Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97468
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧中仁zh_TW
dc.contributor.advisorChung-Jen Luen
dc.contributor.author高婉綺zh_TW
dc.contributor.authorWan-Chi Kaoen
dc.date.accessioned2025-06-18T16:16:47Z-
dc.date.available2025-06-19-
dc.date.copyright2025-06-18-
dc.date.issued2025-
dc.date.submitted2025-06-13-
dc.identifier.citation[1] 財團法人中技社,國際產業趨勢對我國工具機產業之影響,專題報告,no. 2024-09,2024年12月。[Online]. Available: https://www.ctci.org.tw/media/10478/2024-09-%E5%9C%8B%E9%9A%9B%E7%94%A2%E6%A5%AD%E8%B6%A8%E5%8B%A2%E5%B0%8D%E6%88%91%E5%9C%8B%E5%B7%A5%E5%85%B7%E6%A9%9F%E7%94%A2%E6%A5%AD%E4%B9%8B%E5%BD%B1%E9%9F%BF.pdf
[2] D. J. Cruz, M. R. Barbosa, A. D. Santos, S. S. Miranda, and R. L. Amaral, “Application of Machine Learning to Bending Processes and Material Identification,” Metals, vol. 11, no. 9, p. 1418, Sep. 2021, doi: https://doi.org/10.3390/met11091418.
[3] Y. S. A. Mostafa, M. M. Ismail, and H. T. Lin, Learning from Data :A Short Course, Pasadena, Ca: Aml Book, 2012.
[4] Amazon Web Services (AWS),監督式與非監督式學習-機器學習演算法之間的區別。 https://aws.amazon.com/tw/compare/the-difference-between-machine-learning-supervised-and-unsupervised(accessed Apr. 21, 2025).
[5] Z. Ma, M. Zhao, X. Dai, and Y. Chen, “A Hybrid-driven Probabilistic State Space Model for Tool Wear Monitoring,” Mechanical Systems and Signal Processing, vol. 200, pp. 110599–110599, Jul. 2023, doi: https://doi.org/10.1016/j.ymssp.2023.110599.
[6] A. A. R. M. A. Ebayyeh, and A. Mousavi, “A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry,” IEEE Access, vol. 8, pp. 183192–183271, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3029127.
[7] 于繼光,魯智,劉勇,“簡析機械加工工藝對加工精度的影響”,機械與電子控制工程,vol. 4,no. 11,pp. 64–66,2022年1月。 doi: https://doi.org/10.37155/2717-5197-0411-22.
[8] 蔡穎德,等負載加工之參數訂定策略,國立台灣大學-機械工程研究所-碩士論文,2020年7月。doi: https://doi.org/U0001-1507202014324800.
[9] M. Rausand and A. Høyland, System Reliability Theory: Models, Statistical Methods, and Applications. Hoboken, NJ: Wiley-Interscience, 2004.
[10] 陳建中,CNC車床之可靠度設計與分析,國立台灣大學-機械工程研究所-碩士論文,2024年七月。[Online]. Available: https://hdl.handle.net/11296/7by6ju.
[11] D. W. Coit, “Weibull Distribution Parameter Estimation for Bivariate Reliability Data with Censoring,” IEEE Trans. Reliability, vol. 48, no. 1, pp. 68–73, Mar. 1999.
[12] D. S. Donoriyanto, A. S. Anam, and E. Pudji, “Application of Genetic Algorithm Method On Machine Maintenance,” Journal of Physics: Conference Series, vol. 953, p. 012225, Jan. 2018, doi: https://doi.org/10.1088/1742-6596/953/1/012225.
[13] F. L. Li, “The Failure Diagnosis and Reliability Growth Technology Research of the CAK3675V CNC Lathes,” Suzhou Chien-Shiung Institute of Technology, Taicang 215400, vol. 39, no. 11, pp. 71–76, May 2012.
[14] W. Yan, “Inherent and Operational Reliability of CNC Lathe,” Journal of Jilin University of Technology, Jan. 2000.
[15] Y. Wang, Y. Jia, J. Yu, Y. Zheng, and S. Yi, “Failure Probabilistic Model of CNC Lathes,” Reliability Engineering & System Safety, vol. 65, no. 3, pp. 307–314, Sep. 1999, doi: https://doi.org/10.1016/s0951-8320(98)00102-1.
[16] A. A. Erumban, “Lifetimes of Machinery and Equipment: Evidence from Dutch Manufacturing,” Review of Income and Wealth, vol. 54, no. 2, pp. 237–268, Jun. 2008, doi: https://doi.org/10.1111/j.1475-4991.2008.00272.x.
[17] 劉俊暉,“使用基因演算法建立機台維護保養排程之研究”,國立成功大學-工業與資訊管理學系專班-碩士論文,2006年7月。[Online]. Available: https://hdl.handle.net/11296/4e8zk9
[18] 李鵬,黃亦翔,夏鵬程,時輪,“基於一維卷積長短期記憶網路的多訊號融合刀具磨損評估”,機械與電子,vol. 39,no. 5,pp. 8-14,2021年。
[19] 張宏震,楊旭紅,“保證鈑金件折彎質量的工藝措施”,電傳動技術,no. 3,pp. 23-27,2019年。Available: https://www.crrcgc.cc/Portals/147/Uploads/Files/2019/10-23/637074264500607594.pdf
[20] 陳宥辰,“表面粗糙度與切削參數相關性及預測模型之研究”,國立勤益科技大學-機械工程研究所-碩士論文,Feb. 2018.[Online]。Available: https://hdl.handle.net/11296/cb3q7s
[21] Q. Wang, H. Wang, L. Hou, and S. Yi, “Overview of Tool Wear Monitoring Methods Based on Convolutional Neural Network,” Applied Sciences, vol. 11, no. 24, p. 12041, Jan. 2021, doi: https://doi.org/10.3390/app112412041.
[22] S. C. Park and B. K. Choi, “Tool-path Planning for Direction-Parallel Area Milling,” Computer-Aided Design, vol. 32, no. 1, pp. 17–25, Jan. 2000, doi: https://doi.org/10.1016/s0010-4485(99)00080-9.
[23] S. Zeng and D. Pi, “Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning,” Sensors, vol. 23, no. 10, pp. 4969–4969, May 2023, doi: https://doi.org/10.3390/s23104969.
[24] Kyoden,KANFON-折床專用3D軟體-Bend CAM。https://kyoden.com.tw/index.php?route=product/product&path=135_136&product_id=148.(accessed Apr. 21, 2025).
[25] AMADA AMERICA,VPSS 3i Bend CAD - CAM Software. https://www.amada.com/america/vpss3ibend(accessed Apr. 21, 2025).
[26] D. T. Pham and A. A. Afify, “Machine-learning Techniques and Their Applications in Manufacturing,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 219, no. 5, pp. 395–412, May 2005, doi: https://doi.org/10.1243/095440505x32274.
[27] 廖詮智,陳義哲,徐國峰,蘇俊揚,劉信煒,詹益銘,“順逆銑對表面粗糙度的影響”,東南技術學院機械工程系專題製作報告,2001年11月。[Online]. Available: https://web.tnu.edu.tw/me/me-htdocs/study/proj/proj90/90-61%E9%A0%86%E9%80%86%E9%8A%91%E5%B0%8D%E8%A1%A8%E9%9D%A2%E7%B2%97%E7%B3%99%E5%BA%A6%E7%9A%84%E5%BD%B1%E9%9F%BF.pdf
[28] T. Benbarrad, M. Salhaoui, S. B. Kenitar, and M. Arioua, “Intelligent Machine Vision Model for Defective Product Inspection Based on Machine Learning,” Journal of Sensor and Actuator Networks, vol. 10, no. 1, p. 7, Jan. 2021, doi: https://doi.org/10.3390/jsan10010007.
[29] 財團法人中技社,“AI智慧製造與數位轉型”,專題報告,no. 2023-01,2023年1月。[Online]. Available: https://www.ctci.org.tw/media/10194/2023-01-ai智慧製造與數位轉型.pdf
[30] AMADA,HRB - ATC-自動模具交換裝置折曲工具機。https://www.amada.com.tw/tw/product/show.aspx?num=59&kind=25 (accessed Apr. 21, 2025).
[31] 理工科技顧問有限公司等編,金屬材料對照手冊(含各國標準),第6版,台北市: 全華圖書,2016年。
[32] 王聖傑,應用人工智慧與田口方法於製程管理之研究,大葉大學-醫療器材設計與材料碩士學位學程-碩士論文,2019年1月。[Online]. Available: https://hdl.handle.net/11296/pymawp
[33] 楊明峰,薄形導光板模內監控與製程最佳化之研究,國立高雄應用科技大學-模具工程系碩士班-碩士論文2007年7月。[Online]. Available: https://hdl.handle.net/11296/m47tk7
[34] 曾光宏,林柏諭,“田口實驗法應用於不銹鋼交流點銲參數優化”,技術學刊,vol. 30,no. 1,pp. 15–24,2015年3月。[Online]. Available: https://www.airitilibrary.com/Article/Detail/10123407-201503-201504130011-201504130011-15-24
[35] D. B. Rubin and D. T. Thayer, “EM Algorithms for ML Factor Analysis,” Psychometrika, vol. 47, no. 1, pp. 69–76, Mar. 1982, doi: https://doi.org/10.1007/bf02293851.
[36] 王鴻龍,楊孟麗,陳俊如,林定香,“缺失資料在因素分析上的處理方法之研究”,教育科學研究期刊,vol. 57,no. 1,pp. 29–50,2012年3月。[Online]. Available: https://jntnu.ord.ntnu.edu.tw/Uploads/Papers/634690645971617572.pdf
[37] P. D. Allison, “Multiple Imputation for Missing Data,” Sociological Methods & Research, vol. 28, no. 3, pp. 301–309, Feb. 2000, doi: https://doi.org/10.1177/0049124100028003003.
[38] C. K. Enders, Applied Missing Data Analysis. New York: Guilford Press, 2010.
[39] J. L. Schafer, Analysis of Incomplete Multivariate Data. Boca Raton: Chapman & Hall/Crc, 2000.
[40] J. L. Schafer and J. W. Graham, “Missing Data: Our View of the State of the Art.,” Psychological Methods, vol. 7, no. 2, pp. 147–177, 2002, doi: https://doi.org/10.1037/1082-989x.7.2.147.
[41] S. Vinay, Standardization In Machine Learning, Mar. 07, 2021. https://www.researchgate.net/publication/349869617
[42] F. T. Lima and V. D. Souza, “A Large Comparison of Normalization Methods on Time Series,” Big Data Research, vol. 34, pp. 100407–100407, Nov. 2023, doi: https://doi.org/10.1016/j.bdr.2023.100407.
[43] H. H. Htun, M. Biehl, and N. Petkov, “Survey of Feature Selection and Extraction Techniques for Stock Market Prediction,” Financial Innovation, vol. 9, no. 1, Jan. 2023, doi: https://doi.org/10.1186/s40854-022-00441-7.
[44] R. Kohavi, A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection, 1995. Available: https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf
[45] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A Note on Platt’s Probabilistic Outputs for Support Vector Machines,” Machine Learning, vol. 68, no. 3, pp. 267–276, Aug. 2007, doi: https://doi.org/10.1007/s10994-007-5018-6.
[46] A. J. Smola and B. Schölkopf, “A Tutorial on Support Vector Regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, Aug. 2004, doi: https://doi.org/10.1023/b:stco.0000035301.49549.88.
[47] Y. Mansour and M. Schain, “Random Forests,” Machine Learning, vol. 45, no. 2, pp. 123–145, 2001, doi: https://doi.org/10.1023/a:1010950718922.
[48] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning Data Mining, Inference, and Prediction Second Edition, Springer Series in Statistics, 2009. Available: https://www.stat.ntu.edu.tw/download/%E6%95%99%E5%AD%B8%E6%96%87%E4%BB%B6/bigdata/The%20Elements%20of%20Statistical%20Learning.pdf
[49] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely Randomized Trees,” Machine Learning, vol. 63, no. 1, pp. 3–42, Mar. 2006, doi: https://doi.org/10.1007/s10994-006-6226-1.
[50] L. Mason, J. Baxter, P. L. Bartlett, and M. Frean, “Boosting Algorithms as Gradient Descent,” Neural Information Processing Systems, vol. 12, pp. 512–518, Nov. 1999.
[51] Y. Huan, L. Song, U. Khan, and B. Zhang, “Stacking Ensemble of Machine Learning Methods for Landslide Susceptibility Mapping in Zhangjiajie City,” Hunan Province, China, Mar. 2022, doi: https://doi.org/10.20944/preprints202203.0337.v1.
[52] J. H. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, Oct. 2001, doi: https://doi.org/10.1214/aos/1013203451.
[53] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” The 22nd ACM SIGKDD International Conference, vol. 1, no. 1, pp. 785–794, 2016, doi: https://doi.org/10.1145/2939672.2939785.
[54] S. Sun, D. Teng, and X. Hu, “Bayesian Estimation Study in Variance Analysis Model,” Statistics and Application, vol. 06, no. 05, pp. 508–515, 2017, doi: https://doi.org/10.12677/sa.2017.65057.
[55] D. F. Specht, “A general regression neural network,” IEEE Transactions on Neural Networks, vol. 2, no. 6, pp. 568–576, 1991, doi: https://doi.org/10.1109/72.97934.
[56] L. Yingfan, C. Hong, and C. Jiangtao, “Revisiting k-Nearest Neighbor Graph Construction on High-Dimensional Data : Experiments and Analyses,” arXiv.org, 2021. https://arxiv.org/abs/2112.02234
[57] F. Dipietrangelo, F. Nicassio, and G. Scarselli, “Structural Health Monitoring for Impact Localization Via Machine Learning,” Mechanical Systems and Signal Processing, vol. 183, pp. 109621–109621, Aug. 2022, doi: https://doi.org/10.1016/j.ymssp.2022.109621.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97468-
dc.description.abstract傳統折床加工對操作人員經驗的依賴影響製程穩定性與加工精度,也限制我國折床工具機在國際市場的競爭力。針對國產折床工具機,現行壓力預測與補償模組大多基於固定公式,對貼膜材料、板厚變異與模具磨耗等非典型情境反應能力有限。雖有限元素分析(Finite Element Analysis, FEA)具物理解釋性,然其建模需要依據力學學理,且運算成本高,難以應用於一般中小型加工廠。考量機器學習廣為現代科技各領域所應用,本研究導入機器學習技術,建構一套具備彈性且成本可控的折床壓力預測模型。本研究初步選定支持向量迴歸(Support Vector Regression, SVR)、梯度提升決策樹(Gradient Boosting Decision Tree, GBDT)、極端梯度提升(Extreme Gradient Boosting, XGBoost)、極端隨機樹(Extremely Randomized Trees, ETR)與隨機森林(Random Forest, RF)共五種監督式學習模型進行資料預處理,經由誤差指標、學習曲線等多面向評估,篩選出SVR、GBDT與XGBoost三種表現較佳的模型,進一步進行超參數優化、正則化與田口試驗設計,最終發現SVR模型於泛化能力與預測穩定性方面表現最佳,特別是在低壓區段與貼膜材料樣本中,相較於內建系統與其他模型皆有較佳準確性。儘管高折彎角度與長材料樣本仍有偏差,經過L18田口表格補充資料後,模型效能明顯提升,驗證資料完整性的重要性。本研究所提出之預測模型,建構成本低、部署彈性高,適用於中小型加工廠多變製程條件,並具備拓展應用於模具補償、刀具壽命監控、數位雙生模擬等智慧製造場景的潛力。透過系統性建模與驗證流程,本研究揭示機器學習方法於折床壓力參數預測的可行性,為傳統加工產業智慧升級提供參考依據。zh_TW
dc.description.abstractThe reliance of traditional press brake processing on operator experience affects process stability and machining accuracy, and also limits the international competitiveness of domestically produced press brake machine tools. For domestically produced press brake machine tools, the current pressure prediction and compensation modules are mostly based on fixed formulas, and have limited responsiveness to a typical situation such as film-coated materials, sheet thickness variation, and die wear. Although Finite Element Analysis (FEA) has physical interpretability, its modeling requires mechanical theory and has high computational costs, making it difficult to apply to general small and medium-sized processing plants. Considering that machine learning is widely applied in various fields of modern technology, this study attempts to introduce machine learning technology to construct a flexible and cost-controllable pressure prediction model for press brakes. This study initially selects five supervised learning models—Support Vector Regression (SVR), Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), Extremely Randomized Trees (ETR), and Random Forest (RF)—to perform data preprocessing. Through multi-faceted evaluation such as error metrics and learning curves, SVR, GBDT, and XGBoost, the three models with better performance, are selected for further hyperparameter optimization, regularization, and Taguchi experimental design. It is finally found that the SVR model demonstrates the best performance in terms of generalization ability and prediction stability, especially in low-pressure regions and film-coated material samples, showing better accuracy compared to the built-in system and other models, and presenting good application potential. Although there are still deviations in high bending angles and long material samples, after supplementing the data through the L18 Taguchi design, the model performance improves significantly, verifying the importance of data completeness. The prediction model proposed in this study has low construction cost and high deployment flexibility, suitable for the diverse processing conditions of small and medium-sized processing plants, and has the potential to be extended to smart manufacturing scenarios such as die compensation, tool life monitoring, and digital twin simulation. Through systematic modeling and verification processes, this study reveals the feasibility of using machine learning for press brake pressure parameter prediction and provides a reference for the smart upgrading of traditional manufacturing industries.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:16:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-06-18T16:16:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iii
目次 v
圖次 ix
表次 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 論文架構 6
第二章 文獻探討 8
2.1 設備與機械因素 9
2.2 刀具與模具因素 12
2.3 加工路徑與參數因素 13
2.4 材料狀態因素 15
2.5 品質監控因素 16
第三章 研究方法 20
3.1 資料收集方法 22
3.1.1 折床與其刀模具之選用 22
3.1.2 特徵選用與設定 24
3.1.3 提升資料完整性(田口法) 27
3.2 機器學習研究方法探討 28
3.2.1 資料預處理 28
3.2.1.1 資料清洗 29
3.2.1.2 特徵處理 30
3.2.1.3 特徵選擇 34
3.2.1.4 資料分割 34
3.2.2 機器學習技術 35
3.2.2.1 支持向量機(Support Vector Machine, SVM) 36
3.2.2.2 支持向量機迴歸(Support Vector Machine Regression, SVR) 37
3.2.2.3 隨機森林迴歸(Random Forest Regression, RF) 38
3.2.2.4 極限隨機樹迴歸(Extra Trees Regression, ETR) 40
3.2.2.5 梯度提升決策樹(Gradient Boosting Decision Tree, GBDT) 40
3.2.2.6 極限梯度提升(Extreme Gradient Boosting, XGBoost) 42
3.2.2.7 貝葉斯迴歸(Bayesian Ridge Regression) 43
3.2.2.8 神經網絡迴歸(Neural Network Regression) 44
3.2.2.9 K鄰近迴歸(K-nearest Neighbors Regression, KNN) 45
3.2.3 模型性能判斷與比較 46
3.2.3.1 均方誤差(Mean Squared Error, MSE) 47
3.2.3.2 決定係數(Coefficient of Determination, R2) 47
3.2.3.3 偏差與方差權衡(Bias-variance Tradeoff) 48
3.2.3.4 機器學習方法之比較 50
第四章 模型訓練與優化過程 53
4.1 資料導入與預處理 53
4.1.1 導入函式庫與資料讀取 54
4.1.2 資料清洗 55
4.1.3 特徵處理與模型保存 55
4.1.4 資料分割 58
4.1.5 常態分佈檢測 60
4.2 模型性能分析 61
4.2.1 各模型的性能指標比較 62
4.2.2 誤差分佈圖比較 64
4.2.3 交叉驗證與泛化性比較 67
4.2.4 學習曲線比較 68
4.3 模型優化策略 72
4.4 模型優化與結果分析 74
4.4.1 資料預處理調整 74
4.4.2 SVR模型優化前後比較 78
4.4.3 GBDT模型優化前後比較 82
4.4.4 XGBoost模型優化前後比較 86
第五章 模型選擇與驗證 91
5.1 模型效能比較與最終模型選定 92
5.2 SVR 模型驗證方法 95
5.3 驗證結果分析與模型應用潛力探討 96
第六章 結論 103
參考文獻 105
附錄A:原始資料表 113
附錄B:資料預處理含標準化 123
附錄C:常態性檢測(Jarque-Bera檢測) 129
附錄D:模型訓練共用部分 131
附錄E:SVR模型訓練 136
附錄F:ETR模型訓練 137
附錄G:GBDT模型訓練 138
附錄H:RF模型訓練 139
附錄I:XGBOOST模型訓練 140
附錄J:資料預處理含正則化 141
附錄K:L9驗證樣本資料表 147
-
dc.language.isozh_TW-
dc.subject傳統加工業zh_TW
dc.subject機器學習zh_TW
dc.subject折床zh_TW
dc.subjectSVR模型zh_TW
dc.subject工具機zh_TW
dc.subjectSVR modelen
dc.subjectmachine toolsen
dc.subjectpress brakeen
dc.subjecttraditional manufacturing industryen
dc.subjectmachine learningen
dc.title折床工具機壓力預測之機器學習應用zh_TW
dc.titleApplication of Machine Learning to the Pressure Prediction of Press Brakesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳文方;蔡孟勲zh_TW
dc.contributor.oralexamcommitteeWen-Fang Wu;Meng-Shiun Tsaien
dc.subject.keyword工具機,折床,傳統加工業,機器學習,SVR模型,zh_TW
dc.subject.keywordmachine tools,press brake,traditional manufacturing industry,machine learning,SVR model,en
dc.relation.page148-
dc.identifier.doi10.6342/NTU202501124-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-06-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-06-19-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved