請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97447完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳煇 | zh_TW |
| dc.contributor.advisor | Ping-Hei Chen | en |
| dc.contributor.author | 賴心榆 | zh_TW |
| dc.contributor.author | Shin-Yu Lai | en |
| dc.date.accessioned | 2025-06-18T16:10:48Z | - |
| dc.date.available | 2025-06-19 | - |
| dc.date.copyright | 2025-06-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-06 | - |
| dc.identifier.citation | [1] R. N. Xu, G. Y. Wang, and P. X. Jiang, "Spray cooling on enhanced surfaces: A review of the progress and mechanisms," Journal of Electronic Packaging, vol. 144, no. 1, Art. no. 010802, Mar. 2022.
[2] S. Nukiyama, "The maximum and minimum values of the heat-Q transmitted from metal to boiling water under atmospheric pressure," International Journal of Heat and Mass Transfer, vol. 27, no. 7, pp. 959–970, 1984. [3] B. J. Jones, J. P. McHale, and S. V. Garimella, "The influence of surface roughness on nucleate pool boiling heat transfer," Journal of Heat Transfer–Transactions of the ASME, vol. 131, no. 12, Art. no. 121009, Dec. 2009. [4] S. Sarangi, J. A. Weibel, and S. V. Garimella, "Effect of particle size on surface-coating enhancement of pool boiling heat transfer," International Journal of Heat and Mass Transfer, vol. 81, pp. 103–113, Feb. 2015. [5] A. M. Gheitaghy, H. Saffari, D. Ghasimi, and A. Ghasemi, "Effect of electrolyte temperature on porous electrodeposited copper for pool boiling enhancement," Applied Thermal Engineering, vol. 113, pp. 1097–1106, Feb. 2017. [6] N. Mascarenhas and I. Mudawar, "Analytical and computational methodology for modeling spray quenching of solid alloy cylinders," International Journal of Heat and Mass Transfer, vol. 53, no. 25–26, pp. 5871–5883, Dec. 2010. [7] H. Liu, C. Cai, M. Jia, J. L. Gao, H. C. Yin, and H. Chen, "Experimental investigation on spray cooling with low-alcohol additives," Applied Thermal Engineering, vol. 146, pp. 921–930, Jan. 2019. [8] X. Zhao, H. F. Zhang, X. Z. Xi, F. Liu, and B. Zhang, "Effect of unidirectional surface roughness on heat transfer performance of spray cooling," Experimental Heat Transfer, vol. 36, no. 1, pp. 96–119, Jan. 2023. [9] W. L. Cheng, W. W. Zhang, H. Chen, and L. Hu, "Spray cooling and flash evaporation cooling: The current development and application," Renewable & Sustainable Energy Reviews, vol. 55, pp. 614–628, Mar. 2016. [10] Y. Hou, J. H. Liu, X. M. Su, Y. Qian, L. Q. Liu, and X. F. Liu, "Experimental study on the characteristics of a closed loop R134-a spray cooling," Experimental Thermal and Fluid Science, vol. 61, pp. 194–200, Feb. 2015. [11] S. J. Thiagarajan, S. Narumanchi, and R. G. Yang, "Effect of flow rate and subcooling on spray heat transfer on microporous copper surfaces," International Journal of Heat and Mass Transfer, vol. 69, pp. 493–505, Feb. 2014. [12] W. L. Cheng, F. Y. Han, Q. N. Liu, and H. L. Fan, "Spray characteristics and spray cooling heat transfer in the non-boiling regime," Energy, vol. 36, no. 5, pp.3399–3405, May 2011. [13] N. Y. Zhou, F. J. Chen, Y. C. Cao, M. M. Chen, and Y. Wang, "Experimental investigation on the performance of a water spray cooling system," Applied Thermal Engineering, vol. 112, pp. 1117–1128, Feb. 2017. [14] M. Visaria and I. Mudawar, "Theoretical and experimental study of the effects of spray inclination on two-phase spray cooling and critical heat flux," International Journal of Heat and Mass Transfer, vol. 51, no. 9–10, pp. 2398–2410, May 2008. [15] Y. Q. Wang, M. H. Liu, D. Liu, K. Xu, and Y. L. Chen, "Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime," Experimental Thermal and Fluid Science, vol. 34, no. 7, pp. 933–942, Oct. 2010. [16] I. Vladyko, N. Miskiv, V. Serdyukov, A. Nazarov, and A. Surtaev, "Influence of the nozzle-to-surface distance on spray cooling efficiency," Fluids, vol. 8, no. 7, Art. no. 191, Jul. 2023. [17] J. N. Chen, R. N. Xu, Z. Zhang, X. Chen, X. L. Ouyang, G. Y. Wang, and P. X. Jiang, "Phenomenon and mechanism of spray cooling on nanowire arrayed and hybrid micro/nanostructured surfaces," Journal of Heat Transfer–Transactions of the ASME, vol. 140, no. 11, Art. no. 112401, Nov. 2018. [18] R. N. Xu, L. Cao, G. Y. Wang, J. N. Chen, and P. X. Jiang, "Experimental investigation of closed loop spray cooling with micro- and hybrid micro-/nano-engineered surfaces," Applied Thermal Engineering, vol. 180, Art. no. 115697, Nov. 2020. [19] M. R. Pais, L. C. Chow, and E. T. Mahefkey, "Surface roughness and its effects on the heat transfer mechanism in spray cooling," Journal of Heat Transfer–Transactions of the ASME, vol. 114, no. 1, pp. 211–219, Feb. 1992. [20] Z. Zhang, J. Li, and P. X. Jiang, "Experimental investigation of spray cooling on flat and enhanced surfaces," Applied Thermal Engineering, vol. 51, no. 1–2, pp. 102–111, Mar. 2013. [21] N. Chaba, S. Neramittagapong, A. Neramittagapong, and N. Eua-anant, "Morphology study of zinc anode prepared by electroplating method for rechargeable Zn–MnO₂ battery," Heliyon, vol. 5, no. 10, Art. no. e02681, Oct. 2019. [22] C. M. Patil, K. S. V. Santhanam, and S. G. Kandlikar, "Development of a two-step electrodeposition process for enhancing pool boiling," International Journal of Heat and Mass Transfer, vol. 79, pp. 989–1001, Dec. 2014. [23] H. C. Lin, H. C. Cheng, Y. X. Huang, and P. H. Chen, "Electrodeposited porous surfaces with capillary effect for enhancing the heat transfer performance of Novec-7100 in spray cooling," Experimental Thermal and Fluid Science, vol. 168, Art. no. 111514, May 2025. [24] A. S. Katarkar, A. D. Pingale, S. U. Belgamwar, and S. Bhaumik, "Experimental study of pool boiling enhancement using a two-step electrodeposited Cu-GNPs nanocomposite porous surface with R-134a," Journal of Heat Transfer–Transactions of the ASME, vol. 143, no. 12, Art. no. 121601, Dec. 2021. [25] D. C. Mo, S. Yang, J. L. Luo, Y. Q. Wang, and S. S. Lyu, "Enhanced pool boiling performance of a porous honeycomb copper surface with radial diameter gradient," International Journal of Heat and Mass Transfer, vol. 157, Art. no. 119867, Aug. 2020. [26] D. J. Bouchard and S. Chandra, "Infiltration of impacting droplets into porous substrates," Experiments in Fluids, vol. 61, no. 11, Art. no. 235, Oct. 2020. [27] N. Fries, K. Odic, M. Conrath, and M. Dreyer, "The effect of evaporation on the wicking of liquids into a metallic weave," Journal of Colloid and Interface Science, vol. 321, no. 1, pp. 118–129, May 2008, doi: 10.1016/j.jcis.2008.01.019. [28] P. F. Liu, R. Kandasamy, J. Y. Ho, J. L. Xie, and T. N. Wong, "Experimental study on heat transfer enhancement using combined surface roughening and macro-structures in a confined double-nozzle spray cooling system," Applied Thermal Engineering, vol. 202, Art. no. 117850, Feb. 2022. [29] C. W. Lv, L. G. Xu, J. X. Du, J. L. Liang, B. J. Ma, H. Z. Yang, D. Chen, and Y. G. Zhu, "Capillary-driven evaporation of superhydrophilic copper foams with ultra-high porosity," International Communications in Heat and Mass Transfer, vol. 152, Art. no. 107318, Mar. 2024. [30] B. M. Ali, "An experimental study of heat transfer in pool boiling to investigate the effect of surface roughness on critical heat flux," ChemEngineering, vol. 8, no. 2, Art. no. 44, Apr. 2024. [31] Y. M. Fan, F. M. Su, L. T. Fan, B. L. Peng, and Y. L. Ji, "Experimental study on nucleate boiling of liquid nitrogen spray cooling on superhydrophilic microstructured surface," International Journal of Thermal Sciences, vol. 213, Art. no. 109800, Jul. 2025. [32] S. S. Hsieh, S. Y. Luo, R. Y. Lee, and H. H. Liu, "Spray cooling heat transfer on microstructured thin film enhanced surfaces," Experimental Thermal and Fluid Science, vol. 68, pp. 123–134, Nov. 2015. [33] J. P. Wang, N. Liu, Y. Wang, M. T. Wang, and H. Zhang, "Effects of hydrophilic surface on heat transfer performance of spray cooling," International Journal of Thermal Sciences, vol. 201, Art. no. 109026, Jul. 2024. [34] H. B. He, Y. H. Wang, H. Q. Gong, H. B. Ma, and Y. M. Wang, "Efficiency enhancement of a loop thermosyphon on a mixed-wettability evaporator surface," Applied Thermal Engineering, vol. 123, pp. 1245–1254, Aug. 2017. [35] W. Y. Liu, Z. Liang, and Y. Q. Luo, "Enhanced boiling heat transfer performance on wettability-patterned surface," Applied Thermal Engineering, vol. 244, Art. no. 122792, May 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97447 | - |
| dc.description.abstract | 近年來已有許多研究探討單一金屬表面改質對於噴霧冷卻的熱傳影響,例如透過雷射或是腐蝕等方式進行表面加工。然而,針對異質金屬表面改質的的研究則相對較少。
本研究提出一種交錯式表面改質方法,使用到兩種不同金屬進行表面的電鍍,藉由在純銅表面上以交錯排列的方式電鍍金屬銅與金屬鋅兩種金屬,在同一個表面上製作不同表面微結構且不同毛細力的樣品,研究其在噴霧冷卻實驗中單相及兩相區間的熱傳表面,利用製程方式在純銅表面製備五種寬度的鋅條紋的樣品,本次實驗中有關的實驗參數如下:噴嘴的孔徑為 0.51 mm、噴嘴與測試表面之間的距離為 22 mm、金屬銅測試表面樣品規格直徑為 16 mm、實驗中所採用的工作流體為介電溶液 Novec-7100、有效體積流率為1.2×10-3 m3/m2‧s,實驗中計算熱通量所需的數據源於放置於測試銅塊中的熱電偶所提供的溫度分佈,並以此作為依據計算實際熱通量、表面溫度等等相關的參數,並利用粗糙度測驗結果、樣品表面SEM圖、表面共軛焦影像、表面成分的分析數據以及熱傳機制示意圖輔助進行實驗的結果與討論。 總而言之,透過雙金屬結構差異可以在散熱過程中進行一個互補的效果延緩臨界熱通量提高熱傳係數,改質後的表面,相較於純銅表面在毛細吸引力、表面粗糙度、孔隙率上都有所提升,這些參數的相互影響下使得表面熱傳性能有較明顯的提升,在本次實驗中,鋅條紋寬度為3mm的樣品有最佳的熱傳性,熱傳係數為未改質表面的1.51倍,最大臨界熱通量為未改質表面的1.54倍。 | zh_TW |
| dc.description.abstract | This experiment investigated spray cooling using a dielectric liquid on microstructured surfaces formed by electrodeposition different metals. Zinc stripes of five different widths were fabricated on copper substrates to study heat transfer performance in both single-phase and two-phase regions.
Key parameters include a nozzle diameter of 0.51 mm, a nozzle-to-surface distance of 22 mm, a sample diameter of 16 mm, and the use of Novec-7100 as the working fluid. Two effective volumetric flow rates were applied: 7.2×10⁻³ m³/m²·s and 1.2×10⁻³ m³/m²·s. Heat flux was calculated based on temperature data from thermocouples embedded in the copper block. Surface roughness measurements, SEM and confocal images, compositional analysis, and heat transfer mechanism illustrations supported the findings. Overall, the bimetallic structures enhanced heat transfer by improving capillary action, roughness, and porosity, thereby delaying critical heat flux. The sample with 3 mm wide zinc stripes achieved the best performance, with a heat transfer coefficient 1.51 times and a critical heat flux 1.54 times higher than those of the unmodified copper surface. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:10:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-18T16:10:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Nomenclature v 目次 xi 圖次 xiv 表次 xvi 第1章 緒論 1 1.1 前言 1 1.2 相關文獻研討 3 1.2.1 池沸騰 3 1.2.2 粗糙度對於池沸騰的影響 3 1.2.3 表面塗層粒徑對於池沸騰的影響 6 1.2.4 電沉積液的溫度對於池沸騰的影響 8 1.2.5 噴霧冷卻 11 1.2.6 噴霧冷卻機制 13 1.2.7噴霧冷卻實驗設備參數對實驗數據的影響 17 1.2.8表面結構化對於噴霧冷卻的影響 22 1.2.9 表面粗糙度對於噴霧冷卻的影響 27 1.2.10 電鍍金屬鋅於銅基底上所形成的結構 31 第2章 理論 32 2.1 表面能 32 2.2 濕潤性 33 2.3 毛細作用 36 2.4 電鍍 37 第3章 實驗步驟與設備 38 3.1 實驗設備 38 3.1.1實驗與表面改質製程設備 38 3.1.2實驗與表面改質製程藥品 40 3.1.3噴霧冷卻實驗設備 40 3.2 工作流體的性質 50 3.3 實驗步驟 52 3.3.1電鍍液配置 52 3.3.2部分電鍍表面之改質步驟 52 3.4 樣品表面特徵測量 56 3.4.1 表面粗糙度 56 3.4.2 表面形貌 57 3.4.3 表面孔隙率 58 3.4.4 表面成分 58 3.5噴霧冷卻實驗程序 59 3.6不確定性分析 60 第4章 結果與討論 62 4.1實驗裝置的驗證 62 4.2表面形貌 63 4.3 表面毛細力 70 4.4 孔隙率 72 4.5 熱傳性能 73 4.5.1 純銅與電鍍層表面對於噴霧冷卻實驗的影響 73 4.5.2交錯式電鍍表面對於噴霧冷卻實驗的影響 76 4.5.3 不同電鍍鋅條紋寬度對於噴霧冷卻實驗的影響 82 第5章 結論與未來展望 85 5.1 結論 85 5.2 未來展望 85 參考資料 87 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 介電溶液 | zh_TW |
| dc.subject | 噴霧冷卻 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | 異質鍍層 | zh_TW |
| dc.subject | 微孔結構 | zh_TW |
| dc.subject | 銅電鍍 | zh_TW |
| dc.subject | 鋅電鍍 | zh_TW |
| dc.subject | Dielectric Liquid | en |
| dc.subject | Spray Cooling | en |
| dc.subject | Copper Electrodeposition | en |
| dc.subject | Zinc Electrodeposition | en |
| dc.subject | Surface Modification | en |
| dc.subject | Heterogeneous Surface | en |
| dc.subject | Microporous Structure | en |
| dc.title | 探討具有銅鋅鍍層之異質電鍍表面對於介電溶液 噴霧冷卻熱傳之影響 | zh_TW |
| dc.title | Effect of Heterogeneous Electrodeposited Surface with Cu and Zn Deposit Layers on Spray Cooling Performance of Novec-7100 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉俊良;李達生 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Liang Yeh;Da-Sheng Lee | en |
| dc.subject.keyword | 噴霧冷卻,表面改質,異質鍍層,微孔結構,介電溶液,銅電鍍,鋅電鍍, | zh_TW |
| dc.subject.keyword | Spray Cooling,Copper Electrodeposition,Zinc Electrodeposition,Surface Modification,Heterogeneous Surface,Microporous Structure,Dielectric Liquid, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202501046 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-06-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
