請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97392
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊雯如 | zh_TW |
dc.contributor.advisor | Wen-Ju Yang | en |
dc.contributor.author | 姜禹安 | zh_TW |
dc.contributor.author | Yu-An Chiang | en |
dc.date.accessioned | 2025-05-22T16:11:47Z | - |
dc.date.available | 2027-06-01 | - |
dc.date.copyright | 2025-05-22 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-05-09 | - |
dc.identifier.citation | 1. 張正、宋珮綺、張芝瑄、陳盈君、林永浩. 2006. 臺灣白及種子發育與貯藏之研究. 植物種苗 8: 29–38.
2. 曹進義、陳威臣、吳姿穎、夏奇鈮. 2021. 種子成熟度與播種介質對台灣白及種子瓶外非共生發芽之影響. 臺灣農業研究 70: 129–139. 3. 林郁進、陳忠川、葉豐次、邱年永、蔡新聲. 1994. 臺灣白及之組織培養Ⅰ.種子成熟度及前處理對種子萌芽與小苗發育之影響. 中華農學研究 43:40-50. 4. 謝孟哲. 2019. 白及屬植物無菌播種育苗與種球貯存之研究. . 國立中興大學園藝學系碩士學位論文. 臺中市. 5. 謝孟哲. 2023. 蘭科臺灣白及菌根內與根域土真菌多樣性與功能探討. 國立屏東科技大學森林系所碩士學位論文. 屏東縣. 6. Abarenkov, K., N. Rh, L. Kh, T. Afs, M. Tw, F. Tg, P. J, et al. 2024. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic acids research 52. 7. Anderson, A. B. 1991. Symbiotic and asymbiotic germination and growth of Spiranthes magnicamporum (Orchidaceae). Lindleyana 6: 183–186. 8. Arditti, J., and A. K. A. Ghani. 2000. Numerical and physical properties of orchid seeds and their biological implications. The New Phytologist 145: 367–421. 9. Balducci, M. G., J. Calevo, and K. J. Duffy. 2024. Orchid Mycorrhizal Communities Associated With Orchis italica Are Shaped by Ecological Factors and Geographical Gradients. Journal of Biogeography 52: 544-557. 10. Batty, A. L., K. W. Dixon, M. Brundrett, and K. Sivasithamparam. 2001. Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. New Phytologist 152: 511–520. 11. van den Berg, C., D. H. Goldman, J. V. Freudenstein, A. M. Pridgeon, K. M. Cameron, and M. W. Chase. 2005. An overview of the phylogenetic relationships within Epidendroideae inferred from multiple DNA regions and recircumscription of Epidendreae and Arethuseae (Orchidaceae). American Journal of Botany 92: 613–624. 12. Bernard, N. 1909. L’évolution dans la symbiose les orchidées et leurs champignons commensaux. Masson et Cie, Éditeurs, Paris. 13. Bidartondo, M. I., B. Burghardt, G. Gebauer, T. D. Bruns, and D. J. Read. 2004. Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proceedings of the Royal Society of London. Series B: Biological Sciences 271: 1799–1806. 14. Bidartondo, M. I., and D. J. Read. 2008. Fungal specificity bottlenecks during orchid germination and development. Molecular Ecology 17: 3707–3716. 15. Brundrett, M. C., A. Scade, A. L. Batty, K. W. Dixon, and K. Sivasithamparam. 2003. Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats. Mycological Research 107: 1210–1220. 16. Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13: 581–583. 17. Cameron, D. D., I. Johnson, D. J. Read, and J. R. Leake. 2008. Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytologist 180: 176–184. 18. Cao, Q., X. Sun, K. Rajesh, N. Chalasani, K. Gelow, B. Katz, V. H. Shah, et al. 2021. Effects of Rare Microbiome Taxa Filtering on Statistical Analysis. Frontiers in Microbiology 11. 19. Chen, L., Y.-C. Wang, L.-Y. Qin, H.-Y. He, X.-L. Yu, M.-Z. Yang, and H.-B. Zhang. 2019. Dynamics of fungal communities during Gastrodia elata growth. BMC Microbiology 19: 158. 20. Cruz-Higareda, J. B., B. S. Luna-Rosales, and A. Barba- Alvarez. 2015. A novel seed baiting technique for the epiphytic orchid Rhynchostele cervantesii, a means to acquire mycorrhizal fungi from protocorms. Lankesteriana 15: 67–76. 21. Darwin, C. 1862. The Various Contrivances by which Orchids are Fertilised by Insects. John Murray, UK. 22. De hert, K., O. Honnay, and H. Jacquemyn. 2012. Germination failure is not a critical stage of reproductive isolation between three congeneric orchid species. American Journal of Botany 99: 1884–1890. 23. De hert, K., H. Jacquemyn, S. Provoost, and O. Honnay. 2013. Absence of Recruitment Limitation in Restored Dune Slacks Suggests That Manual Seed Introduction Can Be a Successful Practice for Restoring Orchid Populations. Restoration Ecology 21: 159–162. 24. Dearnaley, J. D. W., and D. D. Cameron. 2017. Nitrogen transport in the orchid mycorrhizal symbiosis – further evidence for a mutualistic association. New Phytologist 213: 10–12. 25. Dearnaley, J. D. W., F. Martos, and M.-A. Selosse. 2012. 12 Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects. In B. Hock [ed.], Fungal Associations, 207–230. Springer, Berlin, Heidelberg. 26. Dearnaley, J., S. Perotto, and M.-A. Selosse. 2016. Structure and development of orchid mycorrhizas. Molecular Mycorrhizal Symbiosis, 63–86. John Wiley & Sons. 27. Diez, J. M. 2007. Hierarchical Patterns of Symbiotic Orchid Germination Linked to Adult Proximity and Environmental Gradients. Journal of Ecology 95: 159–170. 28. Ehrlén, J., and O. Eriksson. 2000. Dispersal Limitation and Patch Occupancy in Forest Herbs. Ecology 81: 1667–1674. 29. Ercole, E., M. Adamo, M. Rodda, G. Gebauer, M. Girlanda, and S. Perotto. 2015. Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio. New Phytologist 205: 1308–1319. 30. Eriksson, O., and J. Ehrlén. 1992. Seed and microsite limitation of recruitment in plant populations. Oecologia 91: 360–364. 31. Favre-Godal, Q., L. Gourguillon, S. Lordel-Madeleine, K. Gindro, and P. Choisy. 2020. Orchids and their mycorrhizal fungi: an insufficiently explored relationship. Mycorrhiza 30: 5–22. 32. Fay, M. F. 2018. Orchid conservation: how can we meet the challenges in the twenty-first century? Botanical Studies 59: 16. 33. Freestone, M., N. Reiter, N. D. Swarts, and C. C. Linde. 2024. Temporal turnover of Ceratobasidiaceae orchid mycorrhizal fungal communities with ontogenetic and phenological development in Prasophyllum (Orchidaceae). Annals of Botany 134: 933–948. 34. Freudenstein, J. V., and M. W. Chase. 2015. Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great flowering plant radiations: progressive specialization and diversification. Annals of Botany 115: 665–681. 35. Gebauer, G., and M. Meyer. 2003. 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytologist 160: 209–223. 36. Govaerts, R., Campacci, D. Baptista, P. Cribb, A. George, K. Kreuz, and J. Wood. 2008. World Checklist of Orchidaceae. The Board of Trustees of the Royal Botanic Gardens, Kew. 37. Han, S., R. Wang, X. Hong, C. Wu, S. Zhang, and X. Kan. 2022. Plastomes of Bletilla (Orchidaceae) and Phylogenetic Implications. International Journal of Molecular Sciences 23: 10151. 38. Harrison, C. R. 1977. Ultrastructural and Histochemical Changes during the Germination of Cattleya aurantiaca (Orchidaceae). Botanical Gazette 138: 41–45. 39. Hatté, C., A. Zazzo, and M.-A. Selosse. 2020. The radiocarbon age of mycoheterotrophic plants. New Phytologist 227: 1284–1288. 40. Hu, W. H., Y. H. Yang, S. I. Liaw, and C. Chang. 2013. Cryopreservation the seeds of a Taiwanese terrestrial orchid, Bletilla formosana (Hayata) Schltr. by vitrification. Botanical Studies 54: 33. 41. Huang, W.-C., Z.-J. Liu, K. Jiang, Y.-B. Luo, X.-H. Jin, Z. Zhang, R.-H. Xu, et al. 2022. Phylogenetic analysis and character evolution of tribe Arethuseae (Orchidaceae) reveal a new genus Mengzia. Molecular Phylogenetics and Evolution 167: 107362. 42. Ichihashi, S. 1990. Effects of light on root formation of Bletilla striata seedlings. Lindleyana 5: 140–143. 43. Jacquemyn, H., R. Brys, B. Lievens, and T. Wiegand. 2012a. Spatial variation in below-ground seed germination and divergent mycorrhizal associations correlate with spatial segregation of three co-occurring orchid species. Journal of Ecology 100: 1328–1337. 44. Jacquemyn, H., R. Brys, K. Vandepitte, O. Honnay, I. Roldán-Ruiz, and T. Wiegand. 2007. A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytologist 176: 448–459. 45. Jacquemyn, H., A. Deja, K. D. Hert, B. C. Bailarote, and B. Lievens. 2012b. Variation in Mycorrhizal Associations with Tulasnelloid Fungi among Populations of Five Dactylorhiza Species. PLOS ONE 7: e42212. 46. Jacquemyn, H., V. Merckx, R. Brys, D. Tyteca, B. P. A. Cammue, O. Honnay, and B. Lievens. 2011. Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytologist 192: 518–528. 47. Jacquemyn, H., and V. S. F. T. Merckx. 2019. Mycorrhizal symbioses and the evolution of trophic modes in plants. Journal of Ecology 107: 1567–1581. 48. Johansson, V. A., and O. Eriksson. 2013. Recruitment limitation, germination of dust seeds, and early development of underground seedlings in six Pyroleae species. Botany 91: 17–24. 49. Johnson, T. R., and M. E. Kane. 2012. Effects of temperature and light on germination and early seedling development of the pine pink orchid (Bletia purpurea). Plant Species Biology 27: 174–179. 50. Kauth, P., M. Kane, and W. Vendrame. 2011. Comparative in vitro germination ecology of Calopogon tuberosus var. tuberosus (Orchidaceae) across its geographic range. In Vitro Cellular & Developmental Biology - Plant 47: 148–156. 51. Lee, Y.-I., C.-K. Yang, and G. Gebauer. 2015. The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia. Annals of botany 116: 423–435. 52. Leroux, G., D. Barabé, and J. Vieth. 1997. Morphogenesis of the protocorm of Cypripedium acaule (Orchidaceae). Plant Systematics and Evolution 205: 53–72. 53. Li, T., W. Yang, S. Wu, M.-A. Selosse, and J. Gao. 2021. Progress and Prospects of Mycorrhizal Fungal Diversity in Orchids. Frontiers in Plant Science 12. 54. Li, Y.-Y., M. Boeraeve, Y.-H. Cho, H. Jacquemyn, and Y.-I. Lee. 2022. Mycorrhizal Switching and the Role of Fungal Abundance in Seed Germination in a Fully Mycoheterotrophic Orchid, Gastrodia confusoides. Frontiers in Plant Science 12: 775290. 55. Li, Y.-Y., S.-X. Guo, and Y.-I. Lee. 2020. Ultrastructural changes during the symbiotic seed germination of Gastrodia elata with fungi, with emphasis on the fungal colonization region. Botanical Studies 61: 4. 56. Liao, B. 2020. The first complete chloroplast genome sequence of the medicinal plant Bletilla formosana (Orchidaceae). Mitochondrial DNA Part B 5: 286–287. 57. Liebel, H. T., M. I. Bidartondo, and G. Gebauer. 2015. Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance? Annals of Botany 115: 251–261. 58. Liebel, H. T., M. I. Bidartondo, K. Preiss, R. Segreto, M. Stöckel, M. Rodda, and G. Gebauer. 2010. C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. American Journal of Botany 97: 903–912. 59. Lin, C.-T. 2018. QGIS template for diplaying species distribution by horizontal and vertical view in Taiwan. https://github.com/mutolisp/distrmap_tw.qgis. 60. Magrini, S., D. Barreca, and L. Zucconi. 2019. A rapid double-staining technique to improve seed viability testing in terrestrial orchids. Plant Biosystems 153: 877–882. 61. Masuhara, G., and K. Katsuya. 1989. Effects of mycorrhizal fungi on seed germination and early growth of three Japanese terrestrial orchids. Scientia Horticulturae 37: 331–337. 62. McCormick, M., R. Burnett, and D. Whigham. 2021. Protocorm-Supporting Fungi Are Retained in Roots of Mature Tipularia discolor Orchids as Mycorrhizal Fungal Diversity Increases. Plants 10: 1251. 63. McCormick, M. K., and H. Jacquemyn. 2014. What constrains the distribution of orchid populations? New Phytologist 202: 392–400. 64. McCormick, M. K., D. Lee Taylor, K. Juhaszova, R. K. Burnett Jr, D. F. Whigham, and J. P. O’neill. 2012. Limitations on orchid recruitment: not a simple picture. Molecular Ecology 21: 1511–1523. 65. McCormick, M. K., D. L. Taylor, D. F. Whigham, and R. K. Burnett Jr. 2016. Germination patterns in three terrestrial orchids relate to abundance of mycorrhizal fungi. Journal of Ecology 104: 744–754. 66. McCormick, M. K., D. F. Whigham, and A. Canchani-Viruet. 2018. Mycorrhizal fungi affect orchid distribution and population dynamics. New Phytologist 219: 1207–1215. 67. McCormick, M. K., D. F. Whigham, and J. O’Neill. 2004. Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytologist 163: 425–438. 68. McKendrick, S. L., J. R. Leake, D. L. Taylor, and D. J. Read. 2000. Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytologist 145: 523–537. 69. McKendrick, S. L., J. R. Leake, D. L. Taylor, and D. J. Read. 2002. Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytologist 154: 233–247. 70. Merckx, V. S. F. T. 2013. Mycoheterotrophy: An Introduction. In V. Merckx [ed.], Mycoheterotrophy: The Biology of Plants Living on Fungi, 1–17. Springer, New York, NY. 71. Miura, C., M. Saisho, T. Yagame, M. Yamato, and H. Kaminaka. 2019. Bletilla striata (Orchidaceae) Seed Coat Restricts the Invasion of Fungal Hyphae at the Initial Stage of Fungal Colonization. Plants 8: 280. 72. Münzbergová, Z., and T. Herben. 2005. Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia 145: 1–8. 73. Nagashima, T. 1982. Studies on the Seed Germination and Embryogenesis in the Bletilla striata Rchb. f. and Calanthe discolor Lindl. 74. Nishimura, G. 1991. Comparative Morphology of Cotyledonous Orchid Seedlings. Lindleyana 6: 140–146. 75. Ogawa, N., T. Nagata, H. Kitazato, and N. Ohkouchi. 2010. Ultra-sensitive elemental analyzer/isotope ratio mass spectrometer for stable nitrogen and carbon isotope analyses. Earth, Life and Isotopes: 339–353. 76. Ogura-Tsujita, Y., G. Gebauer, T. Hashimoto, H. Umata, and T. Yukawa. 2009. Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proceedings of the Royal Society B: Biological Sciences 276: 761–767. 77. Ogura-Tsujita, Y., G. Gebauer, H. Xu, Y. Fukasawa, H. Umata, K. Tetsuka, M. Kubota, et al. 2018. The giant mycoheterotrophic orchid Erythrorchis altissima is associated mainly with a divergent set of wood-decaying fungi. Molecular Ecology 27: 1324–1337. 78. Ogura-Tsujita, Y., and T. Yukawa. 2008. High mycorrhizal specificity in a widespread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). American Journal of Botany 95: 93–97. 79. Pecoraro, L., H. N. Rasmussen, S. I. F. Gomes, X. Wang, V. S. F. T. Merckx, L. Cai, and F. N. Rasmussen. 2021. Fungal diversity driven by bark features affects phorophyte preference in epiphytic orchids from southern China. Scientific Reports 11: 11287. 80. Phillips, R. D., M. D. Barrett, K. W. Dixon, and S. D. Hopper. 2011. Do mycorrhizal symbioses cause rarity in orchids? Journal of Ecology 99: 858–869. 81. Preiss, K., and G. Gebauer. 2008. A methodological approach to improve estimates of nutrient gains by partially myco-heterotrophic plants. Isotopes in Environmental and Health Studies 44: 393–401. 82. Probert, R. J., R. D. Smith, and P. Birch. 1986. Germination Responses to Light and Alternating Temperatures in European Populations of Dactylis glomerata L. V. The Principle Components of the Alternating Temperature Requirement. New Phytologist 102: 133–142. 83. Qian, C.-D., F.-S. Jiang, H.-S. Yu, Y. Shen, Y.-H. Fu, D.-Q. Cheng, L.-S. Gan, and Z.-S. Ding. 2015. Antibacterial Biphenanthrenes from the Fibrous Roots of Bletilla striata. Journal of Natural Products 78: 939–943. 84. Qin, J., W. Zhang, Z.-W. Ge, and S.-B. Zhang. 2019. Molecular identifications uncover diverse fungal symbionts of Pleione (Orchidaceae). Fungal Ecology 37: 19–29. 85. Rasmussen, H. N. 1995. Terrestrial Orchids: From Seed to Mycotrophic Plant. Cambridge University Press, Cambridge. 86. Rasmussen, H. N., K. W. Dixon, J. Jersáková, and T. Těšitelová. 2015. Germination and seedling establishment in orchids: a complex of requirements. Annals of Botany 116: 391–402. 87. Rasmussen, H. N., and D. F. Whigham. 1993. Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. American Journal of Botany 80: 1374–1378. 88. Schweiger, J. 2019. Partial mycoheterotrophy in orchids. Doctoral thesis. Universität Bayreuth, Fakultät für Biologie, Chemie und Geowissenschaften, Bayreuth. 89. Seaton, P. T., and N. S. J. Hailes. 1989. Effect of temperature and moisture content on the viability of Cattleya aurantiaca seed. In H. W. Pritchard [ed.], Modern Methods in Orchid Conservation, 17–30. Cambridge University Press, Cambridge. 90. Shefferson, R. P., H. Jacquemyn, T. Kull, and M. J. Hutchings. 2020. The demography of terrestrial orchids: life history, population dynamics and conservation. Botanical Journal of the Linnean Society 192: 315–332. 91. Smith, S. E., and D. Read. 2008. The mycorrhizas of green orchids. In S. E. Smith, and D. Read [eds.], Mycorrhizal Symbiosis (3rd Edition), 419–457. Academic Press, London. 92. Stewart, S. L., L. W. Zettler, J. Minso, and P. M. Brown. 2003. Symbiotic Germination and Reintroduction of Spiranthes brevilabris Lindley, an Endangered Orchid Native to Florida. Selbyana 24: 64–70. 93. Su, H. 2000. Bletilla formosana (Hayata) Schltr. Flora of Taiwan, 758–760. Department of Botany, National Taiwan University, Taiwan. 94. Suetsugu, K., T. F. Haraguchi, and I. Tayasu. 2022. Novel mycorrhizal cheating in a green orchid: Cremastra appendiculata depends on carbon from deadwood through fungal associations. New Phytologist 235: 333–343. 95. Suetsugu, K., J. Matsubayashi, and I. Tayasu. 2020. Some mycoheterotrophic orchids depend on carbon from dead wood: novel evidence from a radiocarbon approach. New Phytologist 227: 1519–1529. 96. Suetsugu, K., T. Ohta, and I. Tayasu. 2024. Partial mycoheterotrophy in the leafless orchid Eulophia zollingeri specialized on wood-decaying fungi. Mycorrhiza 34: 33–44. 97. Swarts, N. D., and K. W. Dixon. 2009. Terrestrial orchid conservation in the age of extinction. Annals of Botany 104: 543–556. 98. Swarts, N., and K. W. Dixon. 2017. Conservation Methods for Terrestrial Orchids. University Of Tasmania. 99. Tao, Liu, Hyde, Liu, and Yu. 2008. Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea. Fungal Diversity 33: 101–122. 100. Taylor, D. L., and M. K. McCormick. 2008. Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytologist 177: 1020–1033. 101. Teˇšitelová, T., J. Teˇšitel, J. Jersáková, G. Rˇíhová, and M.-A. Selosse. 2012. Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology. American Journal of Botany 99: 1020–1032. 102. Thompson, K., and J. P. Grime. 1983. A Comparative Study of Germination Responses to Diurnally-Fluctuating Temperatures. Journal of Applied Ecology 20: 141–156. 103. Umata, H., S. W. Gale, K. Suetsugu, and Y. Ota. 2024. Variable, life stage-dependent mycorrhizal specificity and its developmental consequences in the fully myco-heterotrophic orchid Cyrtosia septentrionalis. Mycoscience 65: 68–78. 104. Van Waes, J. 1984. In vitro studie van de kiemingsfysiologie van Westeuropese orchideeën. dissertation. Ghent University. 105. Ventre Lespiaucq, A., H. Jacquemyn, H. N. Rasmussen, and M. Méndez. 2021. Temporal turnover in mycorrhizal interactions: a proof of concept with orchids. New Phytologist 230: 1690–1699. 106. Veyret. 1974. Development of the embryo and the young seedling stages of orchid. In C. Withner [eds.], The Orchids: Scientific Studies, 223–265. John Wiley & Sons Inc, New York. 107. Vinogradova, T. N., and E. V. Andronova. 2002. Development of Orchid Seeds and Seedlings. In T. Kull, and J. Arditti [eds.], Orchid Biology: Reviews and Perspectives, VIII, 167–234. Springer Netherlands, Dordrecht. 108. Wang, D., G. Gebauer, H. Jacquemyn, F. E. Zahn, S. I. F. Gomes, J. Lorenz, H. van der Hagen, et al. 2023. Variation in mycorrhizal communities and the level of mycoheterotrophy in grassland and Forest populations of Neottia ovata (Orchidaceae). Functional Ecology 37: 1948–1961. 109. Wang, D., J. Lerou, J. Nuytinck, S. I. F. Gomes, H. Jacquemyn, and V. S. F. T. Merckx. 2022. Root-associated Fungi in Orchidaceae: Diversity, Phylogeny, Ecology, and Outstanding Questions. 2022.12.16.519622. 110. Waud, M., R. Brys, W. Van Landuyt, B. Lievens, and H. Jacquemyn. 2017. Mycorrhizal specificity does not limit the distribution of an endangered orchid species. Molecular Ecology 26: 1687–1701. 111. Waud, M., P. Busschaert, S. Ruyters, H. Jacquemyn, and B. Lievens. 2014. Impact of primer choice on characterization of orchid mycorrhizal communities using 454 pyrosequencing. Molecular Ecology Resources 14: 679–699. 112. Weerasuriya, N. M., K. Kukolj, R. Spencer, D. Sveshnikov, and R. G. Thorn. 2022. Multiple Fungi May Connect the Roots of an Orchid (Cypripedium reginae) and Ash (Fraxinus nigra) in Western Newfoundland. Frontiers in Fungal Biology 3. 113. Whigham, D. F., J. P. O’Neill, H. N. Rasmussen, B. A. Caldwell, and M. K. McCormick. 2006. Seed longevity in terrestrial orchids – Potential for persistent in situ seed banks. Biological Conservation 129: 24–30. 114. White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 315–322. Academic Press, Inc., New York, NY. 115. Xie, C., C. Hu, X. Deng, W. Shao, Y. Gao, W. Huang, and X. Song. 2023. Relationship between Flower Color and Cellular Physicochemical Factors in Bletilla striata. Horticulturae 9: 426. 116. Yam, T. W., E. C. Yeung, X.-L. Ye, S.-Y. Zee, and J. Arditti. 2002. Embryology-Seeds. In T. Kull, and J. Arditti [eds.], Orchid Biology: Reviews and Perspectives, VIII, 287–385. Springer Netherlands, Dordrecht. 117. Yamamoto, T., C. Miura, M. Fuji, S. Nagata, Y. Otani, T. Yagame, M. Yamato, and H. Kaminaka. 2017. Quantitative evaluation of protocorm growth and fungal colonization in Bletilla striata (Orchidaceae) reveals less-productive symbiosis with a non-native symbiotic fungus. BMC Plant Biology 17: 50. 118. Yamashita, Y., A. Kinoshita, T. Yagame, Y. Ogura-Tsujita, J. Yokoyama, and T. Yukawa. 2020. Physisporinus is an important mycorrhizal partner for mycoheterotrophic plants: Identification of mycorrhizal fungi of three Yoania species. Mycoscience 61: 219–225. 119. Yeung, E. C. 2017. A perspective on orchid seed and protocorm development. Botanical Studies 58: 33. 120. Yokoya, K., A. S. Jacob, L. W. Zettler, J. P. Kendon, M. Menon, J. Bell, L. Rajaovelona, and V. Sarasan. 2021. Fungal Diversity of Selected Habitat Specific Cynorkis Species (Orchidaceae) in the Central Highlands of Madagascar. Microorganisms 9: 792. 121. Yu, P.-S., T.-C. Yang, and C.-C. Kuo. 2006. Evaluating Long-Term Trends in Annual and Seasonal Precipitation in Taiwan. Water Resources Management 20: 1007–1023. 122. Zahn, F. 2020. How widely distributed is partial mycoheterotrophy among green, terrestrial orchids in Taiwan? A multi-element stable isotope approach with a selection of species. University of Bayreuth, Germany. 123. Zahn, F. E., H. Jiang, Y.-I. Lee, and G. Gebauer. 2024. Mode of carbon gain and fungal associations of Neuwiedia malipoensis within the evolutionarily early-diverging orchid subfamily Apostasioideae. Annals of Botany 134: 511–520. 124. Zahn, F. E., Y.-I. Lee, and G. Gebauer. 2022. Fungal association and root morphology shift stepwise during ontogenesis of orchid Cremastra appendiculata towards autotrophic nutrition. AoB PLANTS 14: 1–10. 125. Zeng, X., H. Diao, Z. Ni, L. Shao, K. Jiang, C. Hu, Q. Huang, and W. Huang. 2021a. Temporal Variation in Community Composition of Root Associated Endophytic Fungi and Carbon and Nitrogen Stable Isotope Abundance in Two Bletilla Species (Orchidaceae). Plants 10: 18. 126. Zeng, X., Z. Ni, H. Diao, K. Jiang, C. Hu, L. Shao, and W. Huang. 2021b. Root Endophytic Fungal Community and Carbon and Nitrogen Stable Isotope Patterns Differ among Bletilla Species (Orchidaceae). Journal of Fungi 7: 69. 127. Zettler, L. W., and K. A. Piskin. 2011. Mycorrhizal Fungi from Protocorms, Seedlings and Mature Plants of the Eastern Prairie Fringed Orchid, Platanthera leucophaea (Nutt.) Lindley: A Comprehensive List to Augment Conservation. The American Midland Naturalist 166: 29–39. 128. Zi, X.-M., C.-L. Sheng, U. M. Goodale, S.-C. Shao, and J.-Y. Gao. 2014. In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae). Mycorrhiza 24: 487–499. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97392 | - |
dc.description.abstract | 蘭科是植物最大的科之一,具有極高的物種多樣性,然而近年卻逐漸受到環境變遷、棲地干擾與過度採集的威脅。其中,白及屬為臺灣原生蘭中少數同時具藥用與觀賞價值的蘭科植物。相較其它蘭科植物的胚發育,臺灣白及,具有較多的胚細胞數與分化、種子可於水中萌發,以及相對廣泛的分佈等特性,因此本研究欲探討此物種於原生地的萌發限制因子,以及原球莖是否必須與真菌共生。本研究於臺灣全島六處臺灣白及原生地進行種子原地萌發試驗,將超過三千個種子袋埋設於各樣區,分別埋藏於植株旁與遠離植株處,每三個月回收部分種子袋,計算萌發率與種子活性。使用illumina MiSeq分析萌發原球莖中的真菌菌相,以墨水染色確定真菌是否定殖,並以穩定同位素分析確認萌發的原球莖是否仰賴真菌提供營養。結果顯示,臺灣白及種子於其原生地可於一個月內萌發,且於特定樣區萌發率可達近60%。埋藏於臺灣白及植株附近與遠離植株的種子袋的萌發率並無顯著差異,且距離植株的距離與方位亦不影響萌發率,顯示離植株之遠近非影響種子萌發之關鍵因素。然而,萌發率在不同樣區間具有顯著差異,且各樣區的萌發率與樣區溫度變化、降雨量與相對濕度變化具有相關性。真菌菌相分析結果顯示白及原球莖內存在Oxyporus、Fusarium、Serendipita等多種真菌,顯示此物種萌發時仍與絲核菌共生。不同樣區間真菌多樣性差異不大,真菌菌相組成則有顯著差異。原球莖墨水染色顯示60 %的原球莖有真菌定殖,每個原球莖內僅有1.2%的細胞含有菌絲團。穩定碳氮同位素分析則進一步確認了臺灣白及在原球莖階段仍會與真菌共生以獲得碳源。綜上所述,臺灣白及的種子於原生地萌發快速且萌發率高,然其萌發率與樣區環境變動相關,且共生真菌在原生境的萌發過程中仍扮演重要的角色。 | zh_TW |
dc.description.abstract | Orchidaceae, one of the most diverse plant families, is increasingly threatened by environmental changes, habitat disturbance and overcollection. Among them, Bletilla species are valued for both ornamental use and medicinal properties. Bletilla formosana, a terrestrial orchid native to Taiwan, is particularly interesting due to its advanced embryo, ability to germinate in sterile substrates, and broad distribution. This study aims to explore the factors that constrain its germination in nature and determine if fungal association is necessary. In situ germination experiments were conducted at six sites in Taiwan, where over three thousand seed packets were buried in areas with and without conspecific plant. Germination and seed viability were assessed at 1, 3, 6, and 9 months after burying, and fungal communities in germinated protocorms were analyzed using Illumina MiSeq sequencing. Ink staining and stable isotopes were used to explore fungal colonization and trophic mode during germination. Our results showed that seeds could germinate within a month, with median germination reaching 58% at one site. Germination did not differ between occupied and unoccupied areas, nor was it influenced by distance or direction from conspecific plants, suggesting that proximity to adult orchids is not a key factor. However, germination varied significantly across sites and was moderately correlated with fluctuations in temperature, precipitation and relative humidity. The predominant fungi associated with germinated protocorms included Oxyporus, Fusarium and Serendipita, revealing that this species still associates with Rhizoctonia-like fungi during germination. Ink staining of protocorms revealed fungal colonization in 60% of protocorms, with only 1.2% of cells per protocorm containing pelotons. Stable isotope analysis confirmed that B. formosana remains dependent on fungi for carbon acquisition during germination. In summary, B. formosana exhibits rapid and high germination success in nature. Its germination is correlated with environmental fluctuations across sites, and protocorms remain dependent on fungi for carbon acquisition. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-22T16:11:47Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-05-22T16:11:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Diversity and ecological complexity of orchids 3 2.1.1 Orchids rely on mycorrhizal fungi in their life cycle 3 2.1.2 Germination constrains the orchid population 4 2.1.3 The complex requirement for orchid germination 5 2.2 Introduction of Bletilla formosana 7 2.2.1 Morphology and phylogeny of genus Bletilla 7 2.2.2 Ecological characteristics and distribution 7 2.2.3 Medicinal and horticultural importance 8 2.2.4 Seed development and seed storage 9 2.3 Uniqueness of Bletilla formosana 10 2.3.1 Advanced embryo development 10 2.3.2 Fungus-independent germination 11 2.3.3 Relatively broad distribution 11 2.4 Different approaches to assess germination constraints 12 2.4.1 Explore germination constraints of orchid using seed packets 12 2.4.2 Influence of nearby mature plants on in situ germination 12 2.4.3 Fungal partners of mature Bletilla plants and other terrestrial orchids 13 2.4.4 Stable carbon and nitrogen isotope analyses 14 2.5 Research aims 17 2.5.1 Knowledge gaps and aim of this study 17 2.5.2 Research questions and hypothesis 18 Chapter 3 Materials and Methods 20 3.1 Studied species and sampling sites 20 3.2 In situ seed germination 21 3.3 Accessing environmental factors 22 3.4 Seed viability test 23 3.5 Sampling of orchid mycorrhizal fungi 23 3.6 Molecular assessment of the mycorrhizal fungi 24 3.7 Bioinformatics 26 3.8 Analysis of stable isotope abundance 28 3.9 Ink staining of pelotons in protocorms 30 3.10 Data visualization and statistical analysis 31 Chapter 4 Results 33 4.1 In situ germination of Bletilla formosana 33 4.1.1 Germination one month after burial 33 4.1.2 Germination across six sampling sites 34 4.1.3 Germination with or without conspecific plant nearby 35 4.1.4 Germination over different retrieval times 36 4.1.5 TTC viability of ungerminated seed over retrieval time 37 4.1.6 Germination at different distances and directions from nearest adults 38 4.1.7 Correlations between germination and weather parameters 39 4.2 Fungal association of germinated protocorms 41 4.2.1 Influence of filtering on read counts and taxonomic resolution 41 4.2.2 Composition of mycorrhizal community at different taxonomic level 42 4.2.3 Alpha and beta diversity of mycorrhizal fungal community 45 4.3 Stable carbon and nitrogen isotope abundance 47 4.4 Protocorm ink staining 49 Chapter 5 Discussion 51 5.1 In situ Germination 51 5.1.1 Rapid in situ germination observed in B. formosana 51 5.1.2 Existence of conspecific orchid nearby, distance and orientation from adults did not affect germination 53 5.1.3 Difference in germination among sites correlate with weather fluctuations 55 5.1.4 Germination and viability decline significantly over time 58 5.2 Mycorrhizal fungal community 59 5.2.1 Mycorrhizal fungal community of B. formosana and the other orchids 59 5.2.2 Dynamics of mycorrhizal fungal community during the ontogenesis of B. formosana and the other orchids 60 5.2.3 Fungal community structure in protocorms varies among different sites 62 5.3 Stable isotope abundance differs between protocorms and adults 64 5.4 Ink staining confirmed fungal colonization in protocorms 65 Chapter 6 Conclusion 67 REFERENCE 100 | - |
dc.language.iso | en | - |
dc.title | 臺灣白及的原地萌芽與原球莖內真菌多樣性之探討 | zh_TW |
dc.title | Investigation of in situ Germination and Protocorm Fungal Diversity of Bletilla formosana | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 李勇毅 | zh_TW |
dc.contributor.coadvisor | Yung-I Lee | en |
dc.contributor.oralexamcommittee | 陳可萱;吳羽婷 | zh_TW |
dc.contributor.oralexamcommittee | Ko-Hsuan Chen;Yu-Ting Wu | en |
dc.subject.keyword | 臺灣白及,原地萌芽,蘭花菌根真菌,穩定同位素,墨水染色, | zh_TW |
dc.subject.keyword | Bletilla formosana,in situ germination,orchid mycorrhiza,stable isotope,ink staining, | en |
dc.relation.page | 109 | - |
dc.identifier.doi | 10.6342/NTU202500910 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-05-09 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 園藝暨景觀學系 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-2.pdf 目前未授權公開取用 | 7.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。