79. Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 2013;39(6):1019-31. doi: 10.1016/j.immuni.2013.10.019. 80. Andreeva L, Hiller B, Kostrewa D, Lässig C, de Oliveira Mann CC, Jan Drexler D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature. 2017;549(7672):394-8. doi: 10.1038/nature23890. 81. Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell. 2013;51(2):226-35. doi: 10.1016/j.molcel.2013.05.022. 82. Ergun SL, Fernandez D, Weiss TM, Li L. STING Polymer Structure Reveals Mechanisms for Activation, Hyperactivation, and Inhibition. Cell. 2019;178(2):290-301.e10. doi: 10.1016/j.cell.2019.05.036. 83. Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N. STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host Microbe. 2015;18(2):157-68. doi: 10.1016/j.chom.2015.07.001. 84. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461(7265):788-92. doi: 10.1038/nature08476. 85. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347(6227):aaa2630. doi: 10.1126/science.aaa2630. 86. Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal. 2012;5(214):ra20. doi: 10.1126/scisignal.2002521. 87. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003;4(5):491-6. doi: 10.1038/ni921. 88. Sharma S, tenOever BR, Grandvaux N, Zhou G-P, Lin R, Hiscott J. Triggering the Interferon Antiviral Response Through an IKK-Related Pathway. Science. 2003;300(5622):1148-51. doi: 10.1126/science.1081315. 89. Chen C, Xu P. Cellular functions of cGAS-STING signaling. Trends Cell Biol. 2023;33(8):630-48. doi: 10.1016/j.tcb.2022.11.001. 90. Gui X, Yang H, Li T, Tan X, Shi P, Li M, et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature. 2019;567(7747):262-6. doi: 10.1038/s41586-019-1006-9. 91. Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L, Villunger A, et al. Signalling strength determines proapoptotic functions of STING. Nat Commun. 2017;8(1):427. doi: 10.1038/s41467-017-00573-w. 92. Zhang D, Liu Y, Zhu Y, Zhang Q, Guan H, Liu S, et al. A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat Cell Biol. 2022;24(5):766-82. doi: 10.1038/s41556-022-00894-z. 93. Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21(9):548-69. doi: 10.1038/s41577-021-00524-z. 94. Shang G, Zhang C, Chen ZJ, Bai X-c, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature. 2019;567(7748):389-93. doi: 10.1038/s41586-019-0998-5. 95. Liu D, Wu H, Wang C, Li Y, Tian H, Siraj S, et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 2019;26(9):1735-49. doi: 10.1038/s41418-018-0251-z. 96. Kang J, Wu J, Liu Q, Wu X, Zhao Y, Ren J. Post-Translational Modifications of STING: A Potential Therapeutic Target. Front Immunol. 2022;13:888147. doi: 10.3389/fimmu.2022.888147. 97. Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol. 2007;8(1):74-84. doi: 10.1038/nrm2084. 98. Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, et al. Activation of STING requires palmitoylation at the Golgi. Nat Commun. 2016;7:11932. doi: 10.1038/ncomms11932. 99. Hu M-M, Yang Q, Xie X-Q, Liao C-Y, Lin H, Liu T-T, et al. Sumoylation Promotes the Stability of the DNA Sensor cGAS and the Adaptor STING to Regulate the Kinetics of Response to DNA Virus. Immunity. 2016;45(3):555-69. doi: 10.1016/j.immuni.2016.08.014. 100. Damgaard RB. The ubiquitin system: from cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ. 2021;28(2):423-6. doi: 10.1038/s41418-020-00703-w. 101. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, et al. The Ubiquitin Ligase TRIM56 Regulates Innate Immune Responses to Intracellular Double-Stranded DNA. Immunity. 2010;33(5):765-76. doi: 10.1016/j.immuni.2010.10.013. 102. Zhang J, Hu MM, Wang YY, Shu HB. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J Biol Chem. 2012;287(34):28646-55. doi: 10.1074/jbc.M112.362608. 103. Ni G, Konno H, Barber GN. Ubiquitination of STING at lysine 224 controls IRF3 activation. Sci Immunol. 2017;2(11). doi: 10.1126/sciimmunol.aah7119. 104. Wang Q, Liu X, Cui Y, Tang Y, Chen W, Li S, et al. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity. 2014;41(6):919-33. doi: 10.1016/j.immuni.2014.11.011. 105. Qin Y, Zhou MT, Hu MM, Hu YH, Zhang J, Guo L, et al. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathog. 2014;10(9):e1004358. doi: 10.1371/journal.ppat.1004358. 106. Li X, Yu Z, Fang Q, Yang M, Huang J, Li Z, et al. The transmembrane endoplasmic reticulum–associated E3 ubiquitin ligase TRIM13 restrains the pathogenic-DNA–triggered inflammatory response. Sci Adv. 2022;8(4):eabh0496. doi: 10.1126/sciadv.abh0496. 107. Xing J, Zhang A, Zhang H, Wang J, Li XC, Zeng M-S, et al. TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nat Commun. 2017;8(1):945. doi: 10.1038/s41467-017-00101-w. 108. Zhong B, Zhang L, Lei C, Li Y, Mao A-P, Yang Y, et al. The Ubiquitin Ligase RNF5 Regulates Antiviral Responses by Mediating Degradation of the Adaptor Protein MITA. Immunity. 2009;30(3):397-407. doi: 10.1016/j.immuni.2009.01.008. 109. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17(10):1142-9. doi: 10.1038/ni.3558. 110. Jin X, Wang W, Zhao X, Jiang W, Shao Q, Chen Z, et al. The battle between the innate immune cGAS-STING signaling pathway and human herpesvirus infection. Front Immunol. 2023;14:1235590. doi: 10.3389/fimmu.2023.1235590. 111. Wang P, Deng Y, Guo Y, Xu Z, Li Y, Ou X, et al. Epstein-Barr Virus Early Protein BFRF1 Suppresses IFN-β Activity by Inhibiting the Activation of IRF3. Front Immunol. 2020;11:513383. doi: 10.3389/fimmu.2020.513383. 112. Wong N-hM. Suppression of IFN-β production by Epstein-Barr virus lytic transactivator Zta: The University of Hong Kong (Pokfulam, Hong Kong); 2018. 113. Jangra S, Yuen KS, Botelho MG, Jin DY. Epstein-Barr Virus and Innate Immunity: Friends or Foes? Microorganisms. 2019;7(6). doi: 10.3390/microorganisms7060183. 114. Gram AM, Sun C, Landman SL, Oosenbrug T, Koppejan HJ, Kwakkenbos MJ, et al. Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure. Mol Immunol. 2017;91:225-37. doi: 10.1016/j.molimm.2017.08.025. 115. Lui WY, Bharti A, Wong NM, Jangra S, Botelho MG, Yuen KS, et al. Suppression of cGAS- and RIG-I-mediated innate immune signaling by Epstein-Barr virus deubiquitinase BPLF1. PLoS Pathog. 2023;19(2):e1011186. doi: 10.1371/journal.ppat.1011186. 116. Wu J-j, Li W, Shao Y, Avey D, Fu B, Gillen J, et al. Inhibition of cGAS DNA Sensing by a Herpesvirus Virion Protein. Cell Host Microbe. 2015;18(3):333-44. doi: 10.1016/j.chom.2015.07.015. 117. Yu K, Tian H, Deng H. PPM1G restricts innate immune signaling mediated by STING and MAVS and is hijacked by KSHV for immune evasion. Sci Adv. 2020;6(47):eabd0276. doi: 10.1126/sciadv.abd0276. 118. Bentz GL, Liu R, Hahn AM, Shackelford J, Pagano JS. Epstein–Barr virus BRLF1 inhibits transcription of IRF3 and IRF7 and suppresses induction of interferon-β. Virology. 2010;402(1):121-8. doi: 10.1016/j.virol.2010.03.014. 119. Zhu L-H, Gao S, Jin R, Zhuang L-L, Jiang L, Qiu L-Z, et al. Repression of interferon regulatory factor 3 by the Epstein-Barr virus immediate-early protein Rta is mediated through E2F1 in HeLa cells. Mol Med Rep. 2014;9(4):1453-9. doi: 10.3892/mmr.2014.1957. 120. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5. J Gen Virol. 1977;36(1):59-72. doi: 10.1099/0022-1317-36-1-59. 121. Shaw G, Morse S, Ararat M, Graham FL. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 2002;16(8):869-71. doi: 10.1096/fj.01-0995fje. 122. DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol. 1987;7(1):379-87. doi: 10.1128/mcb.7.1.379-387.1987. 123. MacWilliams MP, Liao MK. Luria broth (LB) and Luria agar (LA) media and their uses protocol. mBio. 2006;2006:1-4. 124. Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981;145(3):1365-73. doi: 10.1128/jb.145.3.1365-1373.1981. 125. Peelman F, Van Beneden K, Zabeau L, Iserentant H, Ulrichts P, Defeau D, et al. Mapping of the leptin binding sites and design of a leptin antagonist. J Biol Chem. 2004;279(39):41038-46. doi: 10.1074/jbc.M404962200. 126. Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, Fenrich J. The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time. Trends Biotechnol. 2019;37(7):761-74. doi: 10.1016/j.tibtech.2018.12.002. 127. Sapetschnig A, Rischitor G, Braun H, Doll A, Schergaut M, Melchior F, et al. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J. 2002;21(19):5206-15. doi: 10.1093/emboj/cdf510. 128. Qi S, Wang C, Zhang R, Zhu J, Hou X, Jiang Y, et al. Human STING Is Regulated by an Autoinhibitory Mechanism for Type I Interferon Production. J Innate Immun. 2022;14(5):518-31. doi: 10.1159/000521734. 129. Hsin F, Hsu Y-C, Tsai Y-F, Lin S-W, Liu HM. The transmembrane serine protease hepsin suppresses type I interferon induction by cleaving STING. Sci Signal. 2021;14(687):eabb4752. doi: 10.1126/scisignal.abb4752. 130. Raffeiner M, Zhu S, González-Fuente M, Üstün S. Interplay between autophagy and proteasome during protein turnover. Trends Plant Sci. 2023;28(6):698-714. doi: 10.1016/j.tplants.2023.01.013. 131. Tanida I, Ueno T, Kominami E. LC3 and Autophagy. In: Deretic V, editor. Autophagosome and Phagosome. Totowa, NJ: Humana Press; 2008. p. 77-88. 132. Son K, Jeong S, Eom E, Kwon D, Kang SJ. MARCH5 promotes STING pathway activation by suppressing polymer formation of oxidized STING. EMBO Rep. 2023;24(12):e57496. doi: 10.15252/embr.202357496. 133. Yang YC, Yoshikai Y, Hsu SW, Saitoh H, Chang LK. Role of RNF4 in the ubiquitination of Rta of Epstein-Barr virus. J Biol Chem. 2013;288(18):12866-79. doi: 10.1074/jbc.M112.413393. 134. Todorović N, Ambrosio MR, Amedei A. Immune Modulation by Epstein-Barr Virus Lytic Cycle: Relevance and Implication in Oncogenesis. Pathogens. 2024;13(10). doi: 10.3390/pathogens13100876. 135. Deng L, Xu Z, Li F, Zhao J, Jian Z, Deng H, et al. Insights on the cGAS-STING Signaling Pathway During Herpesvirus Infections. Front Immunol. 2022;13:931885. doi: 10.3389/fimmu.2022.931885. 136. Ge Z, Ding S. Regulation of cGAS/STING signaling and corresponding immune escape strategies of viruses. Front Cell Infect Microbiol. 2022;12:954581. doi: 10.3389/fcimb.2022.954581. 137. Kim JE, Kim YE, Stinski MF, Ahn JH, Song YJ. Corrigendum: Human Cytomegalovirus IE2 86 kDa Protein Induces STING Degradation and Inhibits cGAMP-Mediated IFN-β Induction. Front Microbiol. 2018;9:350. doi: 10.3389/fmicb.2018.00350. 138. Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, et al. DENV Inhibits Type I IFN Production in Infected Cells by Cleaving Human STING. PLoS Pathog. 2012;8(10):e1002934. doi: 10.1371/journal.ppat.1002934. 139. Yan Z, Xie J, Hou Z, Zhang Y, Yue J, Zhang X, et al. Pseudorabies virus UL38 attenuates the cGAS-STING signaling pathway by recruiting Tollip to promote STING for autophagy degradation. Virol J. 2024;21(1):107. doi: 10.1186/s12985-024-02379-x. 140. Kuchitsu Y, Mukai K, Uematsu R, Takaada Y, Shinojima A, Shindo R, et al. STING signalling is terminated through ESCRT-dependent microautophagy of vesicles originating from recycling endosomes. Nat Cell Biol. 2023;25(3):453-66. doi: 10.1038/s41556-023-01098-9. 141. Xu Y, Wan W. Lysosomal control of the cGAS-STING signaling. Trends Cell Biol. 2024;34(8):622-5. doi: 10.1016/j.tcb.2024.05.004. 142. Hung CH, Chen LW, Wang WH, Chang PJ, Chiu YF, Hung CC, et al. Regulation of autophagic activation by Rta of Epstein-Barr virus via the extracellular signal-regulated kinase pathway. J Virol. 2014;88(20):12133-45. doi: 10.1128/jvi.02033-14. 143. Zhao Y, Zhou C, Tian W, Chen Y, Zhao C, Li Y, et al. A specific module of ESCRT regulates STING activity termination by controlling STING degradation. Sci Bull. 2024;69(8):1000-5. doi: 10.1016/j.scib.2024.01.005. 144. Bodda C, Reinert LS, Fruhwürth S, Richardo T, Sun C, Zhang B-c, et al. HSV1 VP1-2 deubiquitinates STING to block type I interferon expression and promote brain infection. J Exp Med. 2020;217(7). doi: 10.1084/jem.20191422. 145. Zhang ZD, Xiong TC, Yao SQ, Wei MC, Chen M, Lin D, et al. RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVS and MITA. Nat Commun. 2020;11(1):5536. doi: 10.1038/s41467-020-19318-3. 146. Ali A, Ohashi M, Casco A, Djavadian R, Eichelberg M, Kenney SC, et al. Rta is the principal activator of Epstein-Barr virus epithelial lytic transcription. PLoS Pathog. 2022;18(9):e1010886. doi: 10.1371/journal.ppat.1010886. 147. El-Guindy A, Ghiassi-Nejad M, Golden S, Delecluse H-J, Miller G. Essential Role of Rta in Lytic DNA Replication of Epstein-Barr Virus. J Virol. 2013;87(1):208-23. doi: 10.1128/jvi.01995-12. 148. Foy E, Li K, Wang C, Sumpter R, Ikeda M, Lemon SM, et al. Regulation of Interferon Regulatory Factor-3 by the Hepatitis C Virus Serine Protease. Science. 2003;300(5622):1145-8. doi: 10.1126/science.1082604. 149. Li Y-J, Chen C-Y, Kuo Y-S, Huang Y-W, Kuo R-L, Chang L-K, et al. OTUB1 contributes to the stability and function of Influenza A virus NS2. PLoS Pathog. 2024;20(5):e1012279. doi: 10.1371/journal.ppat.1012279. 150. Di Pietro A. Epstein–Barr Virus Promotes B Cell Lymphomas by Manipulating the Host Epigenetic Machinery. Cancers. 2020;12:3037. doi: 10.3390/cancers12103037. 151. Chen Y-L. Enhancement of Epstein-Barr virus lytic cycle by human MIOS: National Taiwan University; 2023. 152. Ji L, Li T, Chen H, Yang Y, Lu E, Liu J, et al. The crucial regulatory role of type I interferon in inflammatory diseases. Cell Biosci. 2023;13(1):230. doi: 10.1186/s13578-023-01188-z. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97477 | - |
dc.description.abstract | EB 病毒 (Epstein-Barr Virus, EBV) 又稱為第四型人類皰疹病毒,全球約有 90% 以上的人受到感染,與多種癌症和自體免疫疾病相關。EB 病毒的生活史分為潛伏期 (latency) 與溶裂期 (lytic cycle),甫進入溶裂期時會表現極早期蛋白質 Rta,主要作為轉錄因子調控早期與晚期基因表達,使病毒能複製基因體與製造 殼體蛋白質,進而組裝並釋放病毒顆粒。病毒感染時,宿主可以感應細胞質中的 外源病毒 DNA 或因壓力釋出的內源性胞器 DNA,透過 cGAS-STING 訊息傳遞 路徑產生第一型干擾素 (type I interferons),以調節先天免疫反應。先前研究指出 Rta 會減少由 cGAS-STING 引起的第一型干擾素基因的轉錄。本研究先以 luciferase reporter assay 與定量反轉錄 PCR (RT-qPCR) 確認 Rta 能減少第一型干擾素基因轉錄以及所傳遞的下游免疫反應;並發現 Rta 的蛋白質量增加時,會減少細胞中過量表達的 STING 與免疫反應最下游的磷酸化 IRF3 蛋白質的表現量。接著以 cycloheximide (CHX) chase assay 確認 Rta 會透過增強 STING 蛋白質的細胞自噬 (autophagy),降低 STING 的穩定性。本研究進一步以免疫共沈澱分析證實 Rta 會與 STING 蛋白質結合,並且發現 Rta 可以減少 STING 在內質網 (endoplasmic reticulum)上形成二聚體和多聚體。此外以變性蛋白免疫沈澱 (denaturing-immunoprecipitation) 分析,顯示 Rta 會干擾 STING 的 K63 鏈結的泛素化 (ubiquitination),進而影響其功能調節。本研究證實 Rta 可以促進 STING 的細胞自噬降解以及干擾 STING 的泛素化,來抑制 cGAS-STING 訊息傳遞所引起的第一型干擾素先天免疫反應。 | zh_TW |
dc.description.abstract | Epstein-Barr Virus (EBV), or human herpesvirus 4 (HHV4), infects 90% of the adult population worldwide and is associated with cancers, autoimmune diseases, and neurological disorders. The EBV life cycle is split into latency and the lytic phases; the immediate-early protein Rta expressed at lytic initiation transactivates the expression of EBV early and late genes, facilitating viral DNA replication, production of viral structural proteins, and virion assembly and egress. It is well known that viral DNA or DNA released from organelles triggers cGAS-STING signaling and ultimately activates the transcription of type I-interferon (IFN) genes to promote innate immunity. Previous research revealed that EBV Rta reduces the cGAS-STING-induced IFN-b promoter activities, although the underlying mechanism remains unclear. This study first confirmed that Rta decreased the transcription of the IFN-b gene and interferon-stimulated genes (ISGs). Rta also reduces the levels of STING and phosphorylated IRF3 in a dose-dependent manner, as Rta destabilizes STING by enhancing its autophagic degradation in a cycloheximide (CHX) chase assay. This study also shows the interaction between Rta and STING and that Rta reduces the formation of STING dimers and oligomers on the endoplasmic reticulum (ER) surface, which is critical to cGAS-STING signaling. Meanwhile, Rta perturbs total ubiquitination and K63-linked polyubiquitination on STING, possibly affecting STING functionalities. These findings illuminate Rta’s importance in regulating the cGAS-STING-mediated type I IFN response by promoting STING autophagic degradation and perturbing STING K63-linked polyubiquitination. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:19:10Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-06-18T16:19:10Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv Table of Contents vi Tables ix Figures x 1 Introduction 1 1.1 Epstein-Barr Virus (EBV) 1 1.1.1 Taxonomy and Epidemiology 1 1.1.2 EBV Structure and Nomenclature of EBV Genes 1 1.1.3 The EBV Life Cycle 2 1.1.4 The EBV Immediate-early Genes BRLF1 and BZLF1 4 1.1.5 The EBV Rta Protein 5 1.2 The Type I Interferon (IFN) Response and cGAS-STING Pathway 6 1.2.1 Induction and Signaling of Type I IFNs 6 1.2.2 The cGAS-STING Pathway 8 1.2.3 The STING Protein 10 1.2.4 Post-translational Modifications (PTMs) of STING Activity 11 1.3 Modulation of the cGAS-STING Pathway by EBV 12 1.4 Motivation and Specific Aims 13 2 Materials and Methods 15 2.1 Cell Lines 15 2.2 Plasmids 15 2.3 Plasmid Extraction 15 2.4 Plasmid Construction, Transformation, and Quick-Screening 16 2.5 Transfection 17 2.6 Cell Lysate Preparation 17 2.7 SDS-PAGE and Western blotting 18 2.8 Luciferase Reporter Assay 19 2.9 RNA extraction and RT-qPCR 20 2.10 Cycloheximide (CHX) Chase Assay 21 2.11 Immunoprecipitation (IP) 21 2.12 Quantitation and Statistical Analysis 22 3 Results 23 3.1 Rta suppressed the cGAS-STING-induced type I IFN response 23 3.2 Rta reduced STING proteins and suppressed the cGAS-STING-mediated type I IFN response in a dose-dependent manner 24 3.3 Rta caused STING degradation through the autophagic pathway 25 3.4 Interaction between Rta and STING 26 3.5 Rta reduced the formation of STING dimers and oligomers 27 3.6 Rta perturbed STING ubiquitination 28 4 Discussion 31 4.1 Rta suppressed the cGAS-STING-mediated immune response 31 4.2 Rta destabilized STING and reduced STING protein levels 32 4.3 Rta strengthened the autophagic degradation of STING 33 4.4 The importance of STING-ubiquitin modulation by Rta 34 4.5 Limitations of this Study and future work for investigating EBV-positive cell lines 36 4.6 Conclusion 37 5 Tables 38 6 Figures 42 7 References 52 8 Appendix 77 | - |
dc.language.iso | en | - |
dc.title | EB 病毒 Rta 於 cGAS-STING 先天免疫反應中所扮演的角色 | zh_TW |
dc.title | Role of Epstein-Barr Virus Rta in cGAS-STING-mediated Innate Immunity | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉世東;陳美如;邱亞芳;劉旻禕 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Tung Liu;Mei-Ru Chen;Ya-Fang Chiu;Helene Minyi Liu | en |
dc.subject.keyword | EB 病毒,Rta,先天免疫,第一型干擾素,cGAS-STING 訊息傳遞, | zh_TW |
dc.subject.keyword | Epstein-Barr Virus,Rta,innate immunity,type I interferons,cGAS-STING pathway, | en |
dc.relation.page | 80 | - |
dc.identifier.doi | 10.6342/NTU202500999 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-05-28 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生化科技學系 | - |
dc.date.embargo-lift | 2030-05-27 | - |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-2.pdf 目前未授權公開取用 | 19.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。