Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97457
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳士元zh_TW
dc.contributor.advisorShih-Yuan Chenen
dc.contributor.author程博文zh_TW
dc.contributor.authorLouis-Charles Olivier Ippet-Letembeten
dc.date.accessioned2025-06-18T16:13:44Z-
dc.date.available2025-06-19-
dc.date.copyright2025-06-18-
dc.date.issued2025-
dc.date.submitted2025-06-12-
dc.identifier.citation[1] N. A. Spaldin et al., “Multiferroic: Past, present and future,” Phys. Today, vol. 63, Oct. 2010.
[2] C. Lu et al., “Single-phase multiferroics: new materials, phenomena, and physics,” Natl. Sci. Rev, vol. 6, pp. 653–-668, Jul. 2019.
[3] D. Khomskii, “Classifying multiferroics: mechanisms and effects,” Physics, vol. 2, Mar. 2009.
[4] I. E. Dzyaloshinskii, “A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics,” J. Phys. Chem. Solids, vol. 4, pp.241–255, 1958.
[5] T. Moriya, “Anisotropic super exchange interaction and weak ferromagnetism,” Phys. Rev., vol. 120, Oct. 1960.
[6] M. Kuepferling et al., “Measuring interfacial Dzyaloshinskii-Moriya interaction in ultrathin magnetic films,” Rev. Mod. Phys., vol. 95, Art. no. 015003, Mar. 2023.
[7] C. -W. Nan et al., “Multiferroic magnetoelectric composites: Historical perspective, status, and future directions,” J. Appl. Phys., vol.103, Feb. 2008, Art. no. 031101.
[8] H. Palneedi et al., “Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications,” Actuators, vol. 5, Mar. 2016.
[9] L. D. Landau, E. M. Lifshitz, “Ferromagnetism and antiferromagnetism,” in Electrodynamics of Continuous Media. Oxford, United Kingdom: Pergamon Press, 1960, ch. 5, p. 176.
[10] I. E. Dzyaloshinskii, “On the magneto-electrical effects in antiferromagnets,” Soviet Physics JETP, vol. 10, 1960.
[11] D. Kendall and A. R. Piercy, “The frequency dependence of eddy current losses in Terfenol-D,” J. Appl. Phys., vol. 73, May. 1993.
[12] G. Liu et al., “Eddy-current effect on resonant magnetoelectric coupling in magnetostrictive-piezoelectric laminated composites,” J. Appl. Phys., vol. 114, Jul. 2013, Art. no. 027010.
[13] S. Tiwari, “Dynamics of multiferroic coupling,” Ph.D. dissertation, University of California, Los Angeles, 2020.
[14] A. Magni et al., “Domain Wall Processes, Rotations, and High-Frequency Losses in Thin Laminations,” IEEE Trans. Magn., vol. 48, pp. 3796–3799, Oct. 2012.
[15] H. Tsukahara et al., “Formulation of energy loss due to magnetostriction to design ultraefficient soft magnets,” NPG Asia Mater., vol. 16, Mar. 2024, Art. no. 19.
[16] Z. Yao et al., “Modeling of Multiple Dynamics in the Radiation of Bulk Acoustic Wave Antennas,” IEEE J. Multiscale Multiphys. Comput. Tech., vol. 5, pp. 5–18, Dec. 2018.
[17] S. J. Ryskamp and M. A. Hoefer, “Computation of high-frequency magnetoelastic waves in layered materials,” Phys. Rev. B., vol. 107, Mar. 2023, Art. no. 094431.
[18] C. Kittel, “Interaction of Spin Waves and Ultrasonic Waves in Ferromagnetic Crystals,” Phys. Rev., vol. 110, p. 836, May. 1958.
[19] K. Roy et al., “Switching dynamics of a magnetostrictive single-domain nanomagnet subjected to stress,” Phys. Rev. B, vol. 83, Jun. 2011, Art. no. 224412.
[20] C.-Y. Liang et al., “Electrical control of a single magnetoelastic domain structure on a clamped piezoelectric thin film—analysis,” J. Appl. Phys., vol. 116, Sep. 2014, Art. no. 123909.
[21] R.-C. Peng et al., “Fast 180° magnetization switching in a strain-mediated multiferroic heterostructure driven by a voltage,” Sci. Rep., vol. 6, May. 2016, Art.no. 27561.
[22] Q.Wang et al., “Strain-mediated 180° switching in CoFeB and Terfenol-D nanodots with perpendicular magnetic anisotropy,” Appl. Phys. Lett., vol. 110, Feb. 2017, Art. no. 102903.
[23] Q. Wang et al., “Strain-Mediated Spin-Orbit-Torque Switching for Magnetic Memory,” Phys. Rev. Appl., vol. 10, Sep. 2018, Art. no. 034052.
[24] J. Atulasimha et al., “Bennett clocking of nanomagnetic logic using multiferroic single-domain nanomagnets,” Appl. Phys. Lett., vol. 97, Oct. 2010, Art.no. 173105.
[25] N. D'Souza et al., “Experimental Clocking of Nanomagnets with Strain for Ultra low Power Boolean Logic,” Nano Lett., vol. 16, Jan. 2016.
[26] C.-Y. Liang et al., “Strain-mediated deterministic control of 360° domain wall motion in magnetoelastic nanorings,” J. Appl. Phys., vol. 118, Nov. 2015, Art. no. 174101.
[27] J.-M. Hu et al., “Fast Magnetic Domain-Wall Motion in a Ring-Shaped Nanowire Driven by a Voltage,” Nano Lett., vol. 118, Mar. 2016.
[28] Z. Yao, Y. E. Wang, S.Keller, and G. P. Carman, “Bulk Acoustic Wave-Mediated Multiferroic Antennas: Architecture and Performance Bound,” IEEE Trans. Antennas. Propag., vol. 63, pp. 3335–3344, Aug. 2015.
[29] T. Nan et al., “Acoustically actuated ultra-compact NEMS magnetoelectric antennas,” Nat. Commun., vol. 8, p. 296, Aug. 2017.
[30] H. Lin et al., “NEMS Magnetoelectric Antennas for Biomedical Application,” 2018 IEEE International Microwave Biomedical Conference (IMBioC), 2018.
[31] J. D. Schneider et al., “Experimental demonstration and operating principles of a multiferroic antenna,” J. Appl. Phys., vol. 126, Dec. 2019, Art. no. 224104.
[32] J. S. Glickstein, S. Choi, A. Madanayake, and S. Mandal, “Power-Efficient ELF Wireless Communications Using Electro-Mechanical Transmitters,” IEEE Access, vol. 8, pp.2455–2471, Dec. 2019.
[33] A. E. Hassanien, M. Breen, M-H. Li, and S. Gong, “A theoretical study of acoustically driven antennas,” J. Appl. Phys., vol. 127, Jan. 2020, Art. no. 014903.
[34] H. Chen et al., “Ultra-compact mechanical antennas,” Appl. Phys. Lett., vol. 117, Oct. 2020, Art. no. 170501.
[35] C. Dong et al., “A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 3, pp. 398–402, Jan. 2020.
[36] M. Zaeimbashi et al., “Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing,” Nat. Commun., vol. 12, May. 2021, Art. no. 3141.
[37] X. Yun et al., “Radiation-enhanced acoustically driven magnetoelectric antenna with floating potential architecture,” Appl. Phys. Lett., vol. 121, Nov. 2022, Art. no. 203504.
[38] R. Zheng et al., “A Lamb wave magnetoelectric antenna design for implantable devices,” Appl. Phys. Lett., vol. 122, May. 2023, Art. no. 202901.
[39] X. Liang et al., “Mechanically Driven Solidly Mounted Resonator-Based Nanoelectromechanical Systems Magnetoelectric Antennas,” Adv. Energy Mater., Jul. 2023, Art. no. 2300425.
[40] R.-F. Xu, L.-C. Ippet-Letembet, S. Tiwari, Z. Yao, S-M. Huang, R. N. Candler, and S-Y. Chen, “Experimental validation of multiferroic antennas in GHz frequency range,” Appl. Phys. Lett., vol. 123, Oct. 2023, Art. no. 162902.
[41] M. Ma et al., “High frequency magnetoelectric antenna by acoustic excitation for 5G communication,” IEEE Antennas Wirel. Propag. Lett., pp. 1–5, May. 2024.
[42] S. V. K. Reddy et al., “Analysis and Power Comparison of SRAM, DRAM, and STT-MRAM for Advance technology,” 2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), Dec. 2022.
[43] N. Z. Haron and S. Hamdioui et al., “Why is CMOS scaling coming to an END?,” 2008 3rd International Design and Test Workshop, Mar. 2008.
[44] X. Li et al., “Spin-orbit torque field-effect transistor (SOTFET): Proposal for a magnetoelectric memory,” Appl. Phys. Lett., vol. 116, Jun. 2020, Art. no. 242405.
[45] J.-P. Wang et al., “A Pathway to Enable Exponential Scaling for the Beyond CMOS Era,” Proceedings of the 54th Annual Design Automation Conference 2017, Jun. 2017, Art. no. 16.
[46] H. A. Wheeler, “Fundamental Limitations of Small Antennas,” in Proceedings of the IRE, vol. 35, pp. 1479–1484, Dec. 1947.
[47] L. J. Chu, “Physical Limitation on Omni-Directional Antennas,” J. Appl. Phys., vol. 19, pp. 1163–1175, Dec. 1948.
[48] J. S. McLean, “A Re-Examination of the Fundamental Limits on the Radiation Q of Electrically Small Antennas,” IEEE Trans. Antennas. Propag., vol. 44, p. 672, May. 1996.
[49] D. F. Sievenpiper et al., “Experimental Validation of Performance Limits and Design Guidelines for Small Antennas,” IEEE Trans. Antennas. Propag., vol. 60, pp. 8–19, Jan. 2012.
[50] J. McLean and R. Sutton, “An efficient low-profile antenna employing lossy magnetodielectric materials,"IEEE Int. Workshop Antenna Technol. (iWAT), Mar. 2012.
[51] Z. Yao et al., “Enhanced Planar Antenna Efficiency Through Magnetic Thin-Films,” IEEE J. Multiscale Multiphys. Comput. Tech., vol. 6, pp. 249–258, Dec. 2021.
[52] W. Gu et al., “Ferromagnetic Resonance-Enhanced Electrically Small Antennas,” IEEE Trans. Antennas. Propag., vol. 69, pp. 8–19, Dec. 2021.
[53] K.-Y. Hashimoto, “BAW Device Basics,” in RF Bulk Acoustic Wave Filters for Communications. London, United Kingdom: Artech, 2009, ch. 3, pp. 51–90.
[54] T. Jamneala, P. Bradley, A. Shirakawa, R. K. Thalhammer, and R. Ruby, “An Investigation of Lateral Modes in FBAR Resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 63, pp.778-789, May. 2016.
[55] T. Jamneala, C. Kirkendall, B. Ivira, R. K. Thalhammer, P. Bradley, and R. Ruby, “The Main Lateral Mode Approximation of a Film Bulk Acoustic Resonator with Perfect Metal Electrodes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 65, pp.1703-1716, Jun. 2018.
[56] L.-C. Ippet-Letembet et. al, “Modeling of Multiferroic Antennas in the Akhiezer Regime: Effects of Acoustic Resonator Excitation and Topology on Radiation,” IEEE Trans. Antennas Propag., vol. 72, pp. 9058–9071, Dec. 2024.
[57] R. K. Thalhammer and J. D. Larson, “Finite-Element Analysis of Bulk-Acoustic-Wave Devices: A Review of Model Setup and Applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 63, pp. 1624–1635, Apr. 2016.
[58] D. A. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and Piezomagnetic Materials and Their Function in Transducers,” in Physical Acoustics. New York, The United States of America: W. P. Mason, Academic Press, 1964, pp. 169-270.
[59] R. Jin, Z. Cao, M. Patel, B. Abbott, D. Molinero, and D. Feld, “An Improved Formula for Estimating Stored Energy in a BAW Resonator by its Measured S11 Parameters,” in 2021 IEEE International Ultrasonics Symposium (IUS),2021.
[60] R. C. O’Handley, Modern Magnetic Material: Principles and Applications. New York, The United States of America: Wiley, 1999.
[61] X. Liang et al., “A Review of Thin-Film Magnetoelastic Materials for Magnetoelectric Applications,” Sensors, vol. 20, Mar. 2020, Art. no. 1532.
[62] COMSOL Multiphysics, http://comsol.com/.
[63] M. Manteghi and A. A. Y. Ibraheem, “On the study of the near-fields of electric and magnetic small antennas in lossy media,” IEEE Trans. Antennas Propag., vol. 62, pp. 6491–6495, Sep. 2014.
[64] X. Cai et al., “Finite Element Analysis and Optimization of Acoustically-actuated Magnetoelectric Microantennas,” IEEE Trans. Antennas. Propag., vol. 71, pp. 4640–4650, Mar. 2023.
[65] C. A. Balanis, “Fundamental Parameters and Figures-of-Merit of Antennas,” in Antenna Theory: Analysis and Design, 4th Edition. New York, The United States of America: Wiley, 2016, ch. 2, pp. 25–105.
[66] Z. Zhou, S. Keller, A. Sepulveda, and G. P. Carman, “Modeling Electromagnetic Radiation Induced From a Piezoelectric Shear-Mode Resonator,” IEEE J. Multiscale Multiphys. Comput. Tech., vol. 1, pp. 129–138, Nov. 2016.
[67] S. S. Iyer and R. N. Candler, “Mode- and Direction-Dependent Mechanical Energy Dissipation in Single-Crystal Resonators due to Anharmonic Phonon-Phonon Scattering,” Phys. Rev. Applied, vol. 5, Mar. 2016, Art. no. 034002.
[68] A. Akhiezer, “On the absorption of sound in solids,” J. Phys. USSR., vol. 1, pp. 187–192, 1939.
[69] K. J. Kirk et al., “Ultrasonic arrays for monitoring cracks in an industrial plant at high temperatures,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, pp. 311–319, Mar. 1999.
[70] S. Yandrapalli et al., “Study of Thin Film LiNbO3 Laterally Excited Bulk Acoustic Resonators,” Journal of Microelectromechanical Systems, vol. 31, pp. 217–225, Jan. 2022.
[71] S. Ghaffari, S. A. Chandorkar, S.Wang, E. J. Ng, C. H. Ahn, V. Hong, Y. Yang, and T.W. Kenny, “Quantum Limit of Quality Factor in Silicon Micro and NanoMechanical Resonators,” Nat. Sci. Rep., vol. 3, Nov. 2013, Art. no. 3244.
[72] J. Rodriguez, S. A. Chandorkar, C. A. Watson, G. M. Glaze, C. H. Ahn, E. J. Ng, Y. Yang, and T. W. Kenny, “Direct Detection of Akhiezer Damping in a Silicon MEMS Resonator,” Nat. Sci. Rep., vol. 9, Feb. 2019, Art. no. 2244.
[73] R. K. Thalhammer et al., “4E-3 Spurious Mode Suppression in BAW Resonators,” 2006 IEEE Ultrasonics Symposium, Oct. 2006.
[74] N. T. B. Nguyen, “High-Q bulk acoustic wave resonators for RF filter applications,” Ph.D. dissertation, University of South-Eastern Norway, 2019.
[75] K. Kokkonen, T. Pensala, M. Kaivola, “Dispersion and Mirror Transmission Characteristics of Bulk Acoustic Wave Resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, pp. 215–225, Jan. 2011.
[76] A. Gurevich and G. Melkov, “Magnetoelastic coupling,” in Magnetization Oscillations and Waves. London, United Kingdom: CRC Press, 1996, ch. 12, pp. 310–335.
[77] F. Vanderveken et al., “Confined magnetoelastic waves in thin waveguides,” Phys. Rev. B., vol. 103, Feb. 2021, Art. no. 054439.
[78] F. Vanderveken et al., “Magnetoelastic Waves in Thin films,” in Chirality, Magnetism and Magnetoelectricity. Gewerbestrasse, Switzerland: Springer Nature, 2021, ch. 12, pp. 287–322.
[79] C. Kittel, “On the Theory of Ferromagnetic Resonance Absorption,” Phys. Rev., vol. 73, Jan. 1948.
[80] W. Yu, “Micromagnetics Module (FEMM),” Department of physics, Fudan university. [Online.] http://www.physics.fudan.edu.cn/tps/people/jxiao/comsol-module-for-micromagn.html
[81] K. J. Harte, “Theory of Magnetization Ripple in Ferromagnetic Films,” J. Appl. Phys., vol. 39, Feb. 1968.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97457-
dc.description.abstract本研究提出一個二維的解析模型,可用以分析在 GHz 頻段運作的薄膜體聲波諧振器 (FBAR) 和固嵌式諧振器 (SMR) 的應變耦合多鐵性天線。將傳統的梅森模型擴展到二維,我們所提出的解析方法能夠全面分析各種聲波諧振器配置下的輻射性能,包括不同的拓撲結構(FBAR 和 SMR)和激發模態(厚度剪切模態和厚度伸展模態)。該模型透過考慮 GHz 輻射固有的頻率相關機械和電氣限制來評估天線性能,並計算 GHz 和 Akhiezer 區域內的效率-頻寬乘積。與朱氏極限的比較分析表明,聲子-聲子散射才是這些元件輻射效率的主要限制因素,而非朱氏極限。

此外,利用高品質因子體聲波諧振器設計的啟發,我們提出了優化多鐵性天線的指導方針,其中包含基於 SMR 的設計,利用布拉格反射器實現厚度伸展波和厚度剪切波的雙波反射,並結合周圍增厚的結構來抑制各種幾何配置中的雜散模態。

最後,本論文透過磁彈性波色散圖,探討了多鐵性天線中可用於提升輻射效率的磁彈性耦合。我們的分析顯示,磁和聲波模態之間的交互作用強度在很大程度上取決於外加偏壓磁場的方向(共平面方向或平面法向量方向)和波數,從而導致強耦合或弱耦合。這些發現為提升多鐵性天線在 GHz 頻段的性能指引出一條途徑。
zh_TW
dc.description.abstractThis study introduces a two-dimensional closed-form model for thin-film bulk acoustic resonator (FBAR) and solidly mounted resonator (SMR) strain-mediated multiferroic antennas operating in the GHz regime, extending the traditional Mason model to two dimensions. The proposed analytical framework enables a comprehensive analysis of radiation performance across various acoustic resonator configurations, including different topologies (FBAR and SMR) and excitation modes (thickness shear (TS) and thickness extensional (TE) modes). The model evaluates antenna performance by addressing the frequency-dependent mechanical and electrical limitations inherent to GHz radiation, computing efficiency-bandwidth products within the GHz and Akhiezer regimes. Comparative analysis with Chu's limit reveals that phonon-phonon scattering, rather than Chu's limit, predominantly constrains radiation efficiency in these devices.

Furthermore, leveraging insights from high-quality factor bulk acoustic wave (BAW) resonator design, we propose guidelines for optimizing multiferroic antennas, incorporating SMR-based designs with Bragg reflectors for dual-wave reflection of thickness extensional and thickness shear waves, alongside raised frames to suppress spurious modes across diverse geometric configurations.

Finally, the magnetoelastic coupling in multiferroic antennas for boosting radiation efficiency is explored through magnetoelastic wave dispersion diagrams. The analysis shows that the interaction strength between magnetic and acoustic modes depends heavily on the external bias magnetic field's direction (in-plane or out-of-plane), and the wavenumber, leading to either robust or weak coupling. These findings offer a pathway to enhance the performance of multiferroic antennas in GHz applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:13:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-06-18T16:13:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vi
Contents viii
List of Figures xi
List of Tables xvi
Denotation xvii
Chapter 1 Motivation and Background 1
1.1 Introduction to multiferroic materials 1
1.1.1 Single phase multiferroic materials 1
1.1.2 Composite multiferroic materials 4
1.2 Introduction to the magnetoelectric coupling 5
1.2.1 Linear magnetoelectric effect 5
1.2.2 Magnetoelectric effect in composite piezoelectric-piezomagnetic multiferroics 6
1.2.3 Magnetoelectric effect in composite piezoelectric-magnetostrictive multiferroics 7
1.2.4 Dynamic magnetoelectric coupling in composite piezoelectric-ferromagnetic multiferroics 8
1.3 New applications of composite piezoelectric-ferromagnetic multiferroics 13
1.3.1 Strain-mediated MRAM 13
1.3.2 Strain-clocked nanomagnetic logic 17
1.3.3 Nanoscale multiferroic electromagnetic motors 20
1.3.4 Strain-mediated multiferroic antennas 21
1.4 Contribution of this work 27
1.5 Dissertation organization 28
Chapter 2 Modeling and analysis of strain-mediated multiferroic antennas at GHz band 30
2.1 Unidirectionally-fully-coupled 2D closed-form model of multiferroic antennas 30
2.1.1 Two-dimensional Mason model for FBAR and SMR resonators under TS and TE mode excitations 31
2.1.2 Radiation of multiferroic antennas 44
2.2 Radiation limitation of multiferroic antennas at the GHz range: Chu’s and Akhiezer limits 54
Chapter 3 Design of strain-mediated multiferroic antennas at GHz band 59
3.1 Acoustic resonators’ loss mechanisms and figure of merit 59
3.2 Dispersion diagram of lamb waves in BAW resonators 61
3.3 Bragg reflector design for Solidly-Mounted-Resonators based multiferroic antennas 63
3.4 Spurious modes suppression techniques 68
3.5 Magnetoelastic coupling in multiferroic antennas 74
Chapter 4 Conclusion 82
Bibliography 85
-
dc.language.isoen-
dc.subject固嵌式諧振器zh_TW
dc.subject應變耦合多鐵性天線zh_TW
dc.subject擴展梅森模型zh_TW
dc.subject厚度剪切模態zh_TW
dc.subject厚度伸展模態zh_TW
dc.subjectAkhiezer 區域zh_TW
dc.subject磁彈性耦合zh_TW
dc.subject磁彈性波色散圖zh_TW
dc.subject薄膜體聲波諧振器zh_TW
dc.subjectAkhiezer regimeen
dc.subjectthin-film bulk acoustic resonator (FBAR)en
dc.subjectsolidly mounted resonator (SMR)en
dc.subjectstrain-mediated multiferroic antennasen
dc.subjectExtended Mason modelen
dc.subjectthickness shear (TS) modeen
dc.subjectthickness extensional (TE) modeen
dc.subjectMagnetoelastic couplingen
dc.subjectmagnetoelastic wave dispersion diagramsen
dc.title操作於 GHz 頻段之應變耦合多鐵性天線之建模與設計zh_TW
dc.titleModeling and design of strain-mediated multiferroic antennas operating in the GHz frequency banden
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisorRobert N. Candlerzh_TW
dc.contributor.coadvisorRobert N. Candleren
dc.contributor.oralexamcommittee陳念偉;李銘晃;李尉彰;吳文中;劉建豪zh_TW
dc.contributor.oralexamcommitteeNan-Wei Chen;Ming-Huang Li;Wei-Chang Li;Wen-Jong Wu;Chien-Hao Liuen
dc.subject.keyword薄膜體聲波諧振器,固嵌式諧振器,應變耦合多鐵性天線,擴展梅森模型,厚度剪切模態,厚度伸展模態,Akhiezer 區域,磁彈性耦合,磁彈性波色散圖,zh_TW
dc.subject.keywordthin-film bulk acoustic resonator (FBAR),solidly mounted resonator (SMR),strain-mediated multiferroic antennas,Extended Mason model,thickness shear (TS) mode,thickness extensional (TE) mode,Magnetoelastic coupling,magnetoelastic wave dispersion diagrams,Akhiezer regime,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202501062-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-06-19-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf13.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved