請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97455完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐善慧 | zh_TW |
| dc.contributor.advisor | Shan-hui Hsu | en |
| dc.contributor.author | 蔡博淵 | zh_TW |
| dc.contributor.author | Po-Yuan Tsai | en |
| dc.date.accessioned | 2025-06-18T16:13:08Z | - |
| dc.date.available | 2025-06-19 | - |
| dc.date.copyright | 2025-06-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-05 | - |
| dc.identifier.citation | [1] K. Deligkaris, T.S. Tadele, W. Olthuis, A. van den Berg, Hydrogel-based devices for biomedical applications, Sensors and Actuators B: Chemical 147(2) (2010) 765-774.
[2] L. Wang, M. Neumann, T. Fu, W. Li, X. Cheng, B.-L. Su, Porous and responsive hydrogels for cell therapy, Current Opinion in Colloid & Interface Science 38 (2018) 135-157. [3] C. Shao, H. Chang, M. Wang, F. Xu, J. Yang, High-Strength, tough, and self-Healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds, ACS Applied Materials & Interfaces 9(34) (2017) 28305-28318. [4] M.M. Perera, N. Ayres, Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels, Polymer Chemistry 11(8) (2020) 1410-1423. [5] D.L. Taylor, M. in het Panhuis, Self-healing hydrogels, Advanced Materials 28(41) (2016) 9060-9093. [6] Y. Li, G. Feng, J. Liu, T. Yang, R. Hou, J. Liu, X. Wang, Progress in glucose-sensitive hydrogels for biomedical applications, Macromolecular Chemistry and Physics 224(23) (2023) 2300257. [7] J. Song, Y. Zhang, S.Y. Chan, Z. Du, Y. Yan, T. Wang, P. Li, W. Huang, Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management, Flexible Electronics 5(1) (2021) 26. [8] W.L.A. Brooks, B.S. Sumerlin, Synthesis and applications of boronic acid-containing polymers: from materials to medicine, Chemical Reviews 116(3) (2016) 1375-1397. [9] J.N. Cambre, B.S. Sumerlin, Biomedical applications of boronic acid polymers, Polymer 52(21) (2011) 4631-4643. [10] W.L.A. Brooks, C.C. Deng, B.S. Sumerlin, Structure–reactivity relationships in boronic acid–diol complexation, ACS Omega 3(12) (2018) 17863-17870. [11] S. Cho, S.Y. Hwang, D.X. Oh, J. Park, Recent progress in self-healing polymers and hydrogels based on reversible dynamic B–O bonds: boronic/boronate esters, borax, and benzoxaborole, Journal of Materials Chemistry A 9(26) (2021) 14630-14655. [12] Z. Wu, S. Zhang, X. Zhang, S. Shu, T. Chu, D. Yu, Phenylboronic acid grafted chitosan as a glucose-sensitive vehicle for controlled insulin release, Journal of Pharmaceutical Sciences 100(6) (2011) 2278-2286. [13] W. Zhou, Z. Duan, J. Zhao, R. Fu, C. Zhu, D. Fan, Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing, Bioactive Materials 17 (2022) 1-17. [14] B. Cai, Y. Luo, Q. Guo, X. Zhang, Z. Wu, A glucose-sensitive block glycopolymer hydrogel based on dynamic boronic ester bonds for insulin delivery, Carbohydrate Research 445 (2017) 32-39. [15] K.-C. Cheng, P. Theato, S.-h. Hsu, 3D-bioprintable endothelial cell-laden sacrificial ink for fabrication of microvessel networks, Biofabrication 15(4) (2023) 045026. [16] B. Farhadihosseinabadi, A. Zarebkohan, M. Eftekhary, M. Heiat, M. Moosazadeh Moghaddam, M. Gholipourmalekabadi, Crosstalk between chitosan and cell signaling pathways, Cellular and Molecular Life Sciences 76 (2019) 2697-2718. [17] I. Aranaz, A.R. Alcántara, M.C. Civera, C. Arias, B. Elorza, A. Heras Caballero, N. Acosta, Chitosan: An overview of its properties and applications, Polymers, 2021. [18] X. Zhang, F. Cheng, M.R. Islam, H. Li, The fabrication of the chitosan-based bioink for in vitro tissue repair and regeneration: A review, International Journal of Biological Macromolecules 257 (2024) 128504. [19] M. Fan, Q. Hu, K. Shen, Preparation and structure of chitosan soluble in wide pH range, Carbohydrate Polymers 78(1) (2009) 66-71. [20] M. Chen, T. Runge, L. Wang, R. Li, J. Feng, X.-L. Shu, Q.-S. Shi, Hydrogen bonding impact on chitosan plasticization, Carbohydrate Polymers 200 (2018) 115-121. [21] S. Bom, R. Ribeiro, H.M. Ribeiro, C. Santos, J. Marto, On the progress of hydrogel-based 3D printing: Correlating rheological properties with printing behaviour, International Journal of Pharmaceutics 615 (2022) 121506. [22] M.E. Cooke, D.H. Rosenzweig, The rheology of direct and suspended extrusion bioprinting, APL Bioengineering 5(1) (2021) 011502. [23] V.H. Mouser, F.P. Melchels, J. Visser, W.J. Dhert, D. Gawlitta, J. Malda, Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting, Biofabrication 8(3) (2016) 035003. [24] P.A. Amorim, M.A. d’Ávila, R. Anand, P. Moldenaers, P. Van Puyvelde, V. Bloemen, Insights on shear rheology of inks for extrusion-based 3D bioprinting, Bioprinting 22 (2021) e00129. [25] T. Gao, G.J. Gillispie, J.S. Copus, A.K. Pr, Y.-J. Seol, A. Atala, J.J. Yoo, S.J. Lee, Optimization of gelatin–alginate composite bioink printability using rheological parameters: a systematic approach, Biofabrication 10(3) (2018) 034106. [26] M. Taghizadeh, A. Taghizadeh, M.K. Yazdi, P. Zarrintaj, F.J. Stadler, J.D. Ramsey, S. Habibzadeh, S.H. Rad, G. Naderi, M.R. Saeb, Chitosan-based inks for 3D printing and bioprinting, Green Chemistry 24(1) (2022) 62-101. [27] D. Lee, J.P. Park, M.-Y. Koh, P. Kim, J. Lee, M. Shin, H. Lee, Chitosan-catechol: A writable bioink under serum culture media, Biomaterials science 6(5) (2018) 1040-1047. [28] P. Maturavongsadit, L.K. Narayanan, P. Chansoria, R. Shirwaiker, S.R. Benhabbour, Cell-laden nanocellulose/chitosan-based bioinks for 3D bioprinting and enhanced osteogenic cell differentiation, ACS Applied Bio Materials 4(3) (2021) 2342-2353. [29] O. Kufelt, A. El-Tamer, C. Sehring, M. Meißner, S. Schlie-Wolter, B.N. Chichkov, Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization, Acta Biomaterialia 18 (2015) 186-195. [30] S. Maiz-Fernández, L. Pérez-Álvarez, U. Silván, J.L. Vilas-Vilela, S. Lanceros-Méndez, pH-Induced 3D printable chitosan hydrogels for soft actuation, Polymers, 2022. [31] Y.-T. Lan, Q.-P. Cheng, J. Xu, S.-H. Lin, J.-M. Lin, S.-h. Hsu, Gelation and the self-healing behavior of the chitosan–catechol hydrogel, Polymers, 2022. [32] L.-J. Huang, S.-H. Lin, T.-Y. Chen, S.-h. Hsu, Chitosan catechol-tannic acid composite hydrogel and cryogel with antimicrobial and hemostatic properties, International Journal of Biological Macromolecules 270 (2024) 132174. [33] J.H. Kim, E.J. Lee, J.W. Hyun, S.H. Kim, W. Mar, J.K. Kim, Reduction of radiation-induced chromosome aberration and apoptosis by dithiothreitol, Archives of Pharmacal Research 21(6) (1998) 683-687. [34] P. van de Wetering, A.T. Metters, R.G. Schoenmakers, J.A. Hubbell, Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins, Journal of Controlled Release 102(3) (2005) 619-627. [35] G.A. Hudalla, T.S. Eng, W.L. Murphy, An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks, Biomacromolecules 9(3) (2008) 842-849. [36] T.-C. Tseng, F.-Y. Hsieh, P. Theato, Y. Wei, S.-h. Hsu, Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs, Biomaterials 133 (2017) 20-28. [37] L. He, D. Szopinski, Y. Wu, G.A. Luinstra, P. Theato, Toward self-healing hydrogels using one-pot thiol–ene click and borax-diol chemistry, ACS Macro Letters 4(7) (2015) 673-678. [38] I.A. Sogias, V.V. Khutoryanskiy, A.C. Williams, Exploring the factors affecting the solubility of chitosan in water, Macromolecular Chemistry and Physics 211(4) (2010) 426-433. [39] O.M. Kolawole, W.M. Lau, V.V. Khutoryanskiy, Synthesis and evaluation of boronated chitosan as a mucoadhesive polymer for intravesical drug delivery, Journal of Pharmaceutical Sciences 108(9) (2019) 3046-3053. [40] Y. Cao, N. Wu, H.-D. Li, J.-W. Xue, R. Wang, T. Yang, J.-H. Wang, Efficient pathogen capture and sensing promoted by dynamic deformable nanointerfaces, Small 18(51) (2022) 2203962. [41] E.S. de Alvarenga, Characterization and properties of chitosan, Biotechnology of biopolymers 91 (2011) 48-53. [42] A. Drabczyk, S. Kudłacik-Kramarczyk, M. Głąb, M. Kędzierska, A. Jaromin, D. Mierzwiński, B. Tyliszczak, Physicochemical investigations of chitosan-based hydrogels containing aloe vera designed for biomedical use, Materials, 2020. [43] S. Yasmeen, M.K. Kabiraz, B. Saha, M. Qadir, M. Gafur, S. Masum, Chromium (VI) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent, Int. Res. J. Pure Appl. Chem 10(4) (2016) 1-14. [44] W. Sajomsang, P. Gonil, S. Tantayanon, Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: Preparation and characterization, International Journal of Biological Macromolecules 44(5) (2009) 419-427. [45] D. Zhang, G. Yu, Z. Long, G. Yang, B. Wang, Controllable layer-by-layer assembly of PVA and phenylboronic acid-derivatized chitosan, Carbohydrate Polymers 140 (2016) 228-232. [46] O.M. Kolawole, W.M. Lau, V.V. Khutoryanskiy, Methacrylated chitosan as a polymer with enhanced mucoadhesive properties for transmucosal drug delivery, International Journal of Pharmaceutics 550(1) (2018) 123-129. [47] K.-C. Cheng, Y.-M. Sun, S.-h. Hsu, Development of double network polyurethane–chitosan composite bioinks for soft neural tissue engineering, Journal of Materials Chemistry B 11(16) (2023) 3592-3606. [48] D.J. Klingenberg, Simulation of the dynamic oscillatory response of electrorheological suspensions: Demonstration of a relaxation mechanism, Journal of Rheology 37(2) (1993) 199-214. [49] J.P. Graham, M.A. Rauf, S. Hisaindee, M. Nawaz, Experimental and theoretical study of the spectral behavior of trypan blue in various solvents, Journal of Molecular Structure 1040 (2013) 1-8. [50] O.E. Philippova, E.V. Volkov, N.L. Sitnikova, A.R. Khokhlov, J. Desbrieres, M. Rinaudo, Two Types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative, Biomacromolecules 2(2) (2001) 483-490. [51] W. Wang, Q. Meng, Q. Li, J. Liu, M. Zhou, Z. Jin, K. Zhao, Chitosan derivatives and their application in biomedicine, International Journal of Molecular Sciences, 2020. [52] R.D. Pizer, C.A. Tihal, Mechanism of boron acid/polyol complex formation. comments on the trigonal/tetrahedral interconversion on boron, Polyhedron 15(19) (1996) 3411-3416. [53] A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World journal of nano science and engineering 2(3) (2012) 154-160. [54] Z.-H. Zhao, C.-H. Li, J.-L. Zuo, Dynamic polymeric materials based on reversible B–O bonds with dative boron–nitrogen coordination, SmartMat 4(3) (2023) e1187. [55] I. Georgiou, S. Kervyn, A. Rossignon, F. De Leo, J. Wouters, G. Bruylants, D. Bonifazi, Versatile self-adapting boronic acids for H-bond recognition: From discrete to polymeric supramolecules, Journal of the American Chemical Society 139(7) (2017) 2710-2727. [56] L.A. Sellers, A. Allen, E.R. Morris, S.B. Ross-Murphy, Mucus glycoprotein gels. role of glycoprotein polymeric structure and carbohydrate side-chains in gel-formation, Carbohydrate Research 178(1) (1988) 93-110. [57] S.R. Raghavan, S.A. Khan, Shear-thickening response of fumed silica suspensions under steady and oscillatory shear, Journal of Colloid and Interface Science 185(1) (1997) 57-67. [58] C.E. Hoyle, C.N. Bowman, Thiol–ene click chemistry, Angewandte Chemie International Edition 49(9) (2010) 1540-1573. [59] Z.-H. Zhao, P.-C. Zhao, Y. Zhao, J.-L. Zuo, C.-H. Li, An underwater long-term strong adhesive based on boronic esters with enhanced hydrolytic stability, Advanced Functional Materials 32(26) (2022) 2201959. [60] M. Rajabi, M. McConnell, J. Cabral, M.A. Ali, Chitosan hydrogels in 3D printing for biomedical applications, Carbohydrate Polymers 260 (2021) 117768. [61] J. Mewis, N.J. Wagner, Thixotropy, Advances in Colloid and Interface Science 147-148 (2009) 214-227. [62] H. Li, Y.J. Tan, K.F. Leong, L. Li, 3D Bioprinting of highly thixotropic alginate/methylcellulose hydrogel with strong interface bonding, ACS Applied Materials & Interfaces 9(23) (2017) 20086-20097. [63] H. Herrada-Manchón, M.A. Fernández, E. Aguilar, Essential guide to hydrogel rheology in extrusion 3D printing: How to measure it and why it matters?, Gels, 2023. [64] L.L. Wang, C.B. Highley, Y.-C. Yeh, J.H. Galarraga, S. Uman, J.A. Burdick, Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks, Journal of Biomedical Materials Research Part A 106(4) (2018) 865-875. [65] H.A. Barnes, A handbook of elementary rheology, University of Wales, Institute of Non-Newtonian Fluid Mechanics Aberystwyth2000. [66] H. Lopez Hernandez, J.W. Souza, E.A. Appel, A quantitative description for designing the extrudability of shear-thinning physical hydrogels, Macromolecular Bioscience 21(2) (2021) 2000295. [67] T. Chen, Rheological techniques for yield stress analysis, TA Instruments: New Castle, DE, USA 28 (2000). [68] J.M. Townsend, E.C. Beck, S.H. Gehrke, C.J. Berkland, M.S. Detamore, Flow behavior prior to crosslinking: The need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting, Progress in Polymer Science 91 (2019) 126-140. [69] T.M. Oyinloye, W.B. Yoon, Investigation of flow field, die swelling, and residual stress in 3D printing of surimi paste using the finite element method, Innovative Food Science & Emerging Technologies 78 (2022) 103008. [70] C.W. Peak, J. Stein, K.A. Gold, A.K. Gaharwar, Nanoengineered colloidal inks for 3D bioprinting, Langmuir 34(3) (2018) 917-925. [71] J. Guo, C. Yang, Q. Dai, L. Kong, Soft and stretchable polymeric optical waveguide-based sensors for wearable and biomedical applications, Sensors, 2019. [72] H.-C. Wang, A.-R. Lee, Recent developments in blood glucose sensors, Journal of Food and Drug Analysis 23(2) (2015) 191-200. [73] J. Guo, B. Zhou, Z. Du, C. Yang, L. Kong, L. Xu, Soft and plasmonic hydrogel optical probe for glucose monitoring, 10(13) (2021) 3549-3558. [74] S. Xu, A.C. Sedgwick, S.A. Elfeky, W. Chen, A.S. Jones, G.T. Williams, A.T.A. Jenkins, S.D. Bull, J.S. Fossey, T.D. James, A boronic acid-based fluorescent hydrogel for monosaccharide detection, Frontiers of Chemical Science and Engineering 14 (2020) 112-116. [75] Y.-L. Tsai, P. Theato, C.-F. Huang, S.-h. Hsu, A 3D-printable, glucose-sensitive and thermoresponsive hydrogel as sacrificial materials for constructs with vascular-like channels, Applied Materials Today 20 (2020) 100778. [76] G. Springsteen, B. Wang, Alizarin red S. as a general optical reporter for studying the binding of boronic acids with carbohydrates, Chemical Communications (17) (2001) 1608-1609. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97455 | - |
| dc.description.abstract | 幾丁聚醣水凝膠由於生物相容性,在生醫材料與組織工程等領域中受到廣泛關注。然而,其親水性差、高含水量與脆性,導致機械穩定性不足及列印精度低,限制其在3D列印應用上的發展。本研究在幾丁聚醣的胺基上修飾,合成出約25%取代率的羧基苯硼酸幾丁聚醣(簡稱 CB)高分子,藉由原位小角度 X 光散射(SAXS)與流變分析探討其水溶液中的自組裝行為。研究結果顯示,CB鏈段 (10萬Da) 會形成具連續排列特性的聚集結構,自組裝結構的回轉半徑(Rg)約為3.5 nm。然而單獨CB自組裝形成的水凝膠結構脆弱,作為3D列印墨水缺乏足夠的列印後支撐力容易導致塌陷。Polyethylene glycol diacrylate (PEGDA) 與 Dithiothreitol (DTT) 單體以逐步成長聚合生成 Poly(ethylene glycol)-Dithiothreitol (PD) 高分子,經由CB上的硼酸與PD鏈段上的二醇生成硼酸酯鍵產生動態交聯,有效的提升水凝膠的彈性,形成具更佳延展性與結構穩定性的PB水凝膠。SAXS結果進一步驗證,增加CB含量有助於強化水凝膠結構,並在PB動態網絡中生成較大的物理聚集體(Rg約為8.5 nm),改善機械特性與列印精度。流變分析則顯示PB水凝膠具剪切稀化與自癒合性質,能以內徑210 m噴嘴穩定擠出並形成連續線條。此外,PB水凝膠中物理聚集與動態共價鍵之間的協同作用在列印建構體中的可堆疊特性扮演重要因素,使列印後形成的高堆疊立方體在列印過程中不易坍塌,並且建構體在列印後30分鐘仍可維持設計高度(1.2 cm)的95%。藉由台盼藍釋放和茜素紅 S (ARS) 複合物競爭實驗定量顯示出 PB 水凝膠的葡萄糖敏感性。此葡萄糖敏感特性的PB水凝膠,結合CB賦予的3D堆疊能力,展現製備三維葡萄糖感應結構之生物墨水的潛力,未來可望應用於生醫領域。 | zh_TW |
| dc.description.abstract | Chitosan-based hydrogels have attracted interest in biofabrication and tissue engineering due to their biocompatibility. However, their poor water solubility, high water content, and brittleness lead to weak mechanical stability and low printing fidelity, limiting their use in 3D printing. In this study, we synthesized carboxylphenylboronic acid (CPBA)-grafted chitosan (CB) polymer with ~25% substitution degree. Through in situ small-angle X-ray scattering (SAXS) and rheological analyses, CB revealed self assembly behavior in aqueous solution where the chains formed clusters (radius of gyration Rg ~3.5 nm) in successive arrangement. CB self-assembled hydrogels, however, were structurally fragile. The incorporation of linear diol-containing poly(ethylene glycol) (PD) into the CB network enhanced elasticity by crosslinking via boronate ester linkage, yielding a PB hydrogel with enhanced pliability and structural stability. SAXS profiles verified that increasing CB content reinforced hydrogel structure, forming larger physical clusters (Rg ~8.5 nm) within PB dynamic network to improve the mechanical behavior and printing fidelity. Rheological analysis demonstrated shear-thinning and self-healing properties, enabling continuous filament deposition when printed using a 210 µm nozzle. Meanwhile, the synergistic balance between physical clusters and dynamic covalent bonding in PB hydrogel facilitates high stackability of a 3D-printed tall cuboid to maintain ~95% designed height (1.2 cm) without post-printing reinforcement. Trypan blue release and ARS complex competition experiments quantitatively displayed the glucose sensitivity of PB hydrogels. This glucose-sensitive PB hydrogel, leveraging CB-mediated 3D stackability, can serve as a promising bioink for fabricating 3D glucose-responsive architectures for biomedical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:13:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-18T16:13:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目次 III 圖次 V 表次 VII 第一章 文獻回顧 1 1.1. 水凝膠的特性與作為智慧材料的潛能 1 1.2. 以羧基苯硼酸為基礎之葡萄糖敏感水凝膠於生醫應用 1 1.3. 幾丁聚醣水凝膠於3D列印應用中的挑戰與改質對策 2 1.4. PD 高分子系統介紹 2 1.5. 研究目的 3 第二章 材料與研究方法 4 2.1. 實驗材料 4 2.2. 羧基苯硼酸幾丁聚醣(CB)聚合物的合成與鑑定 4 2.2.1. 羧基苯硼酸幾丁聚醣(CB)之合成 4 2.2.2. 氫核磁共振光譜(1H NMR)分析 5 2.2.3. 紫外-可見光(UV-vis)光譜分析取代度 5 2.2.4. 傅立葉轉換紅外光譜儀(FT-IR)分析 5 2.3. CB 自組裝水凝膠的製備 5 2.4. 葡萄糖敏感型 PEG-幾丁聚醣硼酸酯 (PB) 水凝膠的製備 6 2.5. 以 PEG 為基礎之自癒合水凝膠(對照組)的製備 6 2.6. CB 與 PB 水凝膠的流變性質 6 2.6.1. CB 與 PB 水凝膠流變力學測試 6 2.6.2. PB水凝膠蠕變測試 7 2.6.3. PB水凝膠屈服應力與觸變測試 7 2.7. CB 之粉末 XRD 分析 7 2.8. 小角度 X 射線散射(SAXS)與原位 SAXS 分析 8 2.8.1 CB與PB之SAXS分析 8 2.8.2. CB之SAXS曲線擬合 8 2.8.3. PB之SAXS曲線擬合 9 2.9. PB 水凝膠的黏附特性 9 2.10. PB 水凝膠之葡萄糖敏感性 9 2.10.1. PB 葡萄糖犧牲實驗 9 2.10.2. 圓柱體葡萄糖破壞評估 10 2.10.3. ARS評估葡萄糖敏感試驗 10 2.10.4. 台盼藍評估葡萄糖敏感試驗 10 2.11. PB 水凝膠的可注射性與 3D 列印性能 11 2.12. 內皮細胞(ECS)在水凝膠中的培養 11 2.13. 統計分析 12 第三章 實驗結果 14 3.1. CB 聚合物的合成與表徵 14 3.2. CB水凝膠的流變性質 19 3.3. 透過小角度X光散射(SAXS)分析CB水凝膠的微觀結構 24 3.4. 以CB作為新型交聯劑,製備PB水凝膠並探討其流變性質。 26 3.5. 透過小角度X光散射(SAXS)解析PB水凝膠的微觀結構 36 3.6. PB水凝膠的葡萄糖敏感特性 38 3.7. PB2.5 水凝膠之可注射性與三維列印性 42 3.8. CB與PB水凝膠的細胞相容性 44 第四章 討論 47 第五章 結論 52 參考文獻 53 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 硼酸 | zh_TW |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | 水凝膠 | zh_TW |
| dc.subject | 葡萄糖敏感性 | zh_TW |
| dc.subject | 3D printing | en |
| dc.subject | Hydrogel | en |
| dc.subject | glucose sensitivity | en |
| dc.subject | chitosan | en |
| dc.subject | boronic acid | en |
| dc.title | 自組裝幾丁聚醣-硼酸水凝膠作為可3D列印葡萄糖敏感水凝膠之動態交聯劑 | zh_TW |
| dc.title | Self-assembled chitosan-boronic acid hydrogel as dynamic crosslinker to produce 3D-printable glucose sensitive hydrogel | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周佳靚;張書瑋;莊偉綜 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Ching Chou;Shu-Wei Chang;Wei-Tsung Chuang | en |
| dc.subject.keyword | 水凝膠,葡萄糖敏感性,幾丁聚醣,硼酸,3D列印, | zh_TW |
| dc.subject.keyword | Hydrogel,glucose sensitivity,chitosan,boronic acid,3D printing, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202501044 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-06-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2025-06-19 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
