Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97373
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李妮鍾zh_TW
dc.contributor.advisorNi-Chung Leeen
dc.contributor.authorNguyen Vuong Thao Vyzh_TW
dc.contributor.authorNguyen Vuong Thao Vyen
dc.date.accessioned2025-05-22T16:06:24Z-
dc.date.available2025-05-23-
dc.date.copyright2025-05-22-
dc.date.issued2025-
dc.date.submitted2025-02-09-
dc.identifier.citationAbel, H. J., & Duncavage, E. J. (2013). Detection of structural DNA variation from next generation sequencing data: A review of informatic approaches. Cancer Genetics, 206(12), 432–440. https://doi.org/10.1016/J.CANCERGEN.2013.11.002
Aydinok, Y. (2012). Thalassemia. Hematology, 17(SUPPL. 1). https://doi.org/10.1179/102453312X13336169155295
Babadi, M., Fu, J. M., Lee, S. K., Smirnov, A. N., Gauthier, L. D., Walker, M., Benjamin, D. I., Zhao, X., Karczewski, K. J., Wong, I., Collins, R. L., Sanchis-Juan, A., Brand, H., Banks, E., & Talkowski, M. E. (2023). GATK-gCNV enables discovery of rare copy number variants from exome sequencing data. Nature Genetics, 55(9), 1589. https://doi.org/10.1038/S41588-023-01449-0
Barts, H. (n.d.). Arizona Hemoglobin Bart’s Fact Sheet for Health Care Providers.
Baysal, E., & Huisman, T. H. J. (n.d.). Detection of Common Deletional ~Thalassemia-2 Determinants by PCR. American Journal of Hematology, 46, 994. https://doi.org/10.1002/ajh.2830460309
Brieghel, C., Birgens, H., Frederiksen, H., Hertz, J. M., Steenhof, M., & Petersen, J. (2015). Novel 31.2 kb α0 Deletion in a Palestinian Family with α-Thalassemia. Hemoglobin, 39(5), 346–349. https://doi.org/10.3109/03630269.2015.1054512
Cao, Y., Ha, S., So, C.-C., Tony Tong, M., Sze-man Tang, C., Zhang, H., Liang, R., Yang, J., Hon-Yin Chung, B., Chi-Fung Chan, G., Lung Lau, Y., Garcia-Barcelo, M.-M., Shiu-Kwan Ma, E., Sucharitchan, P., Hirankarn, N., & Yang, W. (n.d.). NGS4THAL, a One-Stop Molecular Diagnosis and Carrier Screening Tool for Thalassemia and Other Hemoglobinopathies by Next-Generation Sequencing. https://doi.org/10.1016/j.jmoldx.2022.06.006
Cardiero, G., Musollino, G., Prezioso, R., Nigro, V., & Lacerra, G. (2023). Alpha-Thalassemia in Southern Italy: Characterization of Five New Deletions Removing the Alpha-Globin Gene Cluster. International Journal of Molecular Sciences, 24(3), 2577. https://doi.org/10.3390/IJMS24032577/S1
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890. https://doi.org/10.1093/BIOINFORMATICS/BTY560
Chong, S. S., Boehm, C. D., Higgs, D. R., & Cutting, G. R. (2000). Single-tube multiplex-PCR screen for common deletional determinants of α-thalassemia. Blood, 95(1), 360–362. https://doi.org/10.1182/BLOOD.V95.1.360
Curran, M., Mikhael, M., Sun, W. D., Lim, J., Leung, A., Morchi, G., & Chmait, R. H. (2020). Perinatal Management of Bart’s Hemoglobinopathy: Paradoxical Effects of Intrauterine, Transplacental, and Partial Exchange Transfusions. AJP Reports, 10(1), e11. https://doi.org/10.1055/S-0039-3401799
De Mare, A., Groeneger, A. H. O., Schuurman, S., Van Den Bergh, F. A. T. J. M., & Slomp, J. (2010a). A rapid single-tube multiplex polymerase chain reaction assay for the seven most prevalent alpha-thalassemia deletions and alphaalphaalpha(anti 3.7) alpha-globin gene triplication. Hemoglobin, 34(2), 184–190. https://doi.org/10.3109/03630261003670259
De Mare, A., Groeneger, A. H. O., Schuurman, S., Van Den Bergh, F. A. T. J. M., & Slomp, J. (2010b). A Rapid Single-Tube Multiplex Polymerase Chain Reaction Assay for the Seven Most Prevalent α-Thalassemia Deletions and αααanti 3.7 α-Globin Gene Triplication. Hemoglobin, 34(2), 184–190. https://doi.org/10.3109/03630261003670259
DI Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., & Notredame, C. (2017). Nextflow enables reproducible computational workflows. Nature Biotechnology 2017 35:4, 35(4), 316–319. https://doi.org/10.1038/nbt.3820
Doan, P. L., Nguyen, D. A., Le, Q. T., Hoang, D. T. T., Nguyen, H. Du, Nguyen, C. C., Doan, K. P. T., Tran, N. T., Ha, T. M. T., Trinh, T. H. N., Nguyen, V. T., Bui, C. T., Lai, N. D. T., Duong, T. H., Mai, H. L., Huynh, P. U. V., Huynh, T. T. T., Le, Q. V., Vo, T. B., … Phan, M. D. (2022). Detection of maternal carriers of common α-thalassemia deletions from cell-free DNA. Scientific Reports, 12(1), 13581. https://doi.org/10.1038/S41598-022-17718-7
Ewels, P. A., Peltzer, A., Fillinger, S., Patel, H., Alneberg, J., Wilm, A., Garcia, M. U., Di Tommaso, P., & Nahnsen, S. (2020). The nf-core framework for community-curated bioinformatics pipelines. Nature Biotechnology 2020 38:3, 38(3), 276–278. https://doi.org/10.1038/s41587-020-0439-x
Farashi, S., & Harteveld, C. L. (2018). Molecular basis of α-thalassemia. Blood Cells, Molecules, and Diseases, 70, 43–53. https://doi.org/10.1016/J.BCMD.2017.09.004
Gabrielaite, M., Torp, M. H., Rasmussen, M. S., Andreu-Sánchez, S., Vieira, F. G., Pedersen, C. B., Kinalis, S., Madsen, M. B., Kodama, M., Demircan, G. S., Simonyan, A., Yde, C. W., Olsen, L. R., Marvig, R. L., Østrup, O., Rossing, M., Nielsen, F. C., Winther, O., & Bagger, F. O. (2021a). A comparison of tools for copy-number variation detection in germline whole exome and whole genome sequencing data. Cancers, 13(24). https://doi.org/10.3390/CANCERS13246283/S1
Gabrielaite, M., Torp, M. H., Rasmussen, M. S., Andreu-Sánchez, S., Vieira, F. G., Pedersen, C. B., Kinalis, S., Madsen, M. B., Kodama, M., Demircan, G. S., Simonyan, A., Yde, C. W., Olsen, L. R., Marvig, R. L., Østrup, O., Rossing, M., Nielsen, F. C., Winther, O., & Bagger, F. O. (2021b). A comparison of tools for copy-number variation detection in germline whole exome and whole genome sequencing data. Cancers, 13(24). https://doi.org/10.3390/CANCERS13246283/S1
Geoffroy, V., Herenger, Y., Kress, A., Stoetzel, C., Piton, A., Dollfus, H., & Muller, J. (2018). AnnotSV: an integrated tool for structural variations annotation. Bioinformatics, 34(20), 3572–3574. https://doi.org/10.1093/BIOINFORMATICS/BTY304
Giardine, B., van Baal, S., Kaimakis, P., Riemer, C., Miller, W., Samara, M., Kollia, P., Anagnou, N. P., Chui, D. H. K., Wajcman, H., Hardison, R. C., & Patrinos, G. P. (2007). HbVar database of human hemoglobin variants and thalassemia mutations: 2007 update. Human Mutation, 28(2), 206. https://doi.org/10.1002/HUMU.9479
Gibbons, R. J. (2012). α-thalassemia, mental retardation, and myelodysplastic syndrome. Cold Spring Harbor Perspectives in Medicine, 2(10). https://doi.org/10.1101/CSHPERSPECT.A011759
GitHub - jielab/pigeon: practical investigation of genomic errors by observation and notification. (n.d.). Retrieved December 26, 2024, from https://github.com/jielab/pigeon
Harteveld, C. L., & Higgs, D. R. (2010). α-thalassaemia. Orphanet Journal of Rare Diseases, 5(1), 13. https://doi.org/10.1186/1750-1172-5-13
He, J., Song, W., Yang, J., Lu, S., Yuan, Y., Guo, J., Zhang, J., Ye, K., Yang, F., Long, F., Peng, Z., Yu, H., Cheng, L., & Zhu, B. (2017). Next-generation sequencing improves thalassemia carrier screening among premarital adults in a high prevalence population: the Dai nationality, China. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 19(9), 1022–1031. https://doi.org/10.1038/GIM.2016.218
Higgs, D. R. (2013a). The Molecular Basis of α-Thalassemia. Cold Spring Harbor Perspectives in Medicine, 3(1). https://doi.org/10.1101/CSHPERSPECT.A011718
Higgs, D. R. (2013b). The Molecular Basis of α-Thalassemia. Cold Spring Harbor Perspectives in Medicine, 3(1). https://doi.org/10.1101/CSHPERSPECT.A011718
Higgs, D. R., Vickers, M. A., Wilkie, A. O. M., Pretorius, I. M., Jarman, A. P., & Weatherall, D. J. (1989a). A Review of the Molecular Genetics of the Human α-Globin Gene Cluster. Blood, 73(5), 1081–1104. https://doi.org/10.1182/BLOOD.V73.5.1081.1081
Higgs, D. R., Vickers, M. A., Wilkie, A. O. M., Pretorius, I. M., Jarman, A. P., & Weatherall, D. J. (1989b). A Review of the Molecular Genetics of the Human α-Globin Gene Cluster. Blood, 73(5), 1081–1104. https://doi.org/10.1182/BLOOD.V73.5.1081.1081
Higgs, D. R., & Wood, W. G. (2008). Long-range regulation of α globin gene expression during erythropoiesis. Current Opinion in Hematology, 15(3), 176–183. https://doi.org/10.1097/MOH.0B013E3282F734C4
(How to) Call rare germline copy number variants – GATK. (n.d.). Retrieved November 19, 2024, from https://gatk.broadinstitute.org/hc/en-us/articles/360035531152--How-to-Call-rare-germline-copy-number-variants
Hsu, J. S., Wu, D. C., Shih, S. H., Liu, J. F., Tsai, Y. C., Lee, T. L., Chen, W. A., Tseng, Y. H., Lo, Y. C., Lin, H. Y., Chen, Y. C., Chen, J. Y., Chou, T. H., Chang, D. T. H., Su, M. W., Guo, W. H., Mao, H. H., Chen, C. Y., & Chen, P. L. (2023). Complete genomic profiles of 1496 Taiwanese reveal curated medical insights. Journal of Advanced Research. https://doi.org/10.1016/J.JARE.2023.12.018
Janevski, A., Varadan, V., Kamalakaran, S., Banerjee, N., & Dimitrova, N. (2012). Effective normalization for copy number variation detection from whole genome sequencing. BMC Genomics, 13 Suppl 6(6), 1–11. https://doi.org/10.1186/1471-2164-13-S6-S16/FIGURES/5
Kalle Kwaifa, I., Lai, M. I., & Md Noor, S. (2020). Non-deletional alpha thalassaemia: A review. Orphanet Journal of Rare Diseases, 15(1), 1–12. https://doi.org/10.1186/S13023-020-01429-1/FIGURES/3
Kamanzi, N. G. (2024). Hemoglobinopathy for Malaria Protection: A Comprehensive Review. IDOSR JOURNAL OF BIOCHEMISTRY, BIOTECHNOLOGY AND ALLIED FIELDS, 9(3), 30–34. https://doi.org/10.59298/IDOSR/JBBAF/24/93.3034000
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/BIOINFORMATICS/BTP324
Li, J., Xie, X. M., Liao, C., & Li, D. Z. (2014). Co-inheritance of α-thalassaemia and β-thalassaemia in a prenatal screening population in mainland China. Http://Dx.Doi.Org/10.1177/0969141314548203, 21(4), 167–171. https://doi.org/10.1177/0969141314548203
Li, J., Ye, G., Zeng, D., Tian, B., Wang, W., Feng, Q., & Zhu, C. (2022). Accurate genotype diagnosis of Hong Kongαα thalassemia based on third-generation sequencing. Annals of Translational Medicine, 10(20), 1113–1113. https://doi.org/10.21037/ATM-22-4309
Li, W., & Olivier, M. (2013). Current analysis platforms and methods for detecting copy number variation. Physiological Genomics, 45(1), 1–6. https://doi.org/10.1152/PHYSIOLGENOMICS.00082.2012/SUPPL_FILE/SUPPDATA.PDF
Liebhaber, S. A., Cash, F. E., & Ballas, S. K. (1986). Human alpha-globin gene expression. The dominant role of the alpha 2-locus in mRNA and protein synthesis. Journal of Biological Chemistry, 261(32), 15327–15333. https://doi.org/10.1016/S0021-9258(18)66871-1
Liu, Y. T., Old, J. M., Miles, K., Fisher, C. A., Weatherall, D. J., & Clegg, J. B. (2000). Rapid detection of α-thalassaemia deletions and α-globin gene triplication by multiplex polymerase chain reactions. British Journal of Haematology, 108(2), 295–299. https://doi.org/10.1046/j.1365-2141.2000.01870.x
Malaria and Thalassemia in the Mediterranean Basin. (2021).
Maria Domenica Cappellini, Alan Cohen, John Porter, Ali Taher, V. V. (2014). Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT) 3rd Edition. Thalassaemia International Federation.
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297–1303. https://doi.org/10.1101/GR.107524.110
Molchanova, T. P., Pobedimskaya, D. D., & Postnikov, Y. V. (1994). A simplified procedure for sequencing amplified DNA containing the α2- or α1-globin gene. Hemoglobin, 18(3), 251–255. https://doi.org/10.3109/03630269409043628/ASSET//CMS/ASSET/6949543B-FFF7-439F-A5FD-C395B32B748B/03630269409043628.FP.PNG
Munkongdee, T., Chen, P., Winichagoon, P., Fucharoen, S., & Paiboonsukwong, K. (2020). Update in Laboratory Diagnosis of Thalassemia. Frontiers in Molecular Biosciences, 7, 74. https://doi.org/10.3389/FMOLB.2020.00074
Musich, R., Cadle-Davidson, L., & Osier, M. V. (2021). Comparison of Short-Read Sequence Aligners Indicates Strengths and Weaknesses for Biologists to Consider. Frontiers in Plant Science, 12, 657240. https://doi.org/10.3389/FPLS.2021.657240/BIBTEX
Nijkamp, J. F., Van Den Broek, M. A., Geertman, J. M. A., Reinders, M. J. T., Daran, J. M. G., & De Ridder, D. (2012). De novo detection of copy number variation by co-assembly. Bioinformatics, 28(24), 3195–3202. https://doi.org/10.1093/BIOINFORMATICS/BTS601
Nucleotide BLAST: Search nucleotide databases using a nucleotide query. (n.d.). Retrieved December 20, 2024, from https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_SPEC=GeoBlast&PAGE_TYPE=BlastSearch
Old J, Harteveld CL, Traeger-Synodinos J, Petrou M, Angastiniotis M, & Galanello R. (2012). Prevention of thalassaemias and other haemoglobin disorders. Laboratory protocols. Thalassaemia International Federation 2012. 2.
Peng, C. T., Liu, S. C., Peng, Y. C., Lin, T. H., Wang, S. J., Le, C. Y., Shih, M. C., Tien, N., Lu, J. J., & Lin, C. Y. (2013). Distribution of thalassemias and associated hemoglobinopathies identified by prenatal diagnosis in Taiwan. Blood Cells, Molecules, and Diseases, 51(3), 138–141. https://doi.org/10.1016/J.BCMD.2013.04.007
Piel, F. B., & Weatherall, D. J. (2014a). The α-Thalassemias. New England Journal of Medicine, 371(20), 1908–1916. https://doi.org/10.1056/NEJMRA1404415
Piel, F. B., & Weatherall, D. J. (2014b). The α-thalassemias. The New England Journal of Medicine, 371(20), 1908–1916. https://doi.org/10.1056/NEJMRA1404415
Piel, F. B., & Weatherall, D. J. (2014c). The α-Thalassemias. New England Journal of Medicine, 371(20), 1908–1916. https://doi.org/10.1056/NEJMRA1404415/SUPPL_FILE/NEJMRA1404415_DISCLOSURES.PDF
POOTRAKUL, S., WASI, P., & NA‐NAKORN, S. (1967). Haemoglobin Bart’s hydrops foetalis in Thailand. Annals of Human Genetics, 30(4), 293–308. https://doi.org/10.1111/J.1469-1809.1967.TB00031.X
Shang, X., & Xu, X. (2017). Update in the genetics of thalassemia: What clinicians need to know. Best Practice and Research: Clinical Obstetrics and Gynaecology, 39, 3–15. https://doi.org/10.1016/j.bpobgyn.2016.10.012
Tan, A. S. C., Quah, T. C., Low, P. S., & Chong, S. S. (2001). A rapid and reliable 7-deletion multiplex polymerase chain reaction assay for α-thalassemia. Blood, 98(1), 250–251. https://doi.org/10.1182/BLOOD.V98.1.250
Taylor, S. M., Parobek, C. M., & Fairhurst, R. M. (2012). Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. The Lancet Infectious Diseases, 12(6), 457–468. https://doi.org/10.1016/S1473-3099(12)70055-5
Treangen, T. J., & Salzberg, S. L. (2011). Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature Reviews. Genetics, 13(1), 36. https://doi.org/10.1038/NRG3117
Vichinsky, E. P. (2009). Alpha thalassemia major--new mutations, intrauterine management, and outcomes. Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program, 35–41. https://doi.org/10.1182/ASHEDUCATION-2009.1.35
Vichinsky, E. P. (2013). Clinical Manifestations of α-Thalassemia. Cold Spring Harbor Perspectives in Medicine, 3(5). https://doi.org/10.1101/CSHPERSPECT.A011742
Vijian, D., Wan Ab Rahman, W. S., Ponnuraj, K. T., Zulkafli, Z., Bahar, R., Yasin, N., Hassan, S., & Esa, E. (2023). Gene Mutation Spectrum among Alpha-Thalassaemia Patients in Northeast Peninsular Malaysia. Diagnostics, 13(5), 894. https://doi.org/10.3390/DIAGNOSTICS13050894/S1
Vijian, D., Wan Ab Rahman, W. S., Ponnuraj, K. T., Zulkafli, Z., & Mohd Noor, N. H. (2021). Molecular Detection of Alpha Thalassemia: A Review of Prevalent Techniques. Medeniyet Medical Journal, 36(3), 257. https://doi.org/10.5222/MMJ.2021.14603
Villegas, A., Sanchez, J., Gonzalez, F. A., Carreño, D. L., & Ropero, P. (1994). α-thalassemia-1 (— −-CAL mutation) in a Spanish family. American Journal of Hematology, 46(4), 367–368. https://doi.org/10.1002/AJH.2830460421
Wang, H. C., Hsieh, L. L., Liu, Y. C., Hsiao, H. H., Lin, S. K., Tsai, W. C., & Liu, T. C. (2017). The epidemiologic transition of thalassemia and associated hemoglobinopathies in southern Taiwan. Annals of Hematology, 96(2), 183–188. https://doi.org/10.1007/S00277-016-2868-7/FIGURES/2
Xi, R., Lee, S., & Park, P. J. (2012). A Survey of Copy-Number Variation Detection Tools Based on High-Throughput Sequencing Data. Current Protocols in Human Genetics, 75(1), 7.19.1-7.19.15. https://doi.org/10.1002/0471142905.HG0719S75
Yoon, S., Xuan, Z., Makarov, V., Ye, K., & Sebat, J. (2009). Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Research, 19(9), 1586–1592. https://doi.org/10.1101/GR.092981.109
Zhang, Z. D., Du, J., Lam, H., Abyzov, A., Urban, A. E., Snyder, M., & Gerstein, M. (2011). Identification of genomic indels and structural variations using split reads. BMC Genomics, 12(1), 1–12. https://doi.org/10.1186/1471-2164-12-375/FIGURES/7
α +-Thalassemia and Protection from Malaria. (2006). PLOS Medicine, 3(5), e221. https://doi.org/10.1371/JOURNAL.PMED.0030221
移民署中文網. (n.d.). Retrieved December 10, 2024, from https://www.immigration.gov.tw/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97373-
dc.description.abstract引言
α-地中海貧血是一種常見的血紅蛋白病,由α-珠蛋白基因(HBA)的缺失引起,導致α-珠蛋白的生產減少或完全缺乏。這會導致小紅細胞增多症、貧血,以及在嚴重情況下引發如肝腫大和需依賴輸血等併發症。鑒於其對全球健康的負擔,準確、高效且具規模化的分子診斷方法對於α-地中海貧血攜帶者的篩查與診斷至關重要。傳統方法如單管多重PCR僅限於檢測已知的缺失,而全外顯子組測序(Whole-Exome Sequencing)因缺乏靈敏度,難以準確檢測幾乎相同的HBA1和HBA2基因中的拷貝數變異(CNVs)。

材料與方法
AlphaThalCNV流程利用GATK-gCNV工具,並通過優化參數(區塊大小:50;填充:400),提升HBA基因簇內的CNV檢測能力。該流程以100個隨機樣本的群體訓練模型,實現群體內的CNV檢測。隨後,對每個α-地中海貧血病例進行單獨分析,並將結果與建立的模型比較。結果使用IGV可視化並導出為VCF文件,根據被刪除或重複的α-珠蛋白基因數量進行分類。

為驗證GATK-gCNV結果的準確性,我們採用了Samuel S. Chong等人改編的引物進行多重PCR,可在單次實驗中檢測多個基因缺失。群體分析納入了415名來自台灣的個體,統計分析α-地中海貧血攜帶者的盛行率。

結果
AlphaThalCNV成功檢測到三個此前未檢出的α-地中海貧血病例,包括兩個--SEA缺失和一個-3.7缺失。此外,五名最初因其他疾病住院的α-地中海貧血攜帶者也被準確檢測並通過多重PCR確認為真正陽性。

在台灣群體中,AlphaThalCNV檢測到--SEA型兩拷貝缺失的攜帶者盛行率為5.3%,HBA2基因中的一拷貝缺失(-4.2型或-3.7型I/II)的盛行率為2.2%。這些發現與使用其他方法(Hsu等,2023年)進行的大規模研究結果一致,證實了該流程的穩健性與準確性。

結論
AlphaThalCNV流程顯著提升了α-地中海貧血CNV檢測的準確性,特別是在標準流程遺漏的病例中。通過整合精確的分類與可視化工具,該流程為大規模群體分析提供了一種可靠的方法。其適應性使其成為未來醫學診斷和流行病學研究中的重要工具。
zh_TW
dc.description.abstractIntroduction
Alpha-thalassemia is a prevalent hemoglobinopathy caused by deletions in the α-globin genes (HBA), resulting in reduced or absent α-globin production. This leads to microcytosis, anemia, and in severe cases, complications like hepatomegaly and blood transfusion dependency. Given its global health burden, an accurate, efficient, and scalable molecular diagnostic approach is critical for α-thalassemia carrier screening and diagnosis. Traditional methods like Single-Tube Multiplex PCR are limited to detecting known deletions, while Whole-Exome Sequencing lacks sensitivity to accurately detect copy number variations (CNVs) in the nearly identical HBA1 and HBA2 genes.

Materials and Methods
The AlphaThalCNV pipeline leverages the GATK-gCNV tool with optimized parameters (bin size: 50, padding: 400) to enhance CNV detection in the HBA gene cluster. The pipeline was trained using a cohort of 100 random samples, enabling CNV calling within the cohort. Subsequently, α-thalassemia cases were analyzed individually against the constructed model. Results were visualized with IGV and exported as VCF files for further classification based on the number of alpha-globin genes deleted or duplicated.
To confirm the accuracy of GATK-gCNV results, we employed Multiplex PCR with primers adapted from Samuel S. Chong et al., enabling detection of multiple deletions in a single run. The cohort analysis included 415 individuals from Taiwan to statistically analyze α-thalassemia carrier prevalence.

Results
AlphaThalCNV successfully identified CNVs in three previously undetected α-thalassemia cases: two with --SEA deletions and one with -3.7 deletion. Additionally, five carriers of α-thalassemia, initially hospitalized for other diseases, were accurately detected and confirmed as true-positive through Multiplex PCR.
Among the Taiwanese cohort, AlphaThalCNV revealed a carrier prevalence of 5.3% for two-copy deletions (--SEA type) and 2.2% for one-copy deletions in the HBA2 gene (-4.2 type or -3.7 type I/II). These findings align with larger-scale studies conducted via alternate methodologies (Hsu et al., 2023), demonstrating the pipeline's robustness and accuracy.

Conclusion
The AlphaThalCNV pipeline has significantly improved the accuracy of α-thalassemia CNV detection, particularly in cases missed by standard pipelines. By integrating precise classification and visualization tools, the pipeline offers a reliable method for large-scale cohort analysis. Its adaptability makes it a valuable tool for future medical diagnostics and epidemiological studies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-22T16:06:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-05-22T16:06:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
Acknowledgements ii
摘要 iii
Abstract v
List of Table xi
I) Introduction 1
1.1) Alpha-thalassemia 1
1.1.1) Alpha-thalassemia molecular basis 1
1.1.2) Alpha-thalassemia clinical forms: 2
1.1.3) Variance of α-thalassemia: 4
1.1.4) The importance of screening α-thalassemia 5
1.2) Method to detect α-thalassemia 6
1.2.1) Traditional method to detect α-thalassemia: 7
1.2.2) Next-generation sequencing to detect α-thalassemia: 7
1.3) Difficulties in detecting α-thalassemia 9
1.3.1) Overcome the struggle when detecting α-thalassemia 10
1.3.2) GATK gCNV-caller can be used to detect CNV that causes α-thalassemia 11
1.4) Research aim 12
II) Method 12
2.1) Study design 12
2.2) Data Collection and Preparation 13
2.2.1) Optimizing the model 13
2.2.2) Training Dataset 15
2.2.3) Test Dataset 16
2.3) Pipeline Development and Implemetation 17
2.3.1) Pipeline implementation: 17
2.3.2) Alpha-thalassemia classification: 18
2.3.3) Cohort statistical analysis 19
2.4) Multiplex-PCR confirms α-thalassemia variants 19
III) Result 22
3.1) GATK-gCNV with optimized parameter increases accuracy of detection of α-thalassemia’s variants length. 22
3.2) AlphaThalCNV detects more cases carrying thalassemia variants compared to previous pipelines. 26
3.3) Multiplex-PCR confirms the presence of α-thalassemia variants detected by AlphaThalCNV pipeline. 27
3.4) AlphaThalCNV applied in Taiwan’s cohort to find the α-thalassemia statistical carrier in Taiwan. 30
IV) Discussion: 32
4.1) Advantages of this AlphaThalCNV pipeline 32
4.1.1 AlphaThalCNV pipeline increases the accuracy of detection α-thalassemia length. 32
4.1.2) AlphaThalCNV increases the robustness of detecting α-thalassemia 33
4.2) Limitation 34
4.2.1) AlphaThalCNV is limited to determine compound α-thalassemia. 34
4.2.2) AlphaThalCNV is not designed to detect point mutations. 35
V) Reference: 36
-
dc.language.isoen-
dc.titleAlphaThaICNV: 通過次世代定序技術增強 α地中海型貧血拷貝數變異檢測能力zh_TW
dc.titleAlphaThalCNV: Enhanced Detection of CNVs in Alpha Thalassemia via Next-Generation Sequencingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee柯滄銘;林友瑜zh_TW
dc.contributor.oralexamcommitteeTsang-Ming Ko;You-Yu Linen
dc.subject.keywordα-地中海貧血,GATK-gCNV,次世代定序(NGS),全外顯子定序(WES),AlphaThalCNV,zh_TW
dc.subject.keywordα-thalassemia,GATK-gCNV,Next-generation Sequencing (NGS),Whole-exome sequencing (WES),AlphaThalCNV,en
dc.relation.page47-
dc.identifier.doi10.6342/NTU202500218-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-10-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept基因體與系統生物學學位學程-
dc.date.embargo-lift2025-05-23-
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf1.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved