請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97440完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳家麟 | zh_TW |
| dc.contributor.advisor | Ja-Ling Wu | en |
| dc.contributor.author | 胡耿銘 | zh_TW |
| dc.contributor.author | Keng-Ming Hu | en |
| dc.date.accessioned | 2025-06-18T16:08:52Z | - |
| dc.date.available | 2025-06-19 | - |
| dc.date.copyright | 2025-06-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-10 | - |
| dc.identifier.citation | [1] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio, D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan. Homomorphic encryption standard. Cryptology ePrint Archive, Paper 2019/939, 2019.
[2] Axiom. Halo2-lib. https://github.com/axiom-crypto/Halo2-lib, 2023. Accessed: May 8, 2024. [3] Axiom. Overview of the halo2 challenge api and random linear combinations (rlc) comment. https://hackmd.io/@axiom/SJw3p-qX3, 2023. Accessed: May 8, 2025. [4] J.-C. Bajard, J. Eynard, A. Hasan, and V. Zucca. A full RNS variant of FV like somewhat homomorphic encryption schemes. Cryptology ePrint Archive, Paper 2016/510, 2016. [5] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptology ePrint Archive, (2018/046), 2018. [6] E. Bottazzi. Greco: Fast zero-knowledge proofs for valid FHE RLWE ciphertexts formation. Cryptology ePrint Archive, Paper 2024/594, 2024. [7] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In CRYPTO 2012, pages 868–886. Springer, 2012. [8] C. Carr, A. Costache, G. T. Davies, K. Gjøsteen, and M. Strand. Zero-knowledge proof of decryption for fhe ciphertexts. IACR Cryptol. ePrint Arch., 2018:26, 2018. [9] H. Chen, I. Chillotti, and Y. Song. Multi-key homomorphic encryption from tfhe. In ASIACRYPT 2019, pages 446–472. Springer, 2019. [10] I. Damgård. On σ-protocols. Lecture Notes, Cryptographic Protocol Theory, Aarhus University, Version 2, 2010. Accessed: May 8, 2025. [11] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Paper 2012/144, 2012. [12] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In CRYPTO ’86, pages 186–194. Springer, 1987. [13] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM Symposium on Theory of Computing (STOC), pages 169–178. ACM, 2009. [14] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems. In Proceedings of the 17th ACM Symposium on Theory of Computing (STOC), pages 291–304. ACM, 1985. [15] J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT 2016, pages 305–326. Springer, 2016. [16] S. Halevi, Y. Polyakov, and V. Shoup. An improved RNS variant of the BFV homomorphic encryption scheme. Cryptology ePrint Archive, Paper 2018/117, 2018. [17] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (S&P), pages 839–858. IEEE, 2016. [18] RDI Berkeley. Zero knowledge learning portal. https://rdi.berkeley.edu/zk-learning/, 2024. Accessed: Dec. 20, 2024. [19] A. C.-C. Yao. How to generate and exchange secrets. In Proceedings of the 27th Annual Symposium on Foundations of Computer Science (FOCS), pages 162–167. IEEE, 1986. [20] Zama. Zero-knowledge proofs in tfhe-rs: Advanced features. https://docs.zama.ai/tfhe-rs/fhe-computation/advanced-features/zk-pok, 2025. Accessed: Apr. 29, 2025. [21] Z. Zhang, X. Lu, M. Li, J. An, Y. Yu, H. Yin, L. Zhu, Y. Liu, J. Liu, and B. Khoussainov. A blockchain-based privacy-preserving scheme for sealed-bid auction. IEEE Transactions on Dependable and Secure Computing, 21(5):4668–4683, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97440 | - |
| dc.description.abstract | 隨著現在區塊鏈的普及,在區塊鏈上的應用也越來越多,其中在區塊鏈上的隱私保護是不可或缺的。而在區塊鏈上最關鍵的兩個隱私保護的技術就是 Fully Homomorphic Encryption (FHE) 跟 Zero-Knowledge Proof (ZKP),本文結合了兩者的技術來做到利用 ZKP 證明 FHE 的解密過程,首次提出利用 zk-SNARK 去證明 BFV 同態加密方案解密過程的正確性。
我們改造了 Greco 專案所提出的加密電路,並以 Halo2-lib 為基礎設計出對應的解密證明電路。本文實驗針對了不同 BFV 的安全等級都進行了模擬,證實了不同的 BFV 安全等級都可以透過本文實做出的電路進行證明,並且驗證時間都符合現在的實務應用需求,證明皆可成功生成且驗證時間穩定於毫秒等級。 本研究證實:在不洩露私鑰與明文的前提下,能有效證明解密的正確性,並可根據應用程式不同需求來證明解密後的明文符合特定性質。這樣的技術能應用在需要隱私保護的區塊鏈場景上,例如在隱私保護的電子投票或是密封拍賣,有助於在保障隱私的同時提升效率與安全性。 | zh_TW |
| dc.description.abstract | With the increasing adoption of blockchain technology, the number of applications deployed on blockchain platforms has skyrocketed. Among these, privacy-preserving applications have become an essential concern. Two of the most critical techniques for achieving privacy on the blockchain are Fully Homomorphic Encryption (FHE) and Zero-Knowledge Proof (ZKP). This study combines these two technologies to demonstrate a novel approach: using ZKP to prove the correctness of the FHE decryption process. Specifically, we present the first implementation of a zk-SNARK to verify the decryption process of the BFV homomorphic encryption scheme without revealing the secret key or the decrypted plaintext.
Our work extends the Greco project, originally designed to prove FHE encryption by adapting its circuits for proof of decryption. Based on Halo2-lib, we construct a custom zero-knowledge circuit for the BFV decryption process. Through simulations across multiple BFV security levels, we demonstrate that our circuit can successfully generate proof and verify them within milliseconds, satisfying the efficiency requirements of real-world applications. This research confirms that verifying the correctness of FHE decryption in zero-knowledge is feasible. Furthermore, the decrypted message can be proven to satisfy specific properties depending on application requirements. Such a technique is especially valuable in privacy-preserving blockchain applications, such as electronic voting or sealed-bid auctions, where ensuring both privacy and verifiability is crucial to achieving security and trust. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:08:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-18T16:08:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Research Objectives and Questions 2 1.3 Scope and Limitations 3 Chapter 2 Literature Review 5 2.1 Significant Prior Works 5 2.2 Existing Research Gaps 7 2.3 Summary 8 Chapter 3 Principles of zk-SNARK 9 3.1 Zero-Knowledge Proof 9 3.2 Fundamental Structure of zk-SNARK 10 3.3 Comparison Between zk-SNARK and Sigma Protocol 12 Chapter 4 Methodology 17 4.1 Research Design 17 4.2 Data Sources and Collection Methods 21 4.3 Analysis Methods 22 Chapter 5 Results 25 Chapter 6 Discussion 29 6.1 Comparison with Expected Results 29 6.2 Comparison with the Original Greco Project 30 6.3 Practical Application Value and Potential 30 6.4 Research Limitations and Future Improvements 31 6.5 Comparison of Privacy-Preserving Cryptographic Architectures: MPC, MK-FHE, ZKP + FHE 32 Chapter 7 Conclusion 37 7.1 Summary 37 7.2 Practical Recommendations 38 7.3 Future Research Directions 38 References 41 | - |
| dc.language.iso | en | - |
| dc.subject | BFV | zh_TW |
| dc.subject | 零知識證明 | zh_TW |
| dc.subject | zk-SNARK | zh_TW |
| dc.subject | Halo2 | zh_TW |
| dc.subject | 區塊鏈 | zh_TW |
| dc.subject | 隱私保護 | zh_TW |
| dc.subject | 全同態加密 | zh_TW |
| dc.subject | Privacy Preservation | en |
| dc.subject | Fully Homomorphic Encryption | en |
| dc.subject | BFV | en |
| dc.subject | Zero Knowledge Proof | en |
| dc.subject | zk-SNARK | en |
| dc.subject | Halo2 | en |
| dc.subject | blockchain | en |
| dc.title | 一種用於 BFV 同態加密方案之解密過程驗證的高效 zk-SNARK 證明設計 | zh_TW |
| dc.title | An Efficient zk-SNARK Construction for Verifiable Decryption in BFV Homomorphic Encryption | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許超雲;胡敏君;陳文進 | zh_TW |
| dc.contributor.oralexamcommittee | CHAU-YUN HSU;Min-Chun Hu;Wen-Chin Chen | en |
| dc.subject.keyword | 全同態加密,BFV,零知識證明,zk-SNARK,Halo2,區塊鏈,隱私保護, | zh_TW |
| dc.subject.keyword | Fully Homomorphic Encryption,BFV,Zero Knowledge Proof,zk-SNARK,Halo2,blockchain,Privacy Preservation, | en |
| dc.relation.page | 43 | - |
| dc.identifier.doi | 10.6342/NTU202501072 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | 2025-06-19 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 710.4 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
