Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97438Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 曾雪峰 | zh_TW |
| dc.contributor.advisor | Snow H. Tseng | en |
| dc.contributor.author | 姚勝鈞 | zh_TW |
| dc.contributor.author | Sheng-Chun Yao | en |
| dc.date.accessioned | 2025-06-18T16:08:17Z | - |
| dc.date.available | 2025-06-19 | - |
| dc.date.copyright | 2025-06-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-10 | - |
| dc.identifier.citation | [1] A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, "Controlling waves in space and time for imaging and focusing in complex media," Nature photonics, vol. 6, no. 5, pp. 283-292, 2012.
[2] R. Horstmeyer, H. Ruan, and C. Yang, "Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue," Nature photonics, vol. 9, no. 9, pp. 563-571, 2015. [3] H. Ruan, J. Xu, and C. Yang, "Optical information transmission through complex scattering media with optical-channel-based intensity streaming," Nature Communications, vol. 12, no. 1, p. 2411, 2021. [4] H. Cao, A. P. Mosk, and S. Rotter, "Shaping the propagation of light in complex media," Nature Physics, vol. 18, no. 9, pp. 994-1007, 2022. [5] C.-Y. Shen, J. Li, T. Gan, Y. Li, M. Jarrahi, and A. Ozcan, "All-optical phase conjugation using diffractive wavefront processing," Nature Communications, vol. 15, no. 1, p. 4989, 2024. [6] I. M. Vellekoop and A. P. Mosk, "Focusing coherent light through opaque strongly scattering media," Optics letters, vol. 32, no. 16, pp. 2309-2311, 2007. [7] M. Cui and C. Yang, "Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation," Optics express, vol. 18, no. 4, pp. 3444-3455, 2010. [8] I. M. Vellekoop, M. Cui, and C. Yang, "Digital optical phase conjugation of fluorescence in turbid tissue," Applied physics letters, vol. 101, no. 8, 2012. [9] L. Liu et al., "Anti-scattering light focusing with full-polarization digital optical phase conjugation based on digital micromirror devices," Optics Express, vol. 30, no. 18, pp. 31614-31622, 2022. [10] Y. Baek, H. B. de Aguiar, and S. Gigan, "Phase conjugation with spatially incoherent light in complex media," Nature Photonics, vol. 17, no. 12, pp. 1114-1119, 2023. [11] P. Wang et al., "Toward optimal performance of systems for digital optical phase conjugation," Physical Review Applied, vol. 21, no. 1, p. 014004, 2024. [12] S. H. Tseng and C. Yang, "2-D PSTD Simulation of optical phase conjugation for turbidity suppression," Optics express, vol. 15, no. 24, pp. 16005-16016, 2007. [13] S. H. Tseng, "2-D PSTD Simulation of focusing monochromatic light through a macroscopic scattering medium via optical phase conjugation," Biomedical Optics Express, vol. 6, no. 3, pp. 815-826, 2015. [14] Q. H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm," IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 2, pp. 917-926, 1999. [15] G.-X. Fan, Q. H. Liu, and S. A. Hutchinson, "FDTD and PSTD simulations for plasma applications," IEEE transactions on plasma science, vol. 29, no. 2, pp. 341-348, 2001. [16] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of optical harmonics," Physical review letters, vol. 7, no. 4, p. 118, 1961. [17] D. M. Pepper, "Applications of optical phase conjugation," Scientific American, vol. 254, no. 1, pp. 74-83, 1986. [18] G. S. He, "Optical phase conjugation: principles, techniques, and applications," Progress in Quantum Electronics, vol. 26, no. 3, pp. 131-191, 2002. [19] X. Xu, H. Liu, and L. V. Wang, "Time-reversed ultrasonically encoded optical focusing into scattering media," Nature photonics, vol. 5, no. 3, pp. 154-157, 2011. [20] Z. Cheng and L. V. Wang, "Focusing light into scattering media with ultrasound-induced field perturbation," Light: Science & Applications, vol. 10, no. 1, p. 159, 2021. [21] C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, "Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle," Optics express, vol. 18, no. 20, pp. 20723-20731, 2010. [22] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, "Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light," Nature communications, vol. 3, no. 1, p. 928, 2012. [23] L. Wang, S. L. Jacques, and L. Zheng, "MCML—Monte Carlo modeling of light transport in multi-layered tissues," Computer methods and programs in biomedicine, vol. 47, no. 2, pp. 131-146, 1995. [24] D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Optics express, vol. 10, no. 3, pp. 159-170, 2002. [25] S. H. Tseng and B. Huang, "Comparing Monte Carlo simulation and pseudospectral time-domain numerical solutions of Maxwell’s equations of light scattering by a macroscopic random medium," Applied Physics Letters, vol. 91, no. 5, 2007. [26] K. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302-307, 1966. [27] A. Taflove and S. C. Hagness, Computational electromagnetics: the finite-difference time-domain method, 3 ed. Artech House Publishers, 2005. [28] A. K. Dunn, C. L. Smithpeter, A. J. Welch, and R. R. Richards-Kortum, "Finite-difference time-domain simulation of light scattering from single cells," Journal of Biomedical Optics, vol. 2, no. 3, pp. 262-266, 1997. [29] R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite-difference time-domain simulations and goniometric measurements," Applied optics, vol. 38, no. 16, pp. 3651-3661, 1999. [30] R. Drezek, A. Dunn, and R. Richards-Kortum, "A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges," Optics Express, vol. 6, no. 7, pp. 147-157, 2000. [31] Q. H. Liu, "The PSTD algorithm: A time‐domain method requiring only two cells per wavelength," Microwave and optical technology letters, vol. 15, no. 3, pp. 158-165, 1997. [32] T.-W. Lee and S. C. Hagness, "A compact wave source condition for the pseudospectral time-domain method [EM wave propagation applications]," IEEE Antennas and wireless propagation letters, vol. 3, pp. 253-256, 2004. [33] J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of computational physics, vol. 114, no. 2, pp. 185-200, 1994. [34] Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE transactions on Antennas and Propagation, vol. 43, no. 12, pp. 1460-1463, 1995. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97438 | - |
| dc.description.abstract | 在本研究中,我們採用時域擬譜法(Pseudospectral Time-Domain Method, PSTD)來模擬光在散射介質中利用包含與不包含振幅資訊光學相位共軛技術(Optical Phase Conjugation, OPC)回聚的情況,並將這兩種技術分別稱為精確振幅(Exact Amplitude, EA)OPC和常數振幅(Constant Amplitude, CA)OPC。我們針對不同的散射體密度進行EAOPC和CAOPC的模擬,並對結果進行分析,以比較在不同散射條件下這兩種技術的差異。研究結果顯示,在相同的散射體數量密度下,EAOPC的表現優於CAOPC,但隨著散射體密度增加,其表現會下降。進一步的研究結果表明,CAOPC可以應用於密集介質中,但在稀疏介質中則不適用。最後,本文也討論了這些現象背後的原因。本研究為在散射介質中操控光提供了重要見解,並希望能為生物組織中的光學應用做出貢獻。 | zh_TW |
| dc.description.abstract | We employ the pseudospectral time-domain (PSTD) method to model light refocusing through scattering media using optical phase conjugation (OPC) with and without amplitude information, referred to as exact amplitude (EA) OPC and constant amplitude (CA) OPC, respectively. Simulations of EAOPC and CAOPC are conducted across various scatterer number densities, followed by an analysis of the results to identify the differences between the two techniques under varying scattering conditions. Our results show that EAOPC outperforms CAOPC under the same scatterer number density, but its performance declines with increasing scatterer number density. Research findings further demonstrate that CAOPC is applicable in dense media but not in sparse media. Finally, the reasons behind these phenomena are also discussed. This research provides important insights into manipulating light propagation in scattering media and hopes to advance optical applications in biological tissues. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:08:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-18T16:08:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES xi Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Optical Phase Conjugation 3 2.2 Numerical Simulation Methods 8 Chapter 3 The PSTD Algorithm 11 3.1 The Basic Update Equations 11 3.2 The Nyquist Sampling Theorem 15 3.3 Numerical Dispersion and Stability 18 3.3.1 Numerical Dispersion Relation 18 3.3.2 The Courant Stability Condition 22 3.4 Simple Soft Source 23 3.5 Perfectly Matched Layer Absorbing Boundary Conditions 26 Chapter 4 Results and Discussion 36 4.1 Simulation Model 36 4.1.1 Simulation Settings 36 4.1.2 Forward and Backward Scenarios 37 4.2 Simulation Results 44 4.3 Discussion on the Findings of Optical Phase Conjugation With and Without Amplitude Information 53 Chapter 5 Summary and Future Work 57 5.1 Summary 57 5.2 Future Work 58 REFERENCE 61 | - |
| dc.language.iso | en | - |
| dc.subject | 時域擬譜法 | zh_TW |
| dc.subject | 波前整形 | zh_TW |
| dc.subject | 散射介質 | zh_TW |
| dc.subject | 光學相位共軛 | zh_TW |
| dc.subject | pseudospectral time-domain method | en |
| dc.subject | Optical phase conjugation | en |
| dc.subject | scattering media | en |
| dc.subject | wavefront shaping | en |
| dc.title | 模擬分析包含與不包含振幅資訊光學相位共軛技術於散射介質中之聚焦效果 | zh_TW |
| dc.title | Simulation Analysis of Light Refocusing Through Scattering Media via Optical Phase Conjugation With and Without Amplitude Information | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蕭惠心;宋孔彬 | zh_TW |
| dc.contributor.oralexamcommittee | Hui-Hsin Hsiao;Kung-Bin Sung | en |
| dc.subject.keyword | 光學相位共軛,散射介質,波前整形,時域擬譜法, | zh_TW |
| dc.subject.keyword | Optical phase conjugation,scattering media,wavefront shaping,pseudospectral time-domain method, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202501087 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2025-06-19 | - |
| Appears in Collections: | 光電工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf | 2.82 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
