Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97440
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳家麟zh_TW
dc.contributor.advisorJa-Ling Wuen
dc.contributor.author胡耿銘zh_TW
dc.contributor.authorKeng-Ming Huen
dc.date.accessioned2025-06-18T16:08:52Z-
dc.date.available2025-06-19-
dc.date.copyright2025-06-18-
dc.date.issued2025-
dc.date.submitted2025-06-10-
dc.identifier.citation[1] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio, D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan. Homomorphic encryption standard. Cryptology ePrint Archive, Paper 2019/939, 2019.
[2] Axiom. Halo2-lib. https://github.com/axiom-crypto/Halo2-lib, 2023. Accessed: May 8, 2024.
[3] Axiom. Overview of the halo2 challenge api and random linear combinations (rlc) comment. https://hackmd.io/@axiom/SJw3p-qX3, 2023. Accessed: May 8, 2025.
[4] J.-C. Bajard, J. Eynard, A. Hasan, and V. Zucca. A full RNS variant of FV like somewhat homomorphic encryption schemes. Cryptology ePrint Archive, Paper 2016/510, 2016.
[5] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptology ePrint Archive, (2018/046), 2018.
[6] E. Bottazzi. Greco: Fast zero-knowledge proofs for valid FHE RLWE ciphertexts formation. Cryptology ePrint Archive, Paper 2024/594, 2024.
[7] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In CRYPTO 2012, pages 868–886. Springer, 2012.
[8] C. Carr, A. Costache, G. T. Davies, K. Gjøsteen, and M. Strand. Zero-knowledge proof of decryption for fhe ciphertexts. IACR Cryptol. ePrint Arch., 2018:26, 2018.
[9] H. Chen, I. Chillotti, and Y. Song. Multi-key homomorphic encryption from tfhe. In ASIACRYPT 2019, pages 446–472. Springer, 2019.
[10] I. Damgård. On σ-protocols. Lecture Notes, Cryptographic Protocol Theory, Aarhus University, Version 2, 2010. Accessed: May 8, 2025.
[11] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Paper 2012/144, 2012.
[12] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In CRYPTO ’86, pages 186–194. Springer, 1987.
[13] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM Symposium on Theory of Computing (STOC), pages 169–178. ACM, 2009.
[14] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems. In Proceedings of the 17th ACM Symposium on Theory of Computing (STOC), pages 291–304. ACM, 1985.
[15] J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT 2016, pages 305–326. Springer, 2016.
[16] S. Halevi, Y. Polyakov, and V. Shoup. An improved RNS variant of the BFV homomorphic encryption scheme. Cryptology ePrint Archive, Paper 2018/117, 2018.
[17] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (S&P), pages 839–858. IEEE, 2016.
[18] RDI Berkeley. Zero knowledge learning portal. https://rdi.berkeley.edu/zk-learning/, 2024. Accessed: Dec. 20, 2024.
[19] A. C.-C. Yao. How to generate and exchange secrets. In Proceedings of the 27th Annual Symposium on Foundations of Computer Science (FOCS), pages 162–167. IEEE, 1986.
[20] Zama. Zero-knowledge proofs in tfhe-rs: Advanced features. https://docs.zama.ai/tfhe-rs/fhe-computation/advanced-features/zk-pok, 2025. Accessed: Apr. 29, 2025.
[21] Z. Zhang, X. Lu, M. Li, J. An, Y. Yu, H. Yin, L. Zhu, Y. Liu, J. Liu, and B. Khoussainov. A blockchain-based privacy-preserving scheme for sealed-bid auction. IEEE Transactions on Dependable and Secure Computing, 21(5):4668–4683, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97440-
dc.description.abstract隨著現在區塊鏈的普及,在區塊鏈上的應用也越來越多,其中在區塊鏈上的隱私保護是不可或缺的。而在區塊鏈上最關鍵的兩個隱私保護的技術就是 Fully Homomorphic Encryption (FHE) 跟 Zero-Knowledge Proof (ZKP),本文結合了兩者的技術來做到利用 ZKP 證明 FHE 的解密過程,首次提出利用 zk-SNARK 去證明 BFV 同態加密方案解密過程的正確性。
我們改造了 Greco 專案所提出的加密電路,並以 Halo2-lib 為基礎設計出對應的解密證明電路。本文實驗針對了不同 BFV 的安全等級都進行了模擬,證實了不同的 BFV 安全等級都可以透過本文實做出的電路進行證明,並且驗證時間都符合現在的實務應用需求,證明皆可成功生成且驗證時間穩定於毫秒等級。
本研究證實:在不洩露私鑰與明文的前提下,能有效證明解密的正確性,並可根據應用程式不同需求來證明解密後的明文符合特定性質。這樣的技術能應用在需要隱私保護的區塊鏈場景上,例如在隱私保護的電子投票或是密封拍賣,有助於在保障隱私的同時提升效率與安全性。
zh_TW
dc.description.abstractWith the increasing adoption of blockchain technology, the number of applications deployed on blockchain platforms has skyrocketed. Among these, privacy-preserving applications have become an essential concern. Two of the most critical techniques for achieving privacy on the blockchain are Fully Homomorphic Encryption (FHE) and Zero-Knowledge Proof (ZKP). This study combines these two technologies to demonstrate a novel approach: using ZKP to prove the correctness of the FHE decryption process. Specifically, we present the first implementation of a zk-SNARK to verify the decryption process of the BFV homomorphic encryption scheme without revealing the secret key or the decrypted plaintext.
Our work extends the Greco project, originally designed to prove FHE encryption by adapting its circuits for proof of decryption. Based on Halo2-lib, we construct a custom zero-knowledge circuit for the BFV decryption process. Through simulations across multiple BFV security levels, we demonstrate that our circuit can successfully generate proof and verify them within milliseconds, satisfying the efficiency requirements of real-world applications.
This research confirms that verifying the correctness of FHE decryption in zero-knowledge is feasible. Furthermore, the decrypted message can be proven to satisfy specific properties depending on application requirements. Such a technique is especially valuable in privacy-preserving blockchain applications, such as electronic voting or sealed-bid auctions, where ensuring both privacy and verifiability is crucial to achieving security and trust.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:08:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-06-18T16:08:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Objectives and Questions 2
1.3 Scope and Limitations 3
Chapter 2 Literature Review 5
2.1 Significant Prior Works 5
2.2 Existing Research Gaps 7
2.3 Summary 8
Chapter 3 Principles of zk-SNARK 9
3.1 Zero-Knowledge Proof 9
3.2 Fundamental Structure of zk-SNARK 10
3.3 Comparison Between zk-SNARK and Sigma Protocol 12
Chapter 4 Methodology 17
4.1 Research Design 17
4.2 Data Sources and Collection Methods 21
4.3 Analysis Methods 22
Chapter 5 Results 25
Chapter 6 Discussion 29
6.1 Comparison with Expected Results 29
6.2 Comparison with the Original Greco Project 30
6.3 Practical Application Value and Potential 30
6.4 Research Limitations and Future Improvements 31
6.5 Comparison of Privacy-Preserving Cryptographic Architectures: MPC, MK-FHE, ZKP + FHE 32
Chapter 7 Conclusion 37
7.1 Summary 37
7.2 Practical Recommendations 38
7.3 Future Research Directions 38
References 41
-
dc.language.isoen-
dc.subjectBFVzh_TW
dc.subject零知識證明zh_TW
dc.subjectzk-SNARKzh_TW
dc.subjectHalo2zh_TW
dc.subject區塊鏈zh_TW
dc.subject隱私保護zh_TW
dc.subject全同態加密zh_TW
dc.subjectPrivacy Preservationen
dc.subjectFully Homomorphic Encryptionen
dc.subjectBFVen
dc.subjectZero Knowledge Proofen
dc.subjectzk-SNARKen
dc.subjectHalo2en
dc.subjectblockchainen
dc.title一種用於 BFV 同態加密方案之解密過程驗證的高效 zk-SNARK 證明設計zh_TW
dc.titleAn Efficient zk-SNARK Construction for Verifiable Decryption in BFV Homomorphic Encryptionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許超雲;胡敏君;陳文進zh_TW
dc.contributor.oralexamcommitteeCHAU-YUN HSU;Min-Chun Hu;Wen-Chin Chenen
dc.subject.keyword全同態加密,BFV,零知識證明,zk-SNARK,Halo2,區塊鏈,隱私保護,zh_TW
dc.subject.keywordFully Homomorphic Encryption,BFV,Zero Knowledge Proof,zk-SNARK,Halo2,blockchain,Privacy Preservation,en
dc.relation.page43-
dc.identifier.doi10.6342/NTU202501072-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2025-06-19-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf710.4 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved