請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97404完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 彭隆瀚 | zh_TW |
| dc.contributor.advisor | Lung-Han Peng | en |
| dc.contributor.author | 賴頡樺 | zh_TW |
| dc.contributor.author | JIE-HUA LAI | en |
| dc.date.accessioned | 2025-06-05T16:07:23Z | - |
| dc.date.available | 2025-06-06 | - |
| dc.date.copyright | 2025-06-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-05-27 | - |
| dc.identifier.citation | [1] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, Vol. 187, pp. 493–494 (1960).
[2] A. Kearns, L. Tunna, C. J. Sutcliffe, and W. O’Neill, “Micromachining of copper using Nd:YAG laser radiation at 1064, 532, and 355 nm wavelengths,” Opt. Laser Tech., Vol. 33, pp. 135–143 (2001). [3] M. M. Fejer, and D. S. Hum, “Quasi-phase matching,” Vol. 8, pp. 180–198 (2007). [4] J. R. Lupton and T. S. Alster, “Laser in Dermatology: An Overview of Types and Indications,” Am J Clin Dermatol. Vol. 2, pp. 291–303 (2001). [5] J. Wichmann and S. W. Hell, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission depletion fluorescence microscopy,” Opt. Lett., Vol. 19, pp. 780–782 (1994). [6] P. Bianchini, G. Vicidomini, and A. Diaspro, “STED super resolved microscopy,” Nature method, Vol. 15, pp. 173–182 (2018). [7] DN Nikogosyan, “Nonlinear Optical Crystals: A Complete Survey,” Springer, USA, 1st ed., pp. 35–54 (2005). [8] W. H. Zachariasen, Skr. Norske Vid-Aka. Oslo 1, Mat. Naturv., pp. 1–165 (1928). [9] J. P. Remeika, and B. T. Matthias, “Ferroelectricity in the ilmenite structure,” Phys. Rev., Vol. 76, pp. 1886–1887 (1949). [10] J. F. Young, R. L. Byer, and Feigelso. Rs, “Growth of high-quality LiNbO3 crystals from congruent melt,” J. Appl. Phys., Vol. 41, pp. 2320–2325 (1970). [11] 孫玫蘭, “摻雜質鈮酸鋰光學特性研究,” 國立臺灣師範大學物理研究所之碩士論文, (2001). [12] O. Yizhar, L. Fenno, and K. Deisseroth, “The Development and Application of Optogenetics,” Annu Rev Neurosci. Vol. 34, pp. 389–412 (2011). [13] 劉俊緯, “摻雜氧化鎂鈮酸鋰準相位匹配大溫度頻寬綠光倍頻雷射晶片研製,” 國立台灣大學光電工程學研究所之碩士論文, (2010). [14] 張雅程, “光折變效應Kukhtarev方程式的線性普遍解,” 私立中原大學應用物理研究所碩士論文, (2004). [15] W. Yan, Y. Chen, S. Chen, J. Guo, G. Zhang, and Z. Xia, “Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3,” Appl. Phys. Lett., Vol. 87, pp. 212904-1–212904-3 (2005). [16] C. Takyu, H. Inaba, and H. Ito, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., Vol. 27, pp. 1221–1222 (1991). [17] N. B. Ming, D. Feng, Y. S. Zhu, Y. N. Wang, Z. Yang, and J. F. Hong, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett., Vol. 37, pp. 607–609 (1980). [18] Shintaro Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” J. Appl. Phys., Vol. 50, pp. 4599–4603 (1979). [19] W. Koechner, “Solid-State Laser Engineering,” Springer Series in Optical Sciences, Springer, London, UK, 6th ed., pp. 594–602 (2006). [20] J. A. Armstrong, P. S. Pershan, J. Ducuing, and N. Bloembergen, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev., Vol. 127, pp. 1918–1939 (1962). [21] D. A. Kleinman, G. D. Boyd, A. Ashkin, and J. M. Dziedzic, “Second-harmonic generation of light with double refraction,” Phys. Rev., Vol. 137, pp. 1305–1320 (1965). [22] G. G. Gurzadyan, D. N. Nikogosyan, and V. G. Dmitriev, “Handbook of nonlinear optical crystals,” Springer, 3rd ed., Vol. 64, pp. 6–10 (1999). [23] P. S. Pershan, N. Bloembergen, J. Ducuing, and J. A. Armstrong, “Interactions between light waves in a nonlinear dielectric,” Physical Review, Vol. 127, pp. 1918–1939 (1962). [24] G. A. Magel, Martin M. Fejer, Robert L. Byer, and Dieter H. Jundt, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE Journal of Quantum Electronics, Vol. 28, pp. 2631–2654 (1992). [25] G. D. Miller, “Periodically Poled Lithium Niobate: Modeling, Fabrication, and Nonlinear-Optical Performance,” Ph. D. Thesis, Stanford University, Stanford, California, pp. 16–17 (1998). [26] J. W. P. Schmelzer, “Nucleation Theory and Applications,” Wiley-VCH, Weinheim, pp. 182–186 (2005). [27] L. -H. Peng, Y. -C. Fang, and Y. -C. Lin, “Polarization switching of lithium niobate with giant internal field,” Appl. Phys. Lett., Vol. 74, pp. 2070–2072 (1999). [28] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of re fraction, ne, in congruent lithium niobate,” Opt. Lett., Vol. 22, pp. 1553–1555 (1997). [29] A. Foltynowicz, “Fiber-laser-based Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry”, pp. 87–89 (2009). [30] ISO/TR 11146-3:2004, Lasers and laser-related equipment – test methods for laser beam widths, divergence angles and beam propagation ratios – part3:Intrinsic and geometrical laser beam classification, propagation and details of test methods, pp. 1–9 (2004). [31] H. Zhan, Y. Chen, B. Zhou, “Refractive index modulation in periodically poled MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett. 93, pp. 222902-1–222902-3 (2008). [32] E. Wolf, M. Born, et al. “Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light,” Cambridge University Press, 7th ed., pp. 823–828 (1999). [33] G. S. Spagnolo, C. Simonetti, L. Cozzella, “Linear conoscopic holography as aid for forensic handwriting expert,” Optik-International Journal for Light and Electron Optics, pp. 2155–2160 (2013). [34] 蔡明順,“準二維非線性光子晶體結構產生雙波長紅光雷射,” 國立臺灣大學光電工程學研究所碩士論文, (2023). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97404 | - |
| dc.description.abstract | 本篇論文分為三個部分。第一部分說明鈮酸鋰晶體以及準相位匹配的背景概念。第二部分介紹週期性極化反轉結構的製程流程、光罩設計的參數,以及取樣晶體內建電場與矯頑電場的方法。第三部分則著重於光學量測,研究入射光源與所設計光罩結構之間的關係。其中,該結構包含一個在單一週期內特定寬度的空白區域(該區域不具備週期性極化反轉結構),其週期大小為16.634μm。本研究的核心關注點在於泵浦光的模態變化,以了解入射光源在非線性光學頻率轉換過程中的影響。我們利用自製的影像系統來拍攝晶體內部的模態分布,實驗結果顯示,隨著光在晶體內部的傳播距離變化,模態會發生變化,並出現類似波導耦合的效應。我們針對四個參數進行分析,以確認影響模態變化的因素:入射模態的能量分佈、模態的發散角度、實驗操作溫度以及晶體厚度。實驗結果表明,操作溫度必須高於 95°C,且發散角度必須足夠大,以確保模態耦合現象不受干擾。此外,數據顯示泵浦光在樣品結構中可根據入射特定區域的能量大小決定該區的耦合效率。透過對這些相關參數的比較與分析,我們能夠更深入理解泵浦光在樣品結構中的運作條件,進而建立對泵浦光的基礎認識,這將有助於未來對非線性光學三波混成轉換過程中的結構光研究。 | zh_TW |
| dc.description.abstract | This thesis is divided into three parts. The first part explains the background concepts of lithium niobate crystals and quasi-phase matching are introduced. The second part describes the fabrication process of the periodically poled structure, the parameters for photomask design, and the methods used to measure the built-in electric field and coercive field of the sampled crystal. The third part focuses on optical measurements, examining the relationship between the incident light source and the designed photomask structure. Notably, this structure includes a blank region of a specific width within a single period (which does not contain a periodically poled structure), with a period size of 16.634 μm. The study emphasizes the modal variations of the pump light to understand the influence of the incident light source on frequency conversion in nonlinear optics. A self-developed imaging system was used to capture the internal mode distribution within the crystal. Experimental results show that as light propagates through the crystal, the mode evolves and exhibits an effect similar to waveguide coupling. Four parameters were analyzed to determine the factors influencing mode variations: the energy distribution of the incident mode, the mode divergence angle, the experimental operating temperature, and the crystal thickness. The experimental results suggest that the operating temperature must be greater than 95°C and that the divergence angle must be sufficiently large to ensure that the mode coupling phenomenon remains unaffected. Additionally, the data show that the coupling efficiency in a specific region of the sample structure can be determined by the amount of pump light energy incident on that region. By analyzing these parameters, this study provides insights into the operational behavior of pump light within the structured crystal, laying a foundation for future research on structured light in three-wave mixing processes in nonlinear optics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-05T16:07:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-05T16:07:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
概述 ii Abstract iii 目次 v 圖次 ix 表次 xiii 第一章 簡述 1 1.1 背景知識及研究動機 1 1.2 非線性晶體介紹 3 1.3 鈮酸鋰晶體之介紹 7 1.3.1 鈮酸鋰歷史 7 1.3.2 鈮酸鋰之鐵電相 8 1.3.3 鈮酸鋰之光折變效應 11 1.3.4 鈮酸鋰之摻雜氧化物 11 1.4 週期性排列之極化方向反轉 12 1.4.1 鐵電材料受高電壓致極化反轉之介紹 12 1.4.2 高溫擴散對於表面鐵電疇產生淺層反轉 13 1.5 介紹光參量振盪器 14 第二章 非線性光學之理論知識 15 2.1 頻率轉換 15 2.1.1 介紹非線性之頻率轉換及χ2 15 2.1.2 三波耦合之方程式 16 2.1.3 泵浦光場未考慮損耗之倍(和)頻轉換 18 2.1.4 泵浦光考慮損耗之倍頻轉換 20 2.1.5 泵浦光為高斯光束之空間分布 22 2.2 雙折射相位匹配 (BPM) 23 2.3 準相位匹配(QPM) 25 2.3.1 一維空間之準相位匹配 25 2.4 光學參量振盪器 30 2.4.1 介紹光學參量產生 30 2.4.2 介紹光參振盪器 32 第三章 非線性晶體樣品及製程 34 3.1 晶體製程流程介紹 34 3.1.1 晶體製程流程介紹 34 3.1.2 晶體矯頑電場與內建電場量測 35 3.1.3 確認晶體鐵電疇之方向 37 3.2 週期性極化反轉製程 38 3.2.1 樣品製作程序 38 3.2.2 高電壓產生極化反轉(poling)之方法 41 3.2.3 鐵電域之反轉電壓設計 43 3.2.4 理論之晶體週期計算 48 3.2.5 晶體之熱膨脹現象 49 第四章 光學量測 51 4.1 光學架構 51 4.1.1 架構介紹 51 4.1.2 測量綠光雷射之光束品質M2 55 4.2 光學測量與實驗結果分析 59 4.2.1 樣品結構介紹 59 4.2.2 樣品結構之折射率分布狀況 60 4.2.3 樣品結構對於泵浦光模態的影響 62 4.2.4 極小發散角之泵浦光模態 73 4.2.5 調變溫度與厚度條件對於泵浦光模態的影響 77 第五章 結論與未來研究方向 80 5.1 結論 80 5.2 未來研究方向 82 附錄 84 A.1 錐光投影技術(Conoscopy) 84 A.1.1 實驗操作原理 84 A.1.2 理論公式與實驗影像之擬合 86 A.1.3 錐光投影之干涉圖紋分析 87 A.1.4 不同偏振型態之組合 89 A.1.5 設計之錐光投影分析軟體 91 B.1 Matlab程式碼 92 B.1.1 繞射實驗擬合 92 B.1.2 錐光投影實驗 94 參考文獻資料 95 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 模態耦合 | zh_TW |
| dc.subject | 泵浦結構光 | zh_TW |
| dc.subject | 週期性極化反轉之非線性鈮酸鋰晶體 | zh_TW |
| dc.subject | Structured Pump Beam | en |
| dc.subject | Periodically Poled Lithium Niobate Nonlinear photonic Crystal | en |
| dc.subject | Mode Coupling | en |
| dc.title | 利用週期性極化反轉之非線性鈮酸鋰晶體致模態耦合現象以塑形泵浦結構光特性 | zh_TW |
| dc.title | Structured Pump Beam Shaping via Mode Coupling in Bulk Periodically Poled Lithium Niobate Nonlinear photonic Crystal | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王維新;葉伯淳 | zh_TW |
| dc.contributor.oralexamcommittee | Way-Seen Wang;Po-Chun Yeh | en |
| dc.subject.keyword | 週期性極化反轉之非線性鈮酸鋰晶體,模態耦合,泵浦結構光, | zh_TW |
| dc.subject.keyword | Periodically Poled Lithium Niobate Nonlinear photonic Crystal,Mode Coupling,Structured Pump Beam, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202500970 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-05-28 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2025-06-06 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
