請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97425完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江淳芳 | zh_TW |
| dc.contributor.advisor | Chun-Fang Chiang | en |
| dc.contributor.author | 朱泓燁 | zh_TW |
| dc.contributor.author | HONGYE ZHU | en |
| dc.date.accessioned | 2025-06-05T16:13:02Z | - |
| dc.date.available | 2025-06-06 | - |
| dc.date.copyright | 2025-06-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-05-16 | - |
| dc.identifier.citation | Acemoglu, D., & Restrepo, P. (2018). Artificial intelligence, automation and work (NBER Working Paper No. 24196). National Bureau of Economic Research.
Acemoglu, D., Autor, D., Hazell, J., & Restrepo, P. (2022). Artificial intelligence and jobs: Evidence from online vacancies. Journal of Labor Economics, 40(1), 293–340. Agarwal, R. and Prasad, J. (1999) Are Individual Differences Germane to the Acceptance of New Information Technologies? Decision Sciences, 30, 361-391. Assandri, M., Maffioletti, A., Piacenza, M., & Turati, G. (2018). Risk attitudes and preferences for redistribution: New evidence from the lab. CESifo Economic Studies, 64(3), 489–515. Breusch, T. S., & Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica, 47(5), 1287–1294. Broman-Fulks, J., Urbaniak, A., Bondy, C., & Toomey, K. (2014). Anxiety sensitivity and risk-taking behavior. Anxiety Stress Coping 27, 619–632. Buchanan, T., Sainter, P., & Saunders, G. (2013). Factors affecting faculty use of learning technologies: Implications for models of technology adoption. Journal of Computing in Higher Education, 25, 1–11. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254–280. Gärtner, M., Möllerstrom, J., & Seim, D. (2017). Individual risk preferences and the demand for redistribution. Journal of Public Economics, 153, 49–55. Hargittai, E. (2002). Second-level digital divide: Differences in people’s online skills. First Monday, 7(4). Johnson, D. G., & Verdicchio, M. (2017). AI anxiety. Journal of the Association for Information Science and Technology, 68(9), 2267–2270. Kabbiri, R., Dora, M., Kumar, V., Elepu, G., & Gellynck, X. (2017). Mobile phone adoption in agri-food sector: Are farmers in Sub-Saharan Africa connected? Technological Forecasting and Social Change, 131, 253–261. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740–755. Kleiber, C., & Zeileis, A. (2008). Applied Econometrics with R. Springer-Verlag. Lee, S.-G., Trimi, S., & Kim, C. (2013). The impact of cultural differences on technology adoption. Journal of World Business, 48(1), 20–29. Longoria, I., Bustamante-Bello, R., Ramírez-Montoya, M., & Molina, A. (2022). Systematic mapping of digital gap and gender, age, ethnicity, or disability. Sustainability 2022, 14(3), 1297. Maner, J., & Schmidt, N. (2006). The role of risk avoidance in anxiety. Behavior Therapy, 37(2), 181–189. Mao, H., Zhou, L., Ifft, J., & Ying, R. (2019). Risk preferences, production contracts and technology adoption by broiler farmers in China. China Economic Review, 54, 147–159. Marangunić, N., & Granić, A. (2015). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81–95. Mensah, I. (2020). Impact of power distance and uncertainty avoidance on the adoption of electronic government services. International Journal of E-Services and Mobile Applications, 12(3), 1–17. Musa, D., Gonzalez, L., Penney, H., & Daher, S. (2023). Technology Acceptance and Authenticity in Interactive Simulation : Experimental Study. JMIR Medical Education, 9, 1–15. Nnaji, C., Okpala, I., & Awolusi, I. (2023). Wearable Robot Acceptance: Understanding the Impact of Trialability on User Perception. Proceedings of 59th Annual Associated Schools of Construction International Conference, 4, 793-801. Peng, Z., & Dan, T. (2023). Digital dividend or digital divide? Digital economy and urban-rural income inequality in China. Telecommunications Policy, 47(9), 102616. Png, I., Tan, B., & Wee, K. (2001). Dimensions of national culture and corporate adoption of IT infrastructure. IEEE Transactions on Engineering Management, 48(1), 36–45. Rehm, P. (2009). Risks and redistribution: An individual-level analysis. Comparative political studies, 42(7), 855-881. Schmölz, A., Geppert, C., Schwarz, S., Svecnik, E., Koch, J., & Bieg, T. (2023). Assessing the second-level digital divide in Austria: A representative study on demographic differences in digital competences. Digital Education Review, 44, 61–75. Sprenger, D. A., & Schwaninger, A. (2023). Video demonstrations can predict the intention to use digital learning technologies. British Journal of Educational Technology, 54(4), 857-877. Subramony, D.P. (2014) Reframing the digital divide within a ‘Flat World’ Context: The McJulien Lecture. Paper presented at the Association for Educational Communications and Technology (AECT) International Convention 2014, Jacksonville, FL Tabak, F., & Barr, S. H. (1999). Propensity to adopt technological innovations: The impact of personal characteristics and organizational context. Journal of Engineering and Technology Management, 16(3–4), 247–270. Thewissen, S., & Rueda, D. (2019). Automation and the welfare state: Technological change as a determinant of redistribution preferences. Comparative Political Studies, 52(2), 171–208. Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). mediation: R Package for Causal Mediation Analysis. Journal of Statistical Software, 59(5), 1–38. Van Dijk, J., & Hacker, K. (2003). The digital divide as a complex and dynamic phenomenon. The Information Society, 19, 315–326. Vasilescu, M., Șerban, A., Dimian, G., Aceleanu, M., & Picatoste, X. (2020). Digital divide, skills and perceptions on digitalisation in the European Union—Towards a smart labour market. PLoS ONE, 15(4): e0232032. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. Wang, C., Boerman, S. C., Kroon, A. C., Möller, J., & de Vreese, C. H. (2024). The artificial intelligence divide: Who is the most vulnerable? New Media & Society. Wang, S., & Zhao, J. (2019). Risk preference and adoption of autonomous vehicles. Transportation Research Part A: Policy and Practice, 126, 215–229. Wang, Y. Y., & Wang, Y. S. (2019). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619–634. White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817–838. Wilson, H. J., & Daugherty, P. R. (2018). Collaborative intelligence: Humans and AI are joining forces. Harvard Business Review, 96(4), 114–123. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97425 | - |
| dc.description.abstract | 本研究探討情境式技術接觸對個體在生成式人工智慧接受過程中的心理感知、行為意向、焦慮情緒與對重分配政策態度之影響。研究採隨機分派線上問卷實驗方法,將受試者分至實驗組接受情境式技術接觸體驗(與生成式人工智慧互動和影片觀察學習)或對照組(接觸與人工智慧無關之中性資訊)。研究以技術接受模型(TAM)為理論參考,量測受試者的感知易用性、感知有用性、使用態度與行為意向指標,加入模擬課程付費意願與人工智慧產業投資意向作為後續的行為意向觀察指標,亦納入風險偏好、人工智慧焦慮情緒、重分配政策態度作為研究對象。實驗結果顯示,成功完成情境式技術接觸顯著提升對生成式人工智慧技術的感知有用性與易用性,正向影響對技術的使用態度與使用行為意向。個體風險偏好與技術接受過程中的多數心理面向存在正向關聯。單次技術接觸對重分配政策態度的影響不顯著,顯示政策支持可能主要受個體既有立場所制約。研究發現,互動式情境設計和影片觀察學習在促進新興技術接受過程中具有顯著效果。進行情境模擬和實際操作,能有效提升個體對技術的感受與信任,提高使用者的行為意向。然而單次的技術接觸雖能在短期內促進認知與焦慮情緒的改善,但對於較深層的政策態度的改變效果有限。特別是在涉及重分配政策中資源分配、補貼、課稅等爭議性議題上,受試者的價值觀仍相對穩定。因此,在政策推廣與溝通策略上,應考慮個設計差異化的接觸方式,建立持續與重複性的溝通管道,有效促進多元社會中各群體對技術創新的理解、接受與政策支持。 | zh_TW |
| dc.description.abstract | This study examines how short, hands-on exposure to generative AI affects people’s attitudes, behavior, and policy views. In a randomized experiment, participants either interacted with an AI tool or received unrelated content. Results show that AI exposure improved perceived ease of use, usefulness, and willingness to adopt the technology, while reducing perceived learning anxiety. Participants with higher risk preference were more open to AI. However, attitudes toward government redistribution policies were not significantly changed. The study suggests that short-term, structured interaction with generative AI tools can improve AI acceptance, but may not be sufficient to shift deeper-seated policy attitudes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-05T16:13:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-05T16:13:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv 目次 v 圖次 vii 表次 vii 1 簡介 1 2 文獻回顧 3 3 實驗設計 7 3.1 技術接受模型心理面向量測 8 3.2 AI焦慮情緒量測 10 3.3 重分配政策偏好量測 10 3.4 課程付費意願和投資意向量測 11 3.5 風險偏好量測 12 4 實驗結果與討論 13 4.1 敘述性統計分析 13 4.2 實驗結果統計分析 22 4.2.1 技術接受模型心理面向相關分析 25 4.2.2 課程花費與投資意向分析 26 4.2.3 AI焦慮相關分析 28 4.2.4 重分配政策意向分析 28 4.2.5 中介分析 29 5 結論 31 6 參考文獻 32 7 附錄 37 A. 問卷內容 37 B. 跨國研究 44 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 重分配政策態度 | zh_TW |
| dc.subject | 生成式人工智慧 | zh_TW |
| dc.subject | 技術接受模型 | zh_TW |
| dc.subject | 情境式技術接觸 | zh_TW |
| dc.subject | 風險偏好 | zh_TW |
| dc.subject | Redistributive Policy Attitudes | en |
| dc.subject | Technology Acceptance Model (TAM) | en |
| dc.subject | Contextualized Technology Exposure | en |
| dc.subject | Generative Artificial Intelligence | en |
| dc.subject | Risk Preference | en |
| dc.title | 生成式人工智慧接觸對技術接受的影響:一項隨機實驗研究 | zh_TW |
| dc.title | The Impact of Generative Artificial Intelligence Exposure on Technology Acceptance: A Randomized Experimental Study | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 樊家忠;郭銘傑 | zh_TW |
| dc.contributor.oralexamcommittee | Elliott Fan;Jason Kuo | en |
| dc.subject.keyword | 生成式人工智慧,技術接受模型,情境式技術接觸,風險偏好,重分配政策態度, | zh_TW |
| dc.subject.keyword | Generative Artificial Intelligence,Technology Acceptance Model (TAM),Contextualized Technology Exposure,Risk Preference,Redistributive Policy Attitudes, | en |
| dc.relation.page | 46 | - |
| dc.identifier.doi | 10.6342/NTU202500938 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-05-16 | - |
| dc.contributor.author-college | 社會科學院 | - |
| dc.contributor.author-dept | 經濟學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
