Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97356
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor金必耀zh_TW
dc.contributor.advisorBih-Yaw Jinen
dc.contributor.author張詠晰zh_TW
dc.contributor.authorYung-Hsi Changen
dc.date.accessioned2025-05-07T16:10:01Z-
dc.date.available2025-05-08-
dc.date.copyright2025-05-07-
dc.date.issued2025-
dc.date.submitted2025-04-21-
dc.identifier.citationJ.-i. Aihara. Graph theory of ring-current diamagnetism. BCSJ, 91(2):274–303, 2018.
E. Andrade, R. Carrillo-Bastos, and G. G. Naumis. Topical review: Electronic and optical properties of kekulé and other short wavelength spatialmodulated textures of graphene. J. Phys. Condens. Matter, 2025.
G. L. Bendazzoli and S. Evangelisti. The Hückel model of polyacetylene revisited: Asymptotic analysis of peierls instability. Adv. Quantum Chem., pages 347–368, 2004.
S. Biermann, A. Poteryaev, A. I. Lichtenstein, and A. Georges. Dynamical singlets and correlation-assisted Peierls transition in VO2. Phys. Rev. Lett., 94(2):026404, 2005.
A. Ceulemans, L. Chibotaru, and P. W. Fowler. Molecular anapole moments. Phys. Rev. Lett., 80(9):1861–1864, 1198.
T. K. Dickens and R. B. Mallion. Topological Huckel-London-Pople-McWeeny ring currents and bond currents in altan-corannulene and altan-coronene. J. Phys. Chem. A, 118(5):933–9, 2014.
T. K. Dickens and R. B. Mallion. Comparisons of π-electron ring-current and bond-current patterns calculated by topological `(HLPM') and ab initio `(Ipso-centric')formalisms for two isomeric conjugated hydrocarbons, corazulene and cornaphtha- lene. Croat. Chem. Acta, 88(3):221–225, 2015.
T. K. Dickens and R. B. Mallion. Topological ring-currents in conjugated systems.MATCH Commun. Math. Comput. Chem., 2016.
T. K. Dickens and R. B. Mallion. Ring-current properties of bispentalenes and related structures —comparison of ab initio and Hückel-London-Pople-McWeeny (HLPM)`topological'calculations. Croat. Chem. Acta, 90(3), 2017.
T. K. Dickens, R. B. Mallion, P. W. Fowler, B. T. Pickup, and J. Mowll-Clarke. Ring currents in the Clar goblet calculated using configurational state averaging. J. Phys. Chem. A, 128(47):10181–10192, 2024.
R. Ditchfield. Self-consistent perturbation theory of diamagnetism. Mol. Phys., 27(4):789–807, 1974.
S. T. Epstein. Gauge invariance, current conservation, and GIAO’s. J. Chem. Phys, 58(4):1592–1595, 1973.
P. W. Fowler, W. Myrvold, C. Gibson, J. Clarke, and W. H. Bird. Ring-current maps for benzenoids: Comparisons, contradictions, and a versatile combinatorial model.J. Phys. Chem. A, 124(22):4517–4533, 2020.
J. A. N. F. Gomes and R. B. Mallion. Aromaticity and ring currents. Chem. Rev., 101:1349–1383, 2001.
F. Grandi, A. Amaricci, and M. Fabrizio. Unraveling the Mott–Peierls intrigue in vanadium dioxide. Phys. rev. res., 2(1), 2020.
G. W. Hayden and E. J. Mele. Correlation effects and excited states in conjugated polymers. Phys. Rev. B Condens., 34(8):5484–5497, 1986.
E. Heilbronner. Hückel molecular orbital theory of Möbius systems.TETL, 5(29):1923–1928, 1964.
R. Herges. Topology in chemistry: Designing Möbius molecules.Chem. Rev., 106:4820–4842, 2006.
S. Kim, S. Backes, H. Yoon, W. Kim, C. Sohn, J. Son, S. Biermann, T. W. Noh, andS. Y. Park. Orbital-selective Mott and Peierls transition in HxVO2. npj Quantum Mater., 7(1), 2022.
S. Kim, K. Kim, C.-J. Kang, and B. I. Min. Correlation-assisted phonon softening and the orbital-selective Peierls transition in VO2. Phys. Rev. B, 87(19), 2013.
S.-D. Liang, Y.-H. Bai, and B. Beng. Peierls instability and persistent current in mesoscopic conducting polymer rings. Phys. Rev. B, 74(11):113304, 2006.
F. London. Quantenmechanische deutung der theorie yon Weyl. Z. Phys. A: Hadrons Nucl., 42:375–389, 1927.
F. London. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J. Phys. Radium, 8(10):397–409, 1937.
H. C. Longuet-Higgins and L. Salem. The alternation of bond lengths in long con- jugated chain molecule. P. Roy. Soc. A-math Phy., 255(1283):172–185, 1959.
H. C. Longuet-Higgins and L. Salem. The alternation of bond lengths in long conju- gated molecules. - ii. the polyacenes. P. Roy. Soc. A-math Phy., 255(1283):435–443, 1960.
R. B. Mallion. On the magnetic properties of conjugated molecules. Mol. Phys., 25(6):1415–1432, 1973.
S. Mazumdar and S. N. Dixit. Coulomb effects on one-dimensional Peierls instabil- ity: The Peierls-Hubbard model. Phys.Rev. Lett., 51(4):292–295, 1983.
R. McWeeny. Ring currents and proton magnetic resonance in aromatic molecules.Mol. Phys., 1(4):311–321, 1958.
J. Miller, M. Bird, S. Bole, A. Bonito-Oliva, Y. Eyssa, W. J. Kenney, T. Painter, H.-J. Schneider-Muntau, L. Summers, S. W. V. Sciver, S. Welton, and R. Wood. An overview of the 45-t hybrid magnet system for the new national high magnetic field laboratory. IEEE Trans. Magn., 30(4):1563–1571, 1994.
J. R. Miller. The NHMFL 45-T hybrid magnet system: past, present, and future.IEEE Trans. Appl. Supercond., 13(2):1385–1390, 2003.
S. Palumbo, P. S. Cornaglia, and J. I. Facio. Topological Peierls instabilities in more than one dimension, 2025. arXiv:2503.21063.
R. E. Peierls. Quantum Theory of Solids. Oxford University Press, London, 1955.
J. A. Pople. The theory of chemical shifts in nuclear magnetic resonance ii. interpretation of proton shifts. P. Roy. Soc. A-math Phy., 239(1219):550–556, 1957.
H. S. Rzepa. Möbius aromaticity and delocalization. Chem. Rev., 105:3697−3715, 2005.
L. Salem. The Molecular Orbital Theory of Conjugated Systems,. W.A. Benjamin, Inc, New York, 1966.
G. R. Schaller, F. Topic, K. Rissanen, Y. Okamoto, J. Shen, and R. Herges. Design and synthesis of the first triply twisted Möbius annulene. Nat. Chem., 6(7):608–13, 2014.
S. Shaik, A. Shurki, D. Danovich, and P. Hiberty. A different story of π- delocalizationthe distortivity of π-electrons and its chemical manifestations. Chem. Rev., 101:1501–1539, 2001.
J. R. Sims, D. G. Rickel, C. A. Swenson, J. B. Schillig, G. W. Ellis, and C. N. Ammer- man. Assembly, commissioning and operation of the NHMFL 100 Tesla multi-pulse magnet system. IEEE Trans. Appl. Supercond., 18(2):587–591, 2008.
W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Phys. Rev. Lett., 42(25):1698–1701, 1979.
W. P. Su, J. R. Schrieffer, and A. J. Heeger. Soliton excitations in polyacetylene. Phys. Rev. B, 22(4):2099–2111, 1980.
S. Tang and J. E. Hirsch. Peierls instability in the two-dimensionalhalf-filled hubbard model. Phys. Rev. B Condens., 37(16):9546–9558, 1988.
H. Trygve, J. Michal, and R. Kenneth. Ab initio methods for the calculation of NMR shielding and indirectspin−spin coupling constants. Chem. Rev., 99:293–352, 1999.
T. O. Wehling, E. Sasioglu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blugel. Strength of effective Coulomb interactions in graphene and graphite. Phys.Rev. Lett., 106(23):236805, 2011.
L. Zhang, U. Bhattacharya, M. Recasens, T. Grass, R. W. Chhajlany, M. Lewenstein, and A. S. Johnson. Tensor network study of the light-induced phase transitions in vanadium dioxide. npj Quantum Mater., 10(1), 2025.
Z. Zhao, H. Ding, J. Zhou, Y. Xu, Y. Huang, Q. Wang, X. Fang, T. Ren, L. Li, and Y. Pan. Modified design of power supply system for 100 Tesla pulsed magnetic field. IEEE Trans. Appl. Supercond., 28(3):1–5, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97356-
dc.description.abstract本研究基於休克爾-倫敦模型,探討共軛分子體系中的佩爾斯不穩定性及其在外加磁場影響下的行為, 結合理論分析與數值計算,解析共軛分子在磁場作用下的電子結構變化,並探討其對分子穩定性與能量分佈的影響。透過對磁場下的電子態變化進行計算與分析,我們揭示了共軛體系在磁場作用下可能發生佩爾斯不穩定性,並對未來相關材料的設計提供理論指引。zh_TW
dc.description.abstractThis study is based on the Huckel–London model to investigate the Peierls instability in conjugated molecular systems and its behavior under an applied magnetic field. By combining theoretical analysis with numerical calculations, we investigate the evolution of the electronic structure of conjugated molecules induced by the magnetic field and assess their impact on molecular stability and energy distribution. Our computations and analyses of the electronic states under a magnetic field reveal that conjugated systems may undergo Peierls instability, providing theoretical guidance for the future design of related materials.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-07T16:10:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-05-07T16:10:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xi
Chapter 1 Introduction 1
1.1 Conjugated Systems: Annulene and Möbius Annulene 1
1.2 Literature Review of Peierls Instability 2
1.3 Research Significance and Outlook 4
Chapter 2 Magnetic Field Effects on Conjugated Ring Systems 5
2.1 Structure and Hückel model of Annulenes and Möbius Annulene 5
2.2 Theoretical Foundations of Gauge Invariance 9
2.3 Gauge Invariance of Schrödinger Equation 11
2.4 Gauge Invariant Atomic Orbital 12
2.5 Hückel-London Method 13
2.6 Summary 15
Chapter 3 Field-Free Peierls Instability of Annulene and Möbius Annulene 17
3.1 Theoretical Model of Peierls Instability 17
3.2 Potential Energy Surface (PES) Analysis of Closed-Shell Configuration 21
3.3 Force Constant Analysis in the Field-Free Limit 29
3.4 Potential Energy Surface Analysis of Open-Shell Configuration 31
3.5 Summary 37
Chapter 4 Peierls Instability Under Magnetic Field 39
4.1 SSH Model Under Magentic Field 39
4.2 Field-Induced Peierls Instability. 41
4.3 Electronic configurtion transition under Magnetic Field 46
4.4 Impact of Peierls Instability on Ring Current 54
4.5 Summary. 61
Chapter 5 Remark and Conclusion 63
References 67
-
dc.language.isoen-
dc.title基於休克爾-倫敦模型對磁場誘發佩爾斯不穩定性的分析:以輪烯為例zh_TW
dc.titleHückel-London Model Analysis of Magnetic-Field-Induced Peierls Instability in Annuleneen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭原忠;李祐慈zh_TW
dc.contributor.oralexamcommitteeYuan-Chung Cheng;Elise Yu-Tzu Lien
dc.subject.keyword休克爾-倫敦模型,佩爾斯不穩定性,共軛分子,磁場效應,zh_TW
dc.subject.keywordHückel-London model,Peierls instability,conjugated molecules,magnetic field effects,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202500826-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-04-21-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2030-04-16-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  目前未授權公開取用
2.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved