Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97429
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李心予zh_TW
dc.contributor.advisorHsinyu Leeen
dc.contributor.author廖晏慈zh_TW
dc.contributor.authorYen-Tzu Liaoen
dc.date.accessioned2025-06-05T16:14:04Z-
dc.date.available2025-06-06-
dc.date.copyright2025-06-05-
dc.date.issued2025-
dc.date.submitted2025-05-15-
dc.identifier.citationReferences
1. Matthay, K.K., Maris, J.M., Schleiermacher, G., Nakagawara, A., Mackall, C.L., Diller, L., and Weiss, W.A. (2016). Neuroblastoma. Nat Rev Dis Primers 2, 16078. 10.1038/nrdp.2016.78.
2. Swift, C.C., Eklund, M.J., Kraveka, J.M., and Alazraki, A.L. (2018). Updates in Diagnosis, Management, and Treatment of Neuroblastoma. Radiographics 38, 566-580. 10.1148/rg.2018170132.
3. Teitz, T., Stanke, J.J., Federico, S., Bradley, C.L., Brennan, R., Zhang, J., Johnson, M.D., Sedlacik, J., Inoue, M., Zhang, Z.M., et al. (2011). Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS One 6, e19133. 10.1371/journal.pone.0019133.
4. Johnsen, J.I., Dyberg, C., and Wickstrom, M. (2019). Neuroblastoma-A Neural Crest Derived Embryonal Malignancy. Front Mol Neurosci 12, 9. 10.3389/fnmol.2019.00009.
5. Nakagawara, A., Li, Y., Izumi, H., Muramori, K., Inada, H., and Nishi, M. (2018). Neuroblastoma. Jpn J Clin Oncol 48, 214-241. 10.1093/jjco/hyx176.
6. Schilling, F.H., Spix, C., Berthold, F., Erttmann, R., Fehse, N., Hero, B., Klein, G., Sander, J., Schwarz, K., Treuner, J., et al. (2002). Neuroblastoma screening at one year of age. N Engl J Med 346, 1047-1053. 10.1056/NEJMoa012277.
7. Morgenstern, D.A., and Irwin, M.S. (2014). Neuroblastoma. In Cancer Genomics, pp. 357-376. 10.1016/b978-0-12-396967-5.00021-9.
8. DuBois, S.G., Macy, M.E., and Henderson, T.O. (2022). High-Risk and Relapsed Neuroblastoma: Toward More Cures and Better Outcomes. Am Soc Clin Oncol Educ Book 42, 1-13. 10.1200/edbk_349783.
9. Maris, J.M. (2010). Recent advances in neuroblastoma. N Engl J Med 362, 2202-2211. 10.1056/NEJMra0804577.
10. Kholodenko, I.V., Kalinovsky, D.V., Doronin, II, Deyev, S.M., and Kholodenko, R.V. (2018). Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018, 7394268. 10.1155/2018/7394268.
11. Park, J.R., Eggert, A., and Caron, H. (2008). Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am 55, 97-120, x. 10.1016/j.pcl.2007.10.014.
12. Bronner, M.E., and Simoes-Costa, M. (2016). The Neural Crest Migrating into the Twenty-First Century. Curr Top Dev Biol 116, 115-134. 10.1016/bs.ctdb.2015.12.003.
13. Kiyonari, S., and Kadomatsu, K. (2015). Neuroblastoma models for insights into tumorigenesis and new therapies. Expert Opin Drug Discov 10, 53-62. 10.1517/17460441.2015.974544.
14. Tsubota, S., and Kadomatsu, K. (2018). Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res 372, 211-221. 10.1007/s00441-018-2796-z.
15. Maris, J.M. (2005). The biologic basis for neuroblastoma heterogeneity and risk stratification. Curr Opin Pediatr 17, 7-13. 10.1097/01.mop.0000150631.60571.89.
16. Brodeur, G.M., Maris, J.M., Yamashiro, D.J., Hogarty, M.D., and White, P.S. (1997). Biology and genetics of human neuroblastomas. J Pediatr Hematol Oncol 19, 93-101. 10.1097/00043426-199703000-00001.
17. Maris, J.M., and Matthay, K.K. (1999). Molecular biology of neuroblastoma. Journal of clinical oncology 17, 2264-2264.
18. Olsen, R.R., Otero, J.H., García-López, J., Wallace, K., Finkelstein, D., Rehg, J.E., Yin, Z., Wang, Y.D., and Freeman, K.W. (2017). MYCN induces neuroblastoma in primary neural crest cells. Oncogene 36, 5075-5082. 10.1038/onc.2017.128.
19. Wu, P.Y., Liao, Y.F., Juan, H.F., Huang, H.C., Wang, B.J., Lu, Y.L., Yu, I.S., Shih, Y.Y., Jeng, Y.M., Hsu, W.M., and Lee, H. (2014). Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma. PLoS One 9, e88795. 10.1371/journal.pone.0088795.
20. Schleiermacher, G., Janoueix-Lerosey, I., and Delattre, O. (2014). Recent insights into the biology of neuroblastoma. Int J Cancer 135, 2249-2261. 10.1002/ijc.29077.
21. Higashi, M., Sakai, K., Fumino, S., Aoi, S., Furukawa, T., and Tajiri, T. (2019). The roles played by the MYCN, Trk, and ALK genes in neuroblastoma and neural development. Surg Today 49, 721-727. 10.1007/s00595-019-01790-0.
22. Mosse, Y.P., Laudenslager, M., Longo, L., Cole, K.A., Wood, A., Attiyeh, E.F., Laquaglia, M.J., Sennett, R., Lynch, J.E., Perri, P., et al. (2008). Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930-935. 10.1038/nature07261.
23. Pastor, E.R., and Mousa, S.A. (2019). Current management of neuroblastoma and future direction. Crit Rev Oncol Hematol 138, 38-43. 10.1016/j.critrevonc.2019.03.013.
24. Brodeur, G.M. (2003). Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3, 203-216. 10.1038/nrc1014.
25. Zafar, A., Wang, W., Liu, G., Wang, X., Xian, W., McKeon, F., Foster, J., Zhou, J., and Zhang, R. (2021). Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 41, 961-1021. 10.1002/med.21750.
26. Brodeur, G.M., Seeger, R.C., Barrett, A., Berthold, F., Castleberry, R.P., D'Angio, G., De Bernardi, B., Evans, A.E., Favrot, M., Freeman, A.I., and et al. (1988). International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol 6, 1874-1881. 10.1200/jco.1988.6.12.1874.
27. Brodeur, G.M., Pritchard, J., Berthold, F., Carlsen, N.L., Castel, V., Castelberry, R.P., De Bernardi, B., Evans, A.E., Favrot, M., Hedborg, F., and et al. (1993). Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 11, 1466-1477. 10.1200/jco.1993.11.8.1466.
28. Whittle, S.B., Smith, V., Doherty, E., Zhao, S., McCarty, S., and Zage, P.E. (2017). Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther 17, 369-386. 10.1080/14737140.2017.1285230.
29. Monclair, T., Brodeur, G.M., Ambros, P.F., Brisse, H.J., Cecchetto, G., Holmes, K., Kaneko, M., London, W.B., Matthay, K.K., Nuchtern, J.G., et al. (2009). The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol 27, 298-303. 10.1200/jco.2008.16.6876.
30. Tolbert, V.P., and Matthay, K.K. (2018). Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell Tissue Res 372, 195-209. 10.1007/s00441-018-2821-2.
31. Oberthuer, A., Theissen, J., Westermann, F., Hero, B., and Fischer, M. (2009). Molecular characterization and classification of neuroblastoma. Future Oncology 5, 625-639.
32. Alvarado, C.S., London, W.B., Look, A.T., Brodeur, G.M., Altmiller, D.H., Thorner, P.S., Joshi, V.V., Rowe, S.T., Nash, M.B., Smith, E.I., et al. (2000). Natural history and biology of stage A neuroblastoma: a Pediatric Oncology Group Study. J Pediatr Hematol Oncol 22, 197-205. 10.1097/00043426-200005000-00003.
33. Cohn, S.L., Pearson, A.D., London, W.B., Monclair, T., Ambros, P.F., Brodeur, G.M., Faldum, A., Hero, B., Iehara, T., Machin, D., et al. (2009). The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27, 289-297. 10.1200/jco.2008.16.6785.
34. Liang, W.H., Federico, S.M., London, W.B., Naranjo, A., Irwin, M.S., Volchenboum, S.L., and Cohn, S.L. (2020). Tailoring Therapy for Children With Neuroblastoma on the Basis of Risk Group Classification: Past, Present, and Future. JCO Clin Cancer Inform 4, 895-905. 10.1200/CCI.20.00074.
35. London, W.B., Castleberry, R.P., Matthay, K.K., Look, A.T., Seeger, R.C., Shimada, H., Thorner, P., Brodeur, G., Maris, J.M., Reynolds, C.P., and Cohn, S.L. (2005). Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children's Oncology Group. J Clin Oncol 23, 6459-6465. 10.1200/jco.2005.05.571.
36. Maris, J.M., Hogarty, M.D., Bagatell, R., and Cohn, S.L. (2007). Neuroblastoma. Lancet 369, 2106-2120. 10.1016/s0140-6736(07)60983-0.
37. Park, J.R., Bagatell, R., London, W.B., Maris, J.M., Cohn, S.L., Mattay, K.K., and Hogarty, M. (2013). Children's Oncology Group's 2013 blueprint for research: neuroblastoma. Pediatr Blood Cancer 60, 985-993. 10.1002/pbc.24433.
38. Matthay, K.K., Villablanca, J.G., Seeger, R.C., Stram, D.O., Harris, R.E., Ramsay, N.K., Swift, P., Shimada, H., Black, C.T., Brodeur, G.M., et al. (1999). Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N Engl J Med 341, 1165-1173. 10.1056/nejm199910143411601.
39. Qiu, B., and Matthay, K.K. (2022). Advancing therapy for neuroblastoma. Nat Rev Clin Oncol 19, 515-533. 10.1038/s41571-022-00643-z.
40. De Bernardi, B., Mosseri, V., Rubie, H., Castel, V., Foot, A., Ladenstein, R., Laureys, G., Beck-Popovic, M., de Lacerda, A.F., Pearson, A.D., et al. (2008). Treatment of localised resectable neuroblastoma. Results of the LNESG1 study by the SIOP Europe Neuroblastoma Group. Br J Cancer 99, 1027-1033. 10.1038/sj.bjc.6604640.
41. Zhang, D., Kaweme, N.M., Duan, P., Dong, Y., and Yuan, X. (2021). Upfront Treatment of Pediatric High-Risk Neuroblastoma With Chemotherapy, Surgery, and Radiotherapy Combination: The CCCG-NB-2014 Protocol. Front Oncol 11, 745794. 10.3389/fonc.2021.745794.
42. Zhang, Y.T., Chang, J., Xu, H.M., Li, Y.N., Zhong, X.D., and Liu, Z.L. (2019). Treatment of Neuroblastoma with a Novel Delayed Intensification Chemotherapy. Indian J Pediatr 86, 126-131. 10.1007/s12098-018-2737-6.
43. Coughlan, D., Gianferante, M., Lynch, C.F., Stevens, J.L., and Harlan, L.C. (2017). Treatment and survival of childhood neuroblastoma: Evidence from a population-based study in the United States. Pediatr Hematol Oncol 34, 320-330. 10.1080/08880018.2017.1373315.
44. Herd, F., Basta, N.O., McNally, R.J.Q., and Tweddle, D.A. (2019). A systematic review of re-induction chemotherapy for children with relapsed high-risk neuroblastoma. Eur J Cancer 111, 50-58. 10.1016/j.ejca.2018.12.032.
45. Santana, V.M., Furman, W.L., Billups, C.A., Hoffer, F., Davidoff, A.M., Houghton, P.J., and Stewart, C.F. (2005). Improved response in high-risk neuroblastoma with protracted topotecan administration using a pharmacokinetically guided dosing approach. J Clin Oncol 23, 4039-4047. 10.1200/JCO.2005.02.097.
46. Dalianis, T., Lukoseviciute, M., Holzhauser, S., and Kostopoulou, O.N. (2023). New Approaches Towards Targeted Therapy for Childhood Neuroblastoma. Anticancer Res 43, 3829-3839. 10.21873/anticanres.16570.
47. Zhu, J., Wang, J., Sun, F., Zhen, Z., Chen, T., Lu, S., Huang, J., Zhang, Y., and Sun, X. (2022). Vincristine, Irinotecan, and Temozolomide in Patients With Relapsed/Refractory Neuroblastoma. Front Oncol 12, 804310. 10.3389/fonc.2022.804310.
48. Cheung, N.K., Kushner, B.H., LaQuaglia, M., Kramer, K., Gollamudi, S., Heller, G., Gerald, W., Yeh, S., Finn, R., Larson, S.M., et al. (2001). N7: a novel multi-modality therapy of high risk neuroblastoma (NB) in children diagnosed over 1 year of age. Med Pediatr Oncol 36, 227-230. 10.1002/1096-911x(20010101)36:1<227::Aid-mpo1055>3.0.Co;2-u.
49. Zhou, X., Wang, X., Li, N., Guo, Y., Yang, X., and Lei, Y. (2023). Therapy resistance in neuroblastoma: Mechanisms and reversal strategies. Front Pharmacol 14, 1114295. 10.3389/fphar.2023.1114295.
50. Chang, T.T., and Chou, T.C. (2000). Rational approach to the clinical protocol design for drug combinations: a review. Acta Paediatr Taiwan 41, 294-302.
51. Finklestein, J.Z., Klemperer, M.R., Evans, A., Bernstein, I., Leikin, S., McCreadie, S., Grosfeld, J., Hittle, R., Weiner, J., Sather, H., and Hammond, D. (1979). Multiagent chemotherapy for children with metastatic neuroblastoma: a report from Childrens Cancer Study Group. Med Pediatr Oncol 6, 179-188. 10.1002/mpo.2950060211.
52. Kushner, B.H., Kramer, K., LaQuaglia, M.P., Modak, S., Yataghene, K., and Cheung, N.K. (2004). Reduction from seven to five cycles of intensive induction chemotherapy in children with high-risk neuroblastoma. J Clin Oncol 22, 4888-4892. 10.1200/jco.2004.02.101.
53. Berthold, F., Boos, J., Burdach, S., Erttmann, R., Henze, G., Hermann, J., Klingebiel, T., Kremens, B., Schilling, F.H., Schrappe, M., et al. (2005). Myeloablative megatherapy with autologous stem-cell rescue versus oral maintenance chemotherapy as consolidation treatment in patients with high-risk neuroblastoma: a randomised controlled trial. Lancet Oncol 6, 649-658. 10.1016/s1470-2045(05)70291-6.
54. Pearson, A.D., Pinkerton, C.R., Lewis, I.J., Imeson, J., Ellershaw, C., and Machin, D. (2008). High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol 9, 247-256. 10.1016/s1470-2045(08)70069-x.
55. Elzembely, M.M., Dahlberg, A.E., Pinto, N., Leger, K.J., Chow, E.J., Park, J.R., Carpenter, P.A., and Baker, K.S. (2019). Late effects in high-risk neuroblastoma survivors treated with high-dose chemotherapy and stem cell rescue. Pediatr Blood Cancer 66, e27421. 10.1002/pbc.27421.
56. Emmenegger, U., Man, S., Shaked, Y., Francia, G., Wong, J.W., Hicklin, D.J., and Kerbel, R.S. (2004). A comparative analysis of low-dose metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens. Cancer Res 64, 3994-4000. 10.1158/0008-5472.Can-04-0580.
57. Toolan, H.W. (1951). Successful subcutaneous growth and transplantation of human tumors in X-irradiated laboratory animals. Proc Soc Exp Biol Med 77, 572-578. 10.3181/00379727-77-18854.
58. Cassar, S., Adatto, I., Freeman, J.L., Gamse, J.T., Iturria, I., Lawrence, C., Muriana, A., Peterson, R.T., Van Cruchten, S., and Zon, L.I. (2020). Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 33, 95-118. 10.1021/acs.chemrestox.9b00335.
59. Sturtzel, C., Grissenberger, S., Bozatzi, P., Scheuringer, E., Wenninger-Weinzierl, A., Zajec, Z., Dernovšek, J., Pascoal, S., Gehl, V., Kutsch, A., et al. (2023). Refined high-content imaging-based phenotypic drug screening in zebrafish xenografts. NPJ Precis Oncol 7, 44. 10.1038/s41698-023-00386-9.
60. Kuo, C.T., Lai, Y.S., Lu, S.R., Lee, H., and Chang, H.H. (2021). Microcrater-Arrayed Chemiluminescence Cell Chip to Boost Anti-Cancer Drug Administration in Zebrafish Tumor Xenograft Model. Biology (Basel) 11. 10.3390/biology11010004.
61. Friedman, H.S., Burger, P.C., Bigner, S.H., Trojanowski, J.Q., Wikstrand, C.J., Halperin, E.C., and Bigner, D.D. (1985). Establishment and characterization of the human medulloblastoma cell line and transplantable xenograft D283 Med. J Neuropathol Exp Neurol 44, 592-605. 10.1097/00005072-198511000-00005.
62. Kuo, C.T., Wang, J.Y., Lu, S.R., Lai, Y.S., Chang, H.H., Hsieh, J.T., Wo, A.M., Chen, B.P.C., Lu, J.H., and Lee, H. (2019). A nanodroplet cell processing platform facilitating drug synergy evaluations for anti-cancer treatments. Sci Rep 9, 10120. 10.1038/s41598-019-46502-3.
63. Liu, Y., Wu, W., Cai, C., Zhang, H., Shen, H., and Han, Y. (2023). Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther 8, 160. 10.1038/s41392-023-01419-2.
64. Napoli, G.C., Figg, W.D., and Chau, C.H. (2022). Functional Drug Screening in the Era of Precision Medicine. Front Med (Lausanne) 9, 912641. 10.3389/fmed.2022.912641.
65. Rygaard, J., and Povlsen, C.O. (1969). Heterotransplantation of a human malignant tumour to "Nude" mice. Acta Pathol Microbiol Scand 77, 758-760. 10.1111/j.1699-0463.1969.tb04520.x.
66. Gökçe, F., Kaestli, A., Lohasz, C., de Geus, M., Kaltenbach, H.M., Renggli, K., Bornhauser, B., Hierlemann, A., and Modena, M. (2023). Microphysiological Drug-Testing Platform for Identifying Responses to Prodrug Treatment in Primary Leukemia. Adv Healthc Mater 12, e2202506. 10.1002/adhm.202202506.
67. Liang, M.L., Yeh, T.C., Huang, M.H., Wu, P.S., Wu, S.P., Huang, C.C., Yen, T.Y., Ting, W.H., Hou, J.Y., Huang, J.Y., et al. (2023). Application of Drug Testing Platforms in Circulating Tumor Cells and Validation of a Patient-Derived Xenograft Mouse Model in Patient with Primary Intracranial Ependymomas with Extraneural Metastases. Diagnostics (Basel) 13. 10.3390/diagnostics13071232.
68. Frappart, P.O., Walter, K., Gout, J., Beutel, A.K., Morawe, M., Arnold, F., Breunig, M., Barth, T.F., Marienfeld, R., Schulte, L., et al. (2020). Pancreatic cancer-derived organoids - a disease modeling tool to predict drug response. United European Gastroenterol J 8, 594-606. 10.1177/2050640620905183.
69. Meraz, I.M., Majidi, M., Meng, F., Shao, R., Ha, M.J., Neri, S., Fang, B., Lin, S.H., Tinkey, P.T., Shpall, E.J., et al. (2019). An Improved Patient-Derived Xenograft Humanized Mouse Model for Evaluation of Lung Cancer Immune Responses. Cancer Immunol Res 7, 1267-1279. 10.1158/2326-6066.Cir-18-0874.
70. Shang, P., Yu, L., Cao, S., Guo, C., and Zhang, W. (2022). An improved cell line-derived xenograft humanized mouse model for evaluation of PD-1/PD-L1 blocker BMS202-induced immune responses in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 54, 1497-1506. 10.3724/abbs.2022145.
71. Wang, M., Yao, L.C., Cheng, M., Cai, D., Martinek, J., Pan, C.X., Shi, W., Ma, A.H., De Vere White, R.W., Airhart, S., et al. (2018). Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. Faseb j 32, 1537-1549. 10.1096/fj.201700740R.
72. Lampreht Tratar, U., Horvat, S., and Cemazar, M. (2018). Transgenic Mouse Models in Cancer Research. Front Oncol 8, 268. 10.3389/fonc.2018.00268.
73. Macleod, K.F., and Jacks, T. Insights into cancer from transgenic mouse models. The Journal of Pathology 187, 43-60.
74. Ristevski, S. (2005). Making better transgenic models: conditional, temporal, and spatial approaches. Mol Biotechnol 29, 153-163. 10.1385/mb:29:2:153.
75. Adams, J.M., and Cory, S. (1991). Transgenic models of tumor development. Science 254, 1161-1167. 10.1126/science.1957168.
76. Yogev, O., Almeida, G.S., Barker, K.T., George, S.L., Kwok, C., Campbell, J., Zarowiecki, M., Kleftogiannis, D., Smith, L.M., Hallsworth, A., et al. (2019). In Vivo Modeling of Chemoresistant Neuroblastoma Provides New Insights into Chemorefractory Disease and Metastasis. Cancer Res 79, 5382-5393. 10.1158/0008-5472.CAN-18-2759.
77. Day, C.P., Merlino, G., and Van Dyke, T. (2015). Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163, 39-53. 10.1016/j.cell.2015.08.068.
78. Frese, K.K., and Tuveson, D.A. (2007). Maximizing mouse cancer models. Nat Rev Cancer 7, 645-658. 10.1038/nrc2192.
79. Teo, E., Lim, S.Y.J., Fong, S., Larbi, A., Wright, G.D., Tolwinski, N., and Gruber, J. (2020). A high throughput drug screening paradigm using transgenic Caenorhabditis elegans model of Alzheimer’s disease. Translational Medicine of Aging 4, 11-21. https://doi.org/10.1016/j.tma.2019.12.002.
80. Attalla, S., Taifour, T., Bui, T., and Muller, W. (2021). Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene 40, 475-491. 10.1038/s41388-020-01560-0.
81. Li, C., Lau, H.C., Zhang, X., and Yu, J. (2022). Mouse Models for Application in Colorectal Cancer: Understanding the Pathogenesis and Relevance to the Human Condition. Biomedicines 10. 10.3390/biomedicines10071710.
82. Rahavi, S.M., Aletaha, M., Farrokhi, A., Lorentzian, A., Lange, P.F., Maxwell, C.A., Lim, C.J., and Reid, G.S.D. (2023). Adaptation of the Th-MYCN Mouse Model of Neuroblastoma for Evaluation of Disseminated Disease. International Journal of Molecular Sciences 24, 12071.
83. Rasmuson, A., Segerström, L., Nethander, M., Finnman, J., Elfman, L.H., Javanmardi, N., Nilsson, S., Johnsen, J.I., Martinsson, T., and Kogner, P. (2012). Tumor development, growth characteristics and spectrum of genetic aberrations in the TH-MYCN mouse model of neuroblastoma. PLoS One 7, e51297. 10.1371/journal.pone.0051297.
84. Rahavi, S.M., Aletaha, M., Farrokhi, A., Lorentzian, A., Lange, P.F., Maxwell, C.A., Lim, C.J., and Reid, G.S.D. (2023). Adaptation of the Th-MYCN Mouse Model of Neuroblastoma for Evaluation of Disseminated Disease. Int J Mol Sci 24. 10.3390/ijms241512071.
85. Quarta, C., Cantelli, E., Nanni, C., Ambrosini, V., D'Ambrosio, D., Di Leo, K., Angelucci, S., Zagni, F., Lodi, F., Marengo, M., et al. (2013). Molecular imaging of neuroblastoma progression in TH-MYCN transgenic mice. Mol Imaging Biol 15, 194-202. 10.1007/s11307-012-0576-9.
86. Weiss, W.A., Aldape, K., Mohapatra, G., Feuerstein, B.G., and Bishop, J.M. (1997). Targeted expression of MYCN causes neuroblastoma in transgenic mice. Embo j 16, 2985-2995. 10.1093/emboj/16.11.2985.
87. A.Weiss, W., Ken Aldape, Mohapatra, G., G.Feuerstein, B., and Bishop, J.M. (1997). Targeted expression of MYCN causes neuroblastoma in transgenic mice. The EMBO Journal 16 (11), 2985-2995.
88. Cheng, A.J., Cheng, N.C., Ford, J., Smith, J., Murray, J.E., Flemming, C., Lastowska, M., Jackson, M.S., Hackett, C.S., Weiss, W.A., et al. (2007). Cell lines from MYCN transgenic murine tumours reflect the molecular and biological characteristics of human neuroblastoma. Eur J Cancer 43, 1467-1475. 10.1016/j.ejca.2007.03.008.
89. McNerney, K.O., Karageorgos, S., Ferry, G.M., Wolpaw, A.J., Burudpakdee, C., Khurana, P., Toland, C.N., Vemu, R., Vu, A., Hogarty, M.D., and Bassiri, H. (2022). TH-MYCN tumors, but not tumor-derived cell lines, are adrenergic lineage, GD2+, and responsive to anti-GD2 antibody therapy. Oncoimmunology 11, 2075204. 10.1080/2162402X.2022.2075204.
90. Iwakura, H., Ariyasu, H., Kanamoto, N., Hosoda, K., Nakao, K., Kangawa, K., and Akamizu, T. (2008). Establishment of a novel neuroblastoma mouse model. Int J Oncol 33, 1195-1199.
91. Beltran, H. (2014). The N-myc Oncogene: Maximizing its Targets, Regulation, and Therapeutic Potential. Mol Cancer Res 12, 815-822. 10.1158/1541-7786.Mcr-13-0536.
92. Hatzi, E., Breit, S., Zoephel, A., Ashman, K., Tontsch, U., Ahorn, H., Murphy, C., Schweigerer, L., and Fotsis, T. (2000). MYCN oncogene and angiogenesis: down-regulation of endothelial growth inhibitors in human neuroblastoma cells. Purification, structural, and functional characterization. Adv Exp Med Biol 476, 239-248. 10.1007/978-1-4615-4221-6_19.
93. Yen-Lin Liu, C.-N.C., Kai-Yuan Tzen, Meng-Yao Lu, I-Shing Yu, Tsai-Shan Yang, Wen-Ming Hsu, Yung-Feng Liao (2018). Preclinical Ultrasound and PET/CT Scans in the Hemizygous Th-MYCN Mice with Neuroblastoma Advances in Neuroblastoma Research.
94. Lu, J., Guan, S., Zhao, Y., Yu, Y., Woodfield, S.E., Zhang, H., Yang, K.L., Bieerkehazhi, S., Qi, L., and Li, X. (2017). The second-generation ALK inhibitor alectinib effectively induces apoptosis in human neuroblastoma cells and inhibits tumor growth in a TH-MYCN transgenic neuroblastoma mouse model. Cancer letters 400, 61-68.
95. Althoff, K., Beckers, A., Bell, E., Nortmeyer, M., Thor, T., Sprüssel, A., Lindner, S., De Preter, K., Florin, A., Heukamp, L.C., et al. (2015). A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene 34, 3357-3368. 10.1038/onc.2014.269.
96. Chesler, L., Goldenberg, D.D., Collins, R., Grimmer, M., Kim, G.E., Tihan, T., Nguyen, K., Yakovenko, S., Matthay, K.K., and Weiss, W.A. (2008). Chemotherapy-induced apoptosis in a transgenic model of neuroblastoma proceeds through p53 induction. Neoplasia 10, 1268-1274. 10.1593/neo.08778.
97. Chen, L., Esfandiari, A., Reaves, W., Vu, A., Hogarty, M.D., Lunec, J., and Tweddle, D.A. (2018). Characterisation of the p53 pathway in cell lines established from TH-MYCN transgenic mouse tumours. Int J Oncol 52, 967-977. 10.3892/ijo.2018.4261.
98. McNerney, K., Karageorgos, S., Ferry, G., Wolpaw, A., Burudpakdee, C., Khurana, P., Vemu, R., Vu, A., Hogarty, M., and Bassiri, H. (2021). Anti-GD2 antibody therapy alters the neuroblastoma tumor microenvironment and extends survival in TH-MYCN mice. bioRxiv, 2021.2006.2009.447746. 10.1101/2021.06.09.447746.
99. Takeuchi, Y., Inoue, S., and Odaka, A. (2022). Expression of programmed cell death-1 on neuroblastoma cells in TH-MYCN transgenic mice. Pediatr Surg Int 39, 6. 10.1007/s00383-022-05292-y.
100. Badachhape, A.A., Tao, L., Joshi, S., Starosolski, Z., Devkota, L., Sarkar, P., Bhandari, P., Annapragada, A.V., Barbieri, E., and Ghaghada, K.B. (2022). Multi-modal Imaging of Disease Progression in TH-MYCN Mouse Models of Neuroblastoma. bioRxiv, 2022.2003.2021.484628. 10.1101/2022.03.21.484628.
101. Liu, Y.L. (2016). Characterization of Neuroblastoma Tumor Behavior by Molecular Imaging PhD (National Taiwan University ).
102. Opitz, C.A., Litzenburger, U.M., Sahm, F., Ott, M., Tritschler, I., Trump, S., Schumacher, T., Jestaedt, L., Schrenk, D., Weller, M., et al. (2011). An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197-203. 10.1038/nature10491.
103. Wu, P.Y., Chuang, P.Y., Chang, G.D., Chan, Y.Y., Tsai, T.C., Wang, B.J., Lin, K.H., Hsu, W.M., Liao, Y.F., and Lee, H. (2019). Novel Endogenous Ligands of Aryl Hydrocarbon Receptor Mediate Neural Development and Differentiation of Neuroblastoma. ACS Chem Neurosci 10, 4031-4042. 10.1021/acschemneuro.9b00273.
104. Jamin, Y., Tucker, E.R., Poon, E., Popov, S., Vaughan, L., Boult, J.K., Webber, H., Hallsworth, A., Baker, L.C., Jones, C., et al. (2013). Evaluation of clinically translatable MR imaging biomarkers of therapeutic response in the TH-MYCN transgenic mouse model of neuroblastoma. Radiology 266, 130-140. 10.1148/radiol.12120128.
105. Shinn, P., Chen, L., Ferrer, M., Itkin, Z., Klumpp-Thomas, C., McKnight, C., Michael, S., Mierzwa, T., Thomas, C., Wilson, K., and Guha, R. (2019). High-Throughput Screening for Drug Combinations. Methods Mol Biol 1939, 11-35. 10.1007/978-1-4939-9089-4_2.
106. Wilding, J.L., and Bodmer, W.F. (2014). Cancer cell lines for drug discovery and development. Cancer Res 74, 2377-2384. 10.1158/0008-5472.Can-13-2971.
107. Woods, W.G., Gao, R.-N., Shuster, J.J., Robison, L.L., Bernstein, M., Weitzman, S., Bunin, G., Levy, I., Brossard, J., Dougherty, G., et al. (2002). Screening of Infants and Mortality Due to Neuroblastoma. New England Journal of Medicine 346, 1041-1046. 10.1056/nejmoa012387.
108. Gheeya, J.S., Chen, Q.R., Benjamin, C.D., Cheuk, A.T., Tsang, P., Chung, J.Y., Metaferia, B.B., Badgett, T.C., Johansson, P., Wei, J.S., et al. (2009). Screening a panel of drugs with diverse mechanisms of action yields potential therapeutic agents against neuroblastoma. Cancer Biol Ther 8, 2386-2395. 10.4161/cbt.8.24.10184.
109. Serra-Roma, A., and Shakhova, O. (2020). Identification of Novel Small-Molecule Kinase Modulators for the Treatment of Neuroblastoma. Oncol Ther 8, 133-145. 10.1007/s40487-020-00113-5.
110. Zaghmi, A., Aybay, E., Jiang, L., Shang, M., Steinmetz-Späh, J., Wermeling, F., Kogner, P., Korotkova, M., Östling, P., Jakobsson, P.J., et al. (2024). High-content screening of drug combinations of an mPGES-1 inhibitor in multicellular tumor spheroids leads to mechanistic insights into neuroblastoma chemoresistance. Mol Oncol 18, 317-335. 10.1002/1878-0261.13502.
111. Mayoh, C., Mao, J., Xie, J., Tax, G., Chow, S.O., Cadiz, R., Pazaky, K., Barahona, P., Ajuyah, P., Trebilcock, P., et al. (2023). High-Throughput Drug Screening of Primary Tumor Cells Identifies Therapeutic Strategies for Treating Children with High-Risk Cancer. Cancer Res 83, 2716-2732. 10.1158/0008-5472.Can-22-3702.
112. Veschi, V., Verona, F., and Thiele, C.J. (2019). Cancer Stem Cells and Neuroblastoma: Characteristics and Therapeutic Targeting Options. Front Endocrinol (Lausanne) 10, 782. 10.3389/fendo.2019.00782.
113. Eglen, R.M., Gilchrist, A., and Reisine, T. (2008). An Overview of Drug Screening Using Primary and Embryonic Stem Cells. Combinatorial Chemistry & High Throughput Screening 11, 566-572. 10.2174/138620708785204108.
114. DiMasi, J.A., Feldman, L., Seckler, A., and Wilson, A. (2010). Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther 87, 272-277. 10.1038/clpt.2009.295.
115. Gorshkov, K., Chen, C.Z., Marshall, R.E., Mihatov, N., Choi, Y., Nguyen, D.-T., Southall, N., Chen, K.G., Park, J.K., and Zheng, W. (2019). Advancing precision medicine with personalized drug screening. Drug discovery today 24, 272-278.
116. Ho, D., Quake, S.R., McCabe, E.R.B., Chng, W.J., Chow, E.K., Ding, X., Gelb, B.D., Ginsburg, G.S., Hassenstab, J., Ho, C.M., et al. (2020). Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol 38, 497-518. 10.1016/j.tibtech.2019.12.021.
117. Eglen, R., and Reisine, T. (2011). Primary cells and stem cells in drug discovery: emerging tools for high-throughput screening. Assay Drug Dev Technol 9, 108-124. 10.1089/adt.2010.0305.
118. Mitra, A., Mishra, L., and Li, S. (2013). Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol 31, 347-354. 10.1016/j.tibtech.2013.03.006.
119. Menden, M.P., Casale, F.P., Stephan, J., Bignell, G.R., Iorio, F., McDermott, U., Garnett, M.J., Saez-Rodriguez, J., and Stegle, O. (2018). The germline genetic component of drug sensitivity in cancer cell lines. Nature Communications 9, 3385. 10.1038/s41467-018-05811-3.
120. Ianevski, A., He, L., Aittokallio, T., and Tang, J. (2017). SynergyFinder: a web application for analyzing drug combination dose-response matrix data. Bioinformatics 33, 2413-2415. 10.1093/bioinformatics/btx162.
121. Driehuis, E., Kretzschmar, K., and Clevers, H. (2020). Establishment of patient-derived cancer organoids for drug-screening applications. Nature Protocols 15, 3380-3409. 10.1038/s41596-020-0379-4.
122. Eglen, R.M., Gilchrist, A., and Reisine, T. (2008). An overview of drug screening using primary and embryonic stem cells. Comb Chem High Throughput Screen 11, 566-572. 10.2174/138620708785204108.
123. Kisselbach, L., Merges, M., Bossie, A., and Boyd, A. (2009). CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures. Cytotechnology 59, 31-44. 10.1007/s10616-009-9190-3.
124. Sheng, X., Li, Z., Wang, D.L., Li, W.B., Luo, Z., Chen, K.H., Cao, J.J., Yu, C., and Liu, W.J. (2013). Isolation and enrichment of PC-3 prostate cancer stem-like cells using MACS and serum-free medium. Oncol Lett 5, 787-792. 10.3892/ol.2012.1090.
125. Driehuis, E., Kretzschmar, K., and Clevers, H. (2020). Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 15, 3380-3409. 10.1038/s41596-020-0379-4.
126. Hay, M., Thomas, D.W., Craighead, J.L., Economides, C., and Rosenthal, J. (2014). Clinical development success rates for investigational drugs. Nature biotechnology 32, 40-51.
127. Tucker, E.R., Jiménez, I., Chen, L., Bellini, A., Gorrini, C., Calton, E., Gao, Q., Che, H., Poon, E., Jamin, Y., et al. (2023). Combination Therapies Targeting ALK-aberrant Neuroblastoma in Preclinical Models. Clin Cancer Res 29, 1317-1331. 10.1158/1078-0432.Ccr-22-2274.
128. Pemovska, T., Bigenzahn, J.W., and Superti-Furga, G. (2018). Recent advances in combinatorial drug screening and synergy scoring. Curr Opin Pharmacol 42, 102-110. 10.1016/j.coph.2018.07.008.
129. Lee, M.Y., Kumar, R.A., Sukumaran, S.M., Hogg, M.G., Clark, D.S., and Dordick, J.S. (2008). Three-dimensional cellular microarray for high-throughput toxicology assays. Proc Natl Acad Sci U S A 105, 59-63. 10.1073/pnas.0708756105.
130. Lee, M.Y., Park, C.B., Dordick, J.S., and Clark, D.S. (2005). Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses. Proc Natl Acad Sci U S A 102, 983-987. 10.1073/pnas.0406755102.
131. Wong, A.H.-H., Li, H., Jia, Y., Mak, P.-I., Martins, R.P.d.S., Liu, Y., Vong, C.M., Wong, H.C., Wong, P.K., Wang, H., et al. (2017). Drug screening of cancer cell lines and human primary tumors using droplet microfluidics. Scientific Reports 7, 9109. 10.1038/s41598-017-08831-z.
132. Schuster, B., Junkin, M., Kashaf, S.S., Romero-Calvo, I., Kirby, K., Matthews, J., Weber, C.R., Rzhetsky, A., White, K.P., and Tay, S. (2020). Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat Commun 11, 5271. 10.1038/s41467-020-19058-4.
133. Villasante, A., Lopez-Martinez, M.J., Quiñonero, G., Garcia-Lizarribar, A., Peng, X., and Samitier, J. (2024). Microfluidic model of the alternative vasculature in neuroblastoma. In vitro models 3, 49-63. 10.1007/s44164-023-00064-x.
134. Wang, Y., Cao, N., Cui, X., Liu, Z., Yuan, X., Chen, S., Xu, H., Yi, M., Ti, Y., Zheng, F., and Cai, K. (2024). Detection of circulating tumor cells using a microfluidic chip for diagnostics and therapeutic prediction in mediastinal neuroblastoma. European Journal of Pediatrics 184, 93. 10.1007/s00431-024-05896-7.
135. Hsiung, L.C., Chiang, C.L., Wang, C.H., Huang, Y.H., Kuo, C.T., Cheng, J.Y., Lin, C.H., Wu, V., Chou, H.Y., Jong, D.S., et al. (2011). Dielectrophoresis-based cellular microarray chip for anticancer drug screening in perfusion microenvironments. Lab Chip 11, 2333-2342. 10.1039/c1lc20147f.
136. Ma, W.Y., Hsiung, L.C., Wang, C.H., Chiang, C.L., Lin, C.H., Huang, C.S., and Wo, A.M. (2015). A novel 96well-formatted micro-gap plate enabling drug response profiling on primary tumour samples. Sci Rep 5, 9656. 10.1038/srep09656.
137. Hsiung, L.C., Yang, C.H., Chiu, C.L., Chen, C.L., Wang, Y., Lee, H., Cheng, J.Y., Ho, M.C., and Wo, A.M. (2008). A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells. Biosens Bioelectron 24, 875-881. 10.1016/j.bios.2008.07.027.
138. Bayat Mokhtari, R., Homayouni, T.S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., and Yeger, H. (2017). Combination therapy in combating cancer. Oncotarget 8, 38022-38043. 10.18632/oncotarget.16723.
139. Goetz, L.H., and Schork, N.J. (2018). Personalized medicine: motivation, challenges, and progress. Fertil Steril 109, 952-963. 10.1016/j.fertnstert.2018.05.006.
140. Gilad, Y., Gellerman, G., Lonard, D.M., and O'Malley, B.W. (2021). Drug Combination in Cancer Treatment-From Cocktails to Conjugated Combinations. Cancers (Basel) 13. 10.3390/cancers13040669.
141. Malyutina, A., Majumder, M.M., Wang, W., Pessia, A., Heckman, C.A., and Tang, J. (2019). Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. PLoS Comput Biol 15, e1006752. 10.1371/journal.pcbi.1006752.
142. Li, K., Du, Y., Li, L., and Wei, D.Q. (2020). Bioinformatics Approaches for Anti-cancer Drug Discovery. Curr Drug Targets 21, 3-17. 10.2174/1389450120666190923162203.
143. Kuo, C.T., and Chen, C.C. (2021). Biomimetic Wax Interfaces Facilitating Rehealable Polymer Composites. Polymers (Basel) 13. 10.3390/polym13183052.
144. Kuo, C.-T., Lee, H., and Lee, S.-C. (2019). Evidence of “wired” drug-cell communication through micro-barrier well-array devices. AIP Advances 9. 10.1063/1.5115170.
145. Kuo, C.T., Wang, J.Y., Wo, A.M., Chen, B.P.C., and Lee, H. (2017). ParaStamp and Its Applications to Cell Patterning, Drug Synergy Screening, and Rewritable Devices for Droplet Storage. Adv Biosyst 1. 10.1002/adbi.201700048.
146. Chesler, L., and Weiss, W.A. (2011). Genetically engineered murine models-contribution to our understanding of the genetics, molecular pathology and therapeutic targeting of neuroblastoma. Semin Cancer Biol 21, 245-255. 10.1016/j.semcancer.2011.09.011.
147. Feldman, J.P., Goldwasser, R., Mark, S., Schwartz, J., and Orion, I. (2009). A mathematical model for tumor volume evaluation using two-dimensions. J appl quant methods 4, 455-462.
148. Nair, A.B., and Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7, 27-31. 10.4103/0976-0105.177703.
149. Garaventa, A., Poetschger, U., Valteau-Couanet, D., Luksch, R., Castel, V., Elliott, M., Ash, S., Chan, G.C.F., Laureys, G., Beck-Popovic, M., et al. (2021). Randomized Trial of Two Induction Therapy Regimens for High-Risk Neuroblastoma: HR-NBL1.5 International Society of Pediatric Oncology European Neuroblastoma Group Study. J Clin Oncol 39, 2552-2563. 10.1200/jco.20.03144.
150. Zhang, N., Fu, J.N., and Chou, T.C. (2016). Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX-1 cells in vitro: experimental design and data analysis using the combination index method. Am J Cancer Res 6, 97-104.
151. Aston, W.J., Hope, D.E., Nowak, A.K., Robinson, B.W., Lake, R.A., and Lesterhuis, W.J. (2017). A systematic investigation of the maximum tolerated dose of cytotoxic chemotherapy with and without supportive care in mice. BMC Cancer 17, 684. 10.1186/s12885-017-3677-7.
152. Harrison, S.D. (1983). An investigation of the mouse as a model for vincristine toxicity. Cancer Chemotherapy and Pharmacology 11, 62-65.
153. De Witt, M., Gamble, A., Hanson, D., Markowitz, D., Powell, C., Al Dimassi, S., Atlas, M., Boockvar, J., Ruggieri, R., and Symons, M. (2017). Repurposing Mebendazole as a Replacement for Vincristine for the Treatment of Brain Tumors. Mol Med 23, 50-56. 10.2119/molmed.2017.00011.
154. Chou, T.-C., and Martin, N. (2006). Compusyn. Versão.
155. Chou, T.-C., and Martin, N. (2007). The mass-action law-based new computer software, CompuSyn, for automated simulation of synergism and antagonism in drug combination studies. Cancer Research 67, 637-637.
156. Kreissman, S.G., Seeger, R.C., Matthay, K.K., London, W.B., Sposto, R., Grupp, S.A., Haas-Kogan, D.A., Laquaglia, M.P., Yu, A.L., Diller, L., et al. (2013). Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol 14, 999-1008. 10.1016/S1470-2045(13)70309-7.
157. Lee, A.C., Chui, C.H., Kwok, R., Lee, K.S., Fong, C.M., and Wong, W.H. (2023). Treatment and outcomes of high-risk neuroblastoma in Southeast Asia: a single-institution experience and review of the literature. Singapore Med J 64, 319-325. 10.11622/smedj.2021164.
158. Rujkijyanont, P., Photia, A., Traivaree, C., Monsereenusorn, C., Anurathapan, U., Seksarn, P., Sosothikul, D., Techavichit, P., Sanpakit, K., Phuakpet, K., et al. (2019). Clinical outcomes and prognostic factors to predict treatment response in high risk neuroblastoma patients receiving topotecan and cyclophosphamide containing induction regimen: a prospective multicenter study. BMC Cancer 19, 961. 10.1186/s12885-019-6186-z.
159. David, S., and Hamilton, J.P. (2010). Drug-induced Liver Injury. US Gastroenterol Hepatol Rev 6, 73-80.
160. Nakakuni, M., Nakano, K., Inui, A., Kobayashi, S., Deguchi, N., Mitsui, S., Kuriyama, T., and Miyazaki, S. (2025). Liver function trends in children with suspected drug-induced hepatocellular injury: A survey using an electronic medical records database. Pediatr Int 67, e15847. 10.1111/ped.15847.
161. UCLA (2005). CBC and Differential REFERENCE RANGE. UCLA Division of Laboratory Animal Medicine.
162. UCLA (2013). SERUM CHEMISTRY REFERENCE RANGE - MOUSE. https://labs.dgsom.ucla.edu/dlam/files/view/docs/diagnostic-lab-services/private/serum_chemistry_reference_ranges_mice.pdf.
163. Sharma, S.V., Haber, D.A., and Settleman, J. (2010). Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nature Reviews Cancer 10, 241-253. 10.1038/nrc2820.
164. Hicks, W.H., Bird, C.E., Gattie, L.C., Shami, M.E., Traylor, J.I., Shi, D.D., McBrayer, S.K., and Abdullah, K.G. (2022). Creation and Development of Patient-Derived Organoids for Therapeutic Screening in Solid Cancer. Current Stem Cell Reports 8, 107-117.
165. Abdolahi, S., Ghazvinian, Z., Muhammadnejad, S., Saleh, M., Asadzadeh Aghdaei, H., and Baghaei, K. (2022). Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 20, 206. 10.1186/s12967-022-03405-8.
166. Jin, J., Yoshimura, K., Sewastjanow-Silva, M., Song, S., and Ajani, J.A. (2023). Challenges and Prospects of Patient-Derived Xenografts for Cancer Research. Cancers (Basel) 15. 10.3390/cancers15174352.
167. Gao, J., Lan, J., Liao, H., Yang, F., Qiu, P., Jin, F., Wang, S., Shen, L., Chao, T., Zhang, C., and Zhu, Y. (2023). Promising preclinical patient-derived organoid (PDO) and xenograft (PDX) models in upper gastrointestinal cancers: progress and challenges. BMC Cancer 23, 1205. 10.1186/s12885-023-11434-9.
168. Motoyoshi, Y., Kaminoda, K., Saitoh, O., Hamasaki, K., Nakao, K., Ishii, N., Nagayama, Y., and Eguchi, K. (2006). Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide. Oncol Rep 16, 141-146.
169. Elfadadny, A., Ragab, R.F., Hamada, R., Al Jaouni, S.K., Fu, J., Mousa, S.A., and Ali, H. (2023). Natural bioactive compounds-doxorubicin combinations targeting topoisomerase II-alpha: anticancer efficacy and safety. Toxicology and Applied Pharmacology 461, 116405.
170. Florian, S., and Mitchison, T.J. (2016). Anti-microtubule drugs. The Mitotic Spindle: Methods and Protocols, 403-421.
171. Mills, C.C., Kolb, E., and Sampson, V.B. (2018). Development of Chemotherapy with Cell-Cycle Inhibitors for Adult and Pediatric Cancer Therapy. Cancer Research 78, 320-325. 10.1158/0008-5472.Can-17-2782.
172. Manchado, E., Guillamot, M., and Malumbres, M. (2012). Killing cells by targeting mitosis. Cell Death & Differentiation 19, 369-377. 10.1038/cdd.2011.197.
173. Škubník, J., Pavlíčková, V.S., Ruml, T., and Rimpelová, S. (2021). Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. Biology 10, 849.
174. Moore, M.J. (1991). Clinical pharmacokinetics of cyclophosphamide. Clinical pharmacokinetics 20, 194-208.
175. van der Zanden, S.Y., Qiao, X., and Neefjes, J. (2021). New insights into the activities and toxicities of the old anticancer drug doxorubicin. The FEBS journal 288, 6095-6111.
176. Hanušová, V., Boušová, I., and Skálová, L. (2011). Possibilities to increase the effectiveness of doxorubicin in cancer cells killing. Drug metabolism reviews 43, 540-557.
177. Camplejohn, R. (1980). A critical review of the use of vincristine (VCR) as a tumour cell synchronizing agent in cancer therapy. Cell Proliferation 13, 327-335.
178. Kciuk, M., Gielecińska, A., Mujwar, S., Kołat, D., Kałuzińska-Kołat, Ż., Celik, I., and Kontek, R. (2023). Doxorubicin—An Agent with Multiple Mechanisms of Anticancer Activity. Cells 12, 659.
179. Friesen, C., Uhl, M., Pannicke, U., Schwarz, K., Miltner, E., and Debatin, K.-M. (2008). DNA-ligase IV and DNA-protein kinase play a critical role in deficient caspases activation in apoptosis-resistant cancer cells by using doxorubicin. Molecular Biology of the Cell 19, 3283-3289.
180. Das, A., Paul, S., Chakrabarty, S., Dasgupta, M., and Chakrabarti, G. (2022). Microtubule-targeting agents induce ROS-mediated apoptosis in Cancer. In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects, (Springer), pp. 565-582.
181. Parker, A.L., Kavallaris, M., and McCarroll, J.A. (2014). Microtubules and their role in cellular stress in cancer. Frontiers in oncology 4, 153.
182. Tu, Y., Cheng, S., Zhang, S., Sun, H., and Xu, Z. (2013). Vincristine induces cell cycle arrest and apoptosis in SH-SY5Y human neuroblastoma cells. International journal of molecular medicine 31, 113-119.
183. Lee, J., Choi, M.-K., and Song, I.-S. (2023). Recent Advances in Doxorubicin Formulation to Enhance Pharmacokinetics and Tumor Targeting. Pharmaceuticals 16, 802.
184. Geretti, E., Leonard, S.C., Dumont, N., Lee, H., Zheng, J., De Souza, R., Gaddy, D.F., Espelin, C.W., Jaffray, D.A., Moyo, V., et al. (2015). Cyclophosphamide-Mediated Tumor Priming for Enhanced Delivery and Antitumor Activity of HER2-Targeted Liposomal Doxorubicin (MM-302). Mol Cancer Ther 14, 2060-2071. 10.1158/1535-7163.Mct-15-0314.
185. Álvarez-León, W., Mendieta, I., Delgado-González, E., Anguiano, B., and Aceves, C. (2021). Molecular Iodine/Cyclophosphamide Synergism on Chemoresistant Neuroblastoma Models. Int J Mol Sci 22. 10.3390/ijms22168936.
186. de Jonge, M.E., Huitema, A.D., Rodenhuis, S., and Beijnen, J.H. (2005). Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 44, 1135-1164. 10.2165/00003088-200544110-00003.
187. Bhat, N., Kalthur, S.G., Padmashali, S., and Monappa, V. (2018). Toxic Effects of Different Doses of Cyclophosphamide on Liver and Kidney Tissue in Swiss Albino Mice: A Histopathological Study. Ethiop J Health Sci 28, 711-716. 10.4314/ejhs.v28i6.5.
188. Desai, V.G., Herman, E.H., Moland, C.L., Branham, W.S., Lewis, S.M., Davis, K.J., George, N.I., Lee, T., Kerr, S., and Fuscoe, J.C. (2013). Development of doxorubicin-induced chronic cardiotoxicity in the B6C3F1 mouse model. Toxicol Appl Pharmacol 266, 109-121. 10.1016/j.taap.2012.10.025.
189. Zage, P.E., Kletzel, M., Murray, K., Marcus, R., Castleberry, R., Zhang, Y., London, W.B., and Kretschmar, C. (2008). Outcomes of the POG 9340/9341/9342 trials for children with high-risk neuroblastoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 51, 747-753. 10.1002/pbc.21713.
190. De Ioris, M.A., Castellano, A., Ilari, I., Garganese, M.C., Natali, G., Inserra, A., De Vito, R., Ravà, L., De Pasquale, M.D., Locatelli, F., et al. (2011). Short topotecan-based induction regimen in newly diagnosed high-risk neuroblastoma. Eur J Cancer 47, 572-578. 10.1016/j.ejca.2010.10.023.
191. Mastrangelo, S., Attinà, G., Zagaria, L., Romano, A., and Ruggiero, A. (2022). Induction Regimen in High-Risk Neuroblastoma: A Pilot Study of Highly Effective Continuous Exposure of Tumor Cells to Radio-Chemotherapy Sequence for 1 Month. The Critical Role of Iodine-131-Metaiodobenzylguanidine. Cancers (Basel) 14. 10.3390/cancers14205170.
192. Yoneda, A., Shichino, H., Hishiki, T., Matsumoto, K., Ohira, M., Kamijo, T., Kuroda, T., Soejima, T., Nakazawa, A., Takimoto, T., et al. (2024). A nationwide phase II study of delayed local treatment for children with high-risk neuroblastoma: The Japan Children's Cancer Group Neuroblastoma Committee Trial JN-H-11. Pediatr Blood Cancer 71, e30976. 10.1002/pbc.30976.
193. Mora, J., Cruz, O., Lavarino, C., Rios, J., Vancells, M., Parareda, A., Salvador, H., Suñol, M., Carrasco, R., Guillen, A., et al. (2015). Results of induction chemotherapy in children older than 18 months with stage-4 neuroblastoma treated with an adaptive-to-response modified N7 protocol (mN7). Clinical and Translational Oncology 17, 521-529. 10.1007/s12094-014-1273-8.
194. Olgun, N., Cecen, E., Ince, D., Kizmazoglu, D., Baysal, B., Onal, A., Ozdogan, O., Guleryuz, H., Cetingoz, R., Demiral, A., et al. (2022). Dinutuximab beta plus conventional chemotherapy for relapsed/refractory high-risk neuroblastoma: A single-center experience. Front Oncol 12, 1041443. 10.3389/fonc.2022.1041443.
195. Mu, P., Zhou, S., Lv, T., Xia, F., Shen, L., Wan, J., Wang, Y., Zhang, H., Cai, S., Peng, J., et al. (2023). Newly developed 3D in vitro models to study tumor–immune interaction. Journal of Experimental & Clinical Cancer Research 42, 81. 10.1186/s13046-023-02653-w.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97429-
dc.description.abstract神經母細胞瘤是一種生長快速並好發於兒童的惡性腫瘤,通常是由於交感神經系統的神經脊細胞在發育過程中產生突變而生成。在MYCN基因異常放大的高危險群中,預後極差,且需要依賴高劑量的化療來控制病情,但治療過程往往伴隨嚴重的副作用。此外,傳統的藥物篩選平台雖然促進了新療法的發展,但因為需要大量的腫瘤細胞進行篩選,且臨床轉化率偏低,使這些傳統篩選平台難以應用在個人化醫療的發展。為了解決這些問題,我們開發了一種仿生奈米液滴處理(BioNDP)平台,該平台能夠同時進行高通量以及多種藥物組合的篩選,可以大幅降低細胞數目需求至100個,同時又可以減少實驗溶液的體積至200 nL。在本研究中,我們利用 BioNDP 平台對cyclophosphamide、doxorubicin和vincristine這三種臨床常用的化療藥物進行組合篩選,並在 SK-N-DZ 神經母細胞瘤細胞株以及來自 TH-MYCN 轉基因小鼠的原代腫瘤細胞中評估其細胞毒性。研究結果顯示,我們篩選出了一種特定的藥物組合,在SK-N-DZ及原代神經母細胞瘤細胞中展現出顯著的協同細胞毒性,能夠有效誘導腫瘤細胞死亡。此外,該藥物組合在 TH-MYCN 轉基因小鼠模型中完全消除了腫瘤並顯著延長了小鼠的存活時間,與單獨使用這些藥物相比,療效顯著增強。再者,該藥物組合的安全性結果顯示,其治療並未引起明顯的血液學毒性,也未對關鍵器官如肝臟、腎臟和脾臟造成損傷。此外,當我們將該組合的劑量轉換為人類等效劑量時,發現其僅需臨床標準劑量的 11%,顯示出較低的毒性風險,進一步支持其潛在的臨床可行性。本研究突顯了 BioNDP 平台在神經母細胞瘤藥物篩選中的潛力。該平台不僅能夠在有限的原代細胞數量條件下,篩選出具協同效應的藥物組合,還能有效銜接體外與體內的研究結果,在 TH-MYCN 轉基因小鼠中展現出強效的抗腫瘤作用,且無明顯副作用,顯示出極高的臨床應用價值。因此,本研究提供了一種創新的策略,有望在未來的個人化神經母細胞瘤治療中發揮關鍵作用,提升治療效果的同時降低毒性風險,為高風險神經母細胞瘤患者帶來新的治療選擇。zh_TW
dc.description.abstractNeuroblastoma is a highly aggressive pediatric cancer with poor prognosis, especially in MYCN-amplified high-risk cases. The severe side effects of high-dose chemotherapy further complicate the treatments. Despite advances in drug screening, traditional platforms still require large cell quantities and have low translational success from bench to bed, limiting their use in personalized medicine. To overcome these challenges, we have developed the Bioinspired Nanodroplet Processing (BioNDP) platform, which has been reported to enable screening of multiple drug combinations for prostate cancer with significant reduced cell input of 100 and low assay volumes of 200 nL per well. In this study, we screened combinations of cyclophosphamide, doxorubicin, and vincristine for the cytotoxicity of SK-N-DZ neuroblastoma cells and primary cells from TH-MYCN transgenic mice using BioNDP. Our results identified specific drug combinations that exhibited strong synergistic cytotoxicity in SK-N-DZ and primary neuroblastoma cells. The combination completely eradicated tumors and significantly improved survival in TH-MYCN mice. Furthermore, neither notable hematological nor histological toxicities were observed in mice with combination treatment. Notably, the refined combination required only 11% of the standard clinical dosage when it converted to human equivalent dosage. This study highlights the BioNDP platform’s potential to identify synergistic drug combination by using limited primary cell, bridge in vitro and in vivo findings, and identify an improved combination treatment for TH-MYCN transgenic mice with minimal adverse effects. Our approach offers a promising strategy for personalized neuroblastoma treatment in future, enhancing efficacy while reducing toxicity.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-05T16:14:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-06-05T16:14:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Table of Contents v
List of Figures vii
Chapter 1. Introduction 1
1.1. Introduction of Neuroblastoma 1
1.1.1 Development and Characteristics of Neuroblastoma 1
1.1.2 Neuroblastoma Classification 2
1.1.3 Current Treatment of Neuroblastoma 3
1.2 Preclinical In Vivo Models for Anti-Cancer Drug Evaluation 5
1.2.1 Xenograft Models 5
1.2.2 Transgenic Model 8
1.3 TH-MYCN transgenic mice model 9
1.3.1 Development and Characteristics of TH-MYCN mice model 9
1.3.2 Therapeutic Evaluation Using the TH-MYCN Mice Model 10
1.4 Current Drug Screening Strategies for Neuroblastoma 11
1.4.1 Challenges in Conventional Drug Screening Platform 12
1.4.2 Cellular Microarray-Based Drug Screening 15
1.5 Bio-inspired Nanodroplet Cell-Processing Platform 16
Specific Aims 19
Chapter 2. Material & Method 20
2.1 Fabrication of BioNDP chip 20
2.2 Cell Culture 20
2.3 384-well Plate Cell Viability Assay 21
2.4 Drug Combination Screening on the BioNDP Platform 21
2.5 Primary Tumor Cell Isolation 22
2.6 Flow Cytometry 22
2.7 Animal Experiment 23
2.8 Biochemical and Hematological analyses 24
2.9 Histological analysis 24
2.10 In Vivo Dosage Calculation for animal experiments 25
2.11 Statistical Analysis 26
Chapter 3. Results 27
3.1 Optimization of the BioNDP Platform for Neuroblastoma Drug Screening 27
3.2 Single-Drug Dose-Response Evaluation and Platform Validation in SK-N-DZ Neuroblastoma Cells 29
3.3 Identification of Synergistic Drug Combinations in SK-N-DZ Neuroblastoma Cells 30
3.4 Isolation and Characterization of Primary Neuroblastoma Cells From TH-MYCN Mice 31
3.5 Screening and Validation of Drug Combinations in Primary Neuroblastoma Cell 32
3.6 Evaluating the In Vivo Efficacy of a Refined Drug Combination Using TH-MYCN Mice 33
3.7 Assessment of Side Effects in TH-MYCN Mice Treated with the Refined Drug Combination 36
Conclusion 39
Chapter 4. Discussion 40
Figures 46
References 73
Appendix 95
-
dc.language.isoen-
dc.subject化療zh_TW
dc.subject奈米液滴zh_TW
dc.subject協同效應zh_TW
dc.subject基因轉殖小鼠zh_TW
dc.subject藥物篩選zh_TW
dc.subject神經母細胞瘤zh_TW
dc.subjectDrug screeningen
dc.subjectChemotherapyen
dc.subjectBioNDPen
dc.subjectNeuroblastomaen
dc.subjectSynergyen
dc.subjectTH-MYCN miceen
dc.title利用新型奈米液滴平台篩選對於神經母細胞瘤基因轉殖小鼠最佳協同化療藥物組合之研究zh_TW
dc.titleSynergistic Drug Combination Screening Using a Nanodroplet Processing Platform to Enhance Neuroblastoma Treatment in TH-MYCN Transgenic Miceen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee許文明;郭清德;廖永豐;吳沛翊zh_TW
dc.contributor.oralexamcommitteeWen-Ming Hsu;Ching-Te Kuo;Yung-Feng Liao;Pei-Yi Wuen
dc.subject.keyword神經母細胞瘤,化療,藥物篩選,基因轉殖小鼠,協同效應,奈米液滴,zh_TW
dc.subject.keywordNeuroblastoma,BioNDP,Chemotherapy,Drug screening,TH-MYCN mice,Synergy,en
dc.relation.page108-
dc.identifier.doi10.6342/NTU202500891-
dc.rights.note未授權-
dc.date.accepted2025-05-15-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
dc.date.embargo-liftN/A-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
17.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved