請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97386
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 方頡睿 | zh_TW |
dc.contributor.advisor | Jeffrey M. Farrell | en |
dc.contributor.author | 莊秉諭 | zh_TW |
dc.contributor.author | Ping-Yu Chuang | en |
dc.date.accessioned | 2025-05-22T16:09:56Z | - |
dc.date.available | 2028-06-01 | - |
dc.date.copyright | 2025-05-22 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-05-07 | - |
dc.identifier.citation | (1) Ando, N.; Yamada, T.; Narita, H.; Oehlmann, N. N.; Wagner, M.; Yamaguchi, S. Boron-Doped Polycyclic π-Electron Systems with an Antiaromatic Borole Substructure That Forms Photoresponsive B–P Lewis Adducts. J. Am. Chem. Soc., 2021, 143 (26), 9944-9951.
(2) Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chem. Rev., 2012, 112 (4), 2208-2267. (3) Staykov, A.; Li, X.; Tsuji, Y.; Yoshizawa, K. Current Rectification in Nitrogen- and Boron-Doped Nanographenes and Cyclophanes. J. Phys. Chem. C, 2012, 116 (34), 18451-18459. (4) Senkovskiy, B. V.; Usachov, D. Y.; Fedorov, A. V.; Marangoni, T.; Haberer, D.; Tresca, C.; Profeta, G.; Caciuc, V.; Tsukamoto, S.; Atodiresei, N. Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint. ACS Nano, 2018, 12 (8), 7571-7582. (5) Farrell, J. M.; Mützel, C.; Bialas, D.; Rudolf, M.; Menekse, K.; Krause, A. M.; Stolte, M.; Würthner, F. Tunable Low-LUMO Boron-Doped Polycyclic Aromatic Hydrocarbons by General One-Pot C-H Borylations. J. Am. Chem. Soc., 2019, 141 (22), 9096-9104. (6) Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun., 2015, 6, 8098. (7) Cloke, R. R.; Marangoni, T.; Nguyen, G. D.; Joshi, T.; Rizzo, D. J.; Bronner, C.; Cao, T.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons. J. Am. Chem. Soc., 2015, 137 (28), 8872-8875. (8) Jin, L.; Bilbao, N.; Lv, Y.; Wang, X. Y.; Soltani, P.; Mali, K. S.; Narita, A.; De Feyter, S.; Mullen, K.; Chen, Z. 2D self-assembly and electronic characterization of oxygen-boron-oxygen-doped chiral graphene nanoribbons. Chem. Commun., 2021, 57 (49), 6031-6034. (9) De Vries, T. S.; Prokofjevs, A.; Vedejs, E. Cationic tricoordinate boron intermediates: borenium chemistry from the organic perspective. Chem. Rev., 2012, 112 (7), 4246-4282. (10) Piers, W. E.; Bourke, S. C.; Conroy, K. D. Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. Angew. Chem. Int. Ed., 2005, 44 (32), 5016-5036. (11) Shore, S. G.; Parry, R. W. The Crystalline Compound Ammonia-Borane,¹H₃NBH₃. J. Am. Chem. Soc., 1955, 77 (22), 6084-6085. (12) Kölle, P.; Nöth, H. The chemistry of borinium and borenium ions. Chem. Rev., 1985, 85 (5), 399-418. (13) Prokofjevs, A.; Boussonniere, A.; Li, L.; Bonin, H.; Lacote, E.; Curran, D. P.; Vedejs, E. Borenium ion catalyzed hydroboration of alkenes with N-heterocyclic carbene-boranes. J. Am. Chem. Soc., 2012, 134 (29), 12281-12288. (14) Shoji, Y.; Tanaka, N.; Mikami, K.; Uchiyama, M.; Fukushima, T. A two-coordinate boron cation featuring C-B+-C bonding. Nat. Chem., 2014, 6 (6), 498-503. (15) Curran, D. P.; Solovyev, A.; Makhlouf Brahmi, M.; Fensterbank, L.; Malacria, M.; Lacote, E. Synthesis and reactions of N-heterocyclic carbene boranes. Angew. Chem. Int. Ed., 2011, 50 (44), 10294-10317. (16) Hioe, J.; Karton, A.; Martin, J. M.; Zipse, H. Borane-lewis base complexes as homolytic hydrogen atom donors. Chem. Eur. J., 2010, 16 (23), 6861-6865. (17) Rablen, P. R. Large Effect on Borane Bond Dissociation Energies Resulting from Coordination by Lewis Bases. J. Am. Chem. Soc., 1997, 119 (35), 8350-8360. (18) Boussonnière, A.; Pan, X.; Geib, S. J.; Curran, D. P. Borenium-Catalyzed Hydroborations of Silyl-Substituted Alkenes and Alkynes with a Readily Available N-Heterocyclic Carbene–Borane. Organometallics, 2013, 32 (24), 7445-7450. (19) Dewar, M. J. S.; Kubba, V. P.; Pettit, R. 624. New heteroaromatic compounds. Part I. 9-Aza-10-boraphenanthrene. J. Chem. Soc., 1958. (20) Goldfuss, B.; Knochel, P.; Bromm, L. O.; Knapp, K. C-H Activation by Direct Borane-Hydrocarbon Dehydrogenation: Kinetic and Thermodynamic Aspects. Angew. Chem. Int. Ed., 2000, 39 (22), 4136-4139. (21) Köster, R.; Benedikt, G.; Fenzl, W.; Reinert, K. Pyrolyseprodukte einiger Aralkyl‐und Arylborane. Justus Liebigs Ann. Chem., 1967, 702 (1), 197-223. (22) De Vries, T. S.; Prokofjevs, A.; Harvey, J. N.; Vedejs, E. Superelectrophilic intermediates in nitrogen-directed aromatic borylation. J. Am. Chem. Soc., 2009, 131 (41), 14679-14687. (23) Farrell, J. M.; Stephan, D. W. Planar N-heterocyclic carbene diarylborenium ions: synthesis by cationic borylation and reactivity with Lewis bases. Angew. Chem. Int. Ed., 2015, 54 (17), 5214-5217. (24) Kahan, R. J.; Crossley, D. L.; Cid, J.; Radcliffe, J. E.; Ingleson, M. J. Synthesis, Characterization, and Functionalization of 1-Boraphenalenes. Angew. Chem. Int. Ed., 2018, 57 (27), 8084-8088. (25) Hirano, K.; Morimoto, K.; Fujioka, S.; Miyamoto, K.; Muranaka, A.; Uchiyama, M. Nucleophilic Diboration Strategy Targeting Diversified 1-Boraphenarene Architectures. Angew. Chem. Int. Ed., 2020, 59 (48), 21448-21453. (26) You, C.; Sakai, M.; Daniliuc, C. G.; Bergander, K.; Yamaguchi, S.; Studer, A. Regio- and Stereoselective 1,2-Carboboration of Ynamides with Aryldichloroboranes. Angew. Chem. Int. Ed., 2021, 60 (40), 21697-21701. (27) Schnitzlein, M.; Zhu, C.; Shoyama, K.; Wurthner, F. pi-Extended Pleiadienes by [5+2]Annulation of 1-Boraphenalenes and ortho-Dihaloarenes. Chem. Eur. J., 2022, 28 (61), e202202053. (28) Deng, C. L.; Hollister, K. K.; Molino, A.; Tra, B. Y. E.; Dickie, D. A.; Wilson, D. J. D.; Gilliard, R. J., Jr. Unveiling Three Interconvertible Redox States of Boraphenalene. J. Am. Chem. Soc., 2024, 146 (9), 6145-6156. (29) Anitha, M.; Chin, T. J.; Liu, G. C.; Hsieh, C. T.; Wang, K. H.; Li, S. L.; Cheng, M. J.; Farrell, J. M. Metal-free alkyne annulation enabling π-extension of boron-doped polycyclic aromatic hydrocarbons. Chem. Sci., 2024, 15 (39), 16210-16215. (30) Shoji, Y.; Tanaka, N.; Muranaka, S.; Shigeno, N.; Sugiyama, H.; Takenouchi, K.; Hajjaj, F.; Fukushima, T. Boron-mediated sequential alkyne insertion and C-C coupling reactions affording extended pi-conjugated molecules. Nat. Commun., 2016, 7, 12704. (31) Shimoi, M.; Watanabe, T.; Maeda, K.; Curran, D. P.; Taniguchi, T. Radical trans-Hydroboration of Alkynes with N-Heterocyclic Carbene Boranes. Angew. Chem. Int. Ed., 2018, 57 (30), 9485-9490. (32) Borys, A. M.; Vedani, L.; Hevia, E. Stoichiometric and Catalytic Lithium Nickelate-Mediated C–F Bond Alkynylation of Fluoroarenes. J. Am. Chem. Soc., 2024, 146 (14), 10199-10205. (33) He, J.; Yang, K.; Zhao, J.; Cao, S. LiHMDS-Promoted Palladium-Catalyzed Sonogashira Cross-Coupling of Aryl Fluorides with Terminal Alkynes. Org. Lett., 2019, 21 (23), 9714-9718. (34) Chen, M.; Zheng, X.; Li, W.; He, J.; Lei, A. Palladium-Catalyzed Aerobic Oxidative Cross-Coupling Reactions of Terminal Alkynes with Alkylzinc Reagents. J. Am. Chem. Soc., 2010, 132 (12), 4101-4103. (35) Prokofjevs, A. Thermal Dehydrogenation of Base-Stabilized B₂H₅⁺ Complexes and Its Role in C-H Borylation. Angew. Chem. Int. Ed., 2015, 54 (45), 13401-13405. (36) Prokofjevs, A.; Kampf, J. W.; Solovyev, A.; Curran, D. P.; Vedejs, E. Weakly stabilized primary borenium cations and their dicationic dimers. J. Am. Chem. Soc., 2013, 135 (42), 15686-15689. (37) Chuang, P.-Y.; Liu, Y.-H.; Farrell, J. M. Double-Bond Saturation During Acid Mediated Intramolecular Electrophilic C-H Borylation of 2-(Naphthalen-1-yl)vinyl N-Heterocyclic Carbene-Boranes. Canadian Journal of Chemistry, 2025, Just-IN (38) Rajeshwaran, G. G.; Nandakumar, M.; Sureshbabu, R.; Mohanakrishnan, A. K. Lewis Acid-Mediated Michaelis−Arbuzov Reaction at Room Temperature: A Facile Preparation of Arylmethyl/Heteroarylmethyl Phosphonates. Org. Lett., 2011, 13(6), 1270-1273. (39) Lefebvre, Q.; Jentsch, M.; Rueping, M. Continuous flow photocyclization of stilbenes - scalable synthesis of functionalized phenanthrenes and helicenes. Beilstein J. Org. Chem., 2013, 9, 1883-1890. (40) Gardner, S.; Kawamoto, T.; Curran, D. P. Synthesis of 1,3-Dialkylimidazol-2-ylidene Boranes from 1,3-Dialkylimidazolium Iodides and Sodium Borohydride. J. Org. Chem., 2015, 80 (19), 9794-9797. (41) Khudozhitkov, A. E.; Donoshita, M.; Stepanov, A. G.; Philippi, F.; Rauber, D.; Hempelmann, R.; Kitagawa, H.; Kolokolov, D. I.; Ludwig, R. High-Temperature Quantum Tunneling and Hydrogen Bonding Rearrangements Characterize the Solid-Solid Phase Transitions in a Phosphonium-Based Protic Ionic Liquid. Chem. Eur. J., 2022, 28 (23), e202200257. (42) Sheldrick, G. M. A short history of SHELX. Acta Cryst. A, 2008, 64 (part 1), 112-122. (43) Okayasu, M.; Sunakawa, T.; Ikeda, M.; Namikawa, T.; Hagura, R.; Kikkawa, S.; Hikawa, H.; Azumaya, I. Size and Shape Manipulation of Channel Structures Assembled Via Saddle stacking of Tetrapodal Adamantanes Containing Aryl Butadiynyl Moieties. ChemistrySelect, 2021, 6 (46), 13336-13341. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97386 | - |
dc.description.abstract | 親電芳香硼基化反應為有機金屬領域中重要的合成反應。在眾多應用中,我們最感興趣的是1-硼菲喃烯骨架的合成及其應用。我們透過酸活化NHC-borane生成NHC-borenium,使其與萘環烯烴化合物進行硼氫化反應,並經由分子內親電芳香硼基化反應脫除一分子氫氣,成功構築1-硼菲喃烯骨架的共軛化合物,其合成應用例子為硼鹵化反應。
在初期研究中,採用Wittig反應的合成方法,成功將溴原子引入共軛烯類分子的頭尾兩端,並合成出保留溴原子的1-硼菲萘烯化合物,在兩種不同共軛系統骨架之化合物。隨後,透果π-延伸合環策略,進一步擴張分子的共軛結構。這類保留溴原子的有機含硼化合物具備在金屬表面催化和化工技術應用中的潛力。 在後續的研究中,我們設計了萘環烯基取代的NHC-borane化合物,期望透過質子酸或路易士酸的活化,經由分子內親電芳香硼基化反應,直接生成1-硼菲喃烯骨架的含硼化合物。然而,實驗結果卻顯示,反應得到的合環結果為 3-硼苯並茚烷骨架。基於對順式脫氫反應之立體選擇性、氘化酸的同位素標定實驗以及晶體結構的分析,我們提出了B-H鍵氫陰離子攻擊路徑,認為該機制最能解釋所觀察到的實驗結果。 此外,在合成萘環烯基取代的NHC-borane化合物時,意外發現了二聚體副產物,探究其反應機制源自於自由基的硼氫化反應得到的結果。 | zh_TW |
dc.description.abstract | Electrophilic aromatic borylation(EAB)is a key synthetic strategy in organoboron chemistry which is central to construction of functional boron containing π-systems. The studies herein seek to elucidate the mechanisms and applications of EAB towards new boron containing π-systems.
First, naphthylalkenyl-substituted NHC-borane compounds (2a-2d) were synthesized via radical trans-hydroboration, intending to construct 1-boraphenalene scaffolds through intramolecular EAB upon activation by Brønsted acid or Lewis acid. Surprisingly, instead of the expected dehydrogenative cyclization, an unprecedented C=C double bond saturation occurred, yielding 3-borabenz[g]indane scaffolds (5a-5c). Isotopic labeling experiments and crystallographic analysis suggested that the C-H borylation process likely involves hydrogen atoms transfer to the double bond rather than H2 elimination. Second, brominated styrylnaphthalene compounds (11, 16) were synthesized via a Wittig reaction. Following a one-pot N-heterocyclic carbene borenium (NHC→BH2+) hydroboration/EAB sequence, we successfully synthesized the desired brominated 1-boraphenalene compounds (12, 17) for two distinct conjugated systems. These brominated boron-doped polycyclic aromatic hydrocarbons (B-PAHs) are promising for further derivatization and on-surface coupling reactions. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-22T16:09:56Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-05-22T16:09:56Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements III
摘要 IV Abstract V Contents VI List of Figures VIII List of Tables XVII Chapter 1. Introduction 1 1.1 Organoboron Polycyclic Aromatic Hydrocarbons 1 1.2 Boron Cations 4 1.3 NHC-Boranes 5 1.4 Hydroboration 6 1.5 Hydroboration and Electrophilic Aromatic Borylation 8 1.6 1-Boraphenalene Scaffold 10 Chapter 2. Synthesis of 3-Borabenz[g]indane Scaffold 14 2.1 Molecular Design 14 2.2 Results and Discussion 16 2.3 Reaction Mechanism for Intramolecular Electrophilic Borylation 21 2.4 Radical Trans-Hydroboration 24 2.5 Conclusion 29 Chapter 3. Synthesis of 1-Boraphenalene Scaffolds 30 3.1 Molecular Design 30 3.2 Results and Discussion 33 3.3 Conclusion 38 Chapter 4. Haloboration of B-Br to Terminal Alkynes 39 4.1 Molecular Design 39 4.2 Results and Discussion 40 4.3 NMR Experiments for Haloboration Reaction 41 4.4 Conclusion 44 Chapter 5. Conclusion 45 References 46 Appendix 50 Acknowledgements III 摘要 IV Abstract V Contents VI List of Figures VIII List of Tables XVII Chapter 1. Introduction 1 1.1 Organoboron Polycyclic Aromatic Hydrocarbons 1 1.2 Boron Cations 4 1.3 NHC-Boranes 5 1.4 Hydroboration 6 1.5 Hydroboration and Electrophilic Aromatic Borylation 8 1.6 1-Boraphenalene Scaffold 10 Chapter 2. Synthesis of 3-Borabenz[g]indane Scaffold 14 2.1 Molecular Design 14 2.2 Results and Discussion 16 2.3 Reaction Mechanism for Intramolecular Electrophilic Borylation 21 2.4 Radical Trans-Hydroboration 24 2.5 Conclusion 29 Chapter 3. Synthesis of 1-Boraphenalene Scaffolds 30 3.1 Molecular Design 30 3.2 Results and Discussion 33 3.3 Conclusion 38 Chapter 4. Haloboration of B-Br to Terminal Alkynes 39 4.1 Molecular Design 39 4.2 Results and Discussion 40 4.3 NMR Experiments for Haloboration Reaction 41 4.4 Conclusion 44 Chapter 5. Conclusion 45 References 46 Appendix 50 A1. Materials and Methods 50 A2. Synthetic Procedures 52 A2.1 Synthesis of Compounds 1a–1d 52 A2.2 Synthesis of Compounds 2a–2d 57 A2.3 Synthesis of Compound 2a-dimer 63 A2.4 Synthesis of Compound 5a by HNTf2 65 A2.5 Synthesis of Compound 5b by HNTf2 67 A2.6 Synthesis of Compound 5c by HNTf2 69 A2.7 Synthesis of Compound 5a by [Ph3C][B(C6F5)4] 71 A2.8 Synthesis of Compound 5b by [Ph3C][B(C6F5)4] 72 A2.9 Synthesis of Compound 5c by [Ph3C][B(C6F5)4] 73 A2.10 Synthesis of Compound 5a by DNTf2 74 A2.11 Synthesis of Compound 6 78 A2.12 Synthesis of Compound 7 79 A2.13 Synthesis of Compound 11 80 A2.14 Synthesis of Compound 12 81 A2.15 Synthesis of Compound 16 83 A2.16 Synthesis of Compound 17 84 A2.17 Attempted synthesis of Compounds 18,19 86 A2.18 Synthesis of Compound 20 87 A2.19 Synthesis of Compound 24 89 A2.20 Reactions of Compoud 24 with Alkynes 92 A3. NMR spectra and HR-MS spectra 94 A3.1 Characterization of Compounds 1a-1d 94 A3.2 Characterization of Compounds 2a-2d 98 A3.3 Characterization of Compound 2a-dimer 109 A3.4 Characterization of the crude intermediates 3a–3d 112 A3.5 Characterization of the crude intermediates 4a–4c 122 A3.6 Characterization of Compounds 5a–5c 131 A3.7 Characterization of Compound 6 141 A3.8 Characterization of Compound 11 143 A3.9 Characterization of Compound 12 145 A3.10 Characterization of Compound 16 147 A3.11 Characterization of Compound 17 149 A3.12 Characterization of Compounds 18,19 151 A3.13 Characterization of Compounds 20, 21 152 A3.14 Characterization of Compound 22 155 A3.15 Characterization of Compound 23 156 A3.16 Characterization of Compound 24 158 A3.17 Characterization of Compounds 25a-25c 160 A4. X-ray Crystallography 167 Compound 2a 167 Compound 2a-dimer 169 Compound 5a 171 Compound 5b 173 Compound 6 175 Compound 7 177 Compound 12 179 Compound 20 181 Compound 21 183 Compound 25a 185 | - |
dc.language.iso | en | - |
dc.title | 分子內親電硼化反應合成1-硼菲萘烯與3-硼苯並茚烷骨架 | zh_TW |
dc.title | Intramolecular Electrophilic Borylation Syntheses of 1-Boraphenalene and 3-Borabenz[g]indane Scaffolds | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 柳玗珍;杜澄達 | zh_TW |
dc.contributor.oralexamcommittee | Woo-Jin Yoo;Ching-Tat To | en |
dc.subject.keyword | 親電芳香硼基化反應,硼氫化反應,1-硼菲喃烯骨架,1-硼茚烷骨架,自由基硼氫化反應,硼鹵化反應, | zh_TW |
dc.subject.keyword | NHC-borane,NHC-borenium,1-boraphenalene,3-borabenz[g]indane,intramolecular electrophilic aromatic borylation,hydroboration, | en |
dc.relation.page | 186 | - |
dc.identifier.doi | 10.6342/NTU202500908 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-05-07 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
dc.date.embargo-lift | 2028-06-01 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-2.pdf 此日期後於網路公開 2028-06-01 | 15.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。