Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97339
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平zh_TW
dc.contributor.advisorChung-Ping Chenen
dc.contributor.author謝瑄zh_TW
dc.contributor.authorHsuan Hsiehen
dc.date.accessioned2025-05-07T16:05:21Z-
dc.date.available2025-05-08-
dc.date.copyright2025-05-07-
dc.date.issued2025-
dc.date.submitted2025-04-24-
dc.identifier.citation[1] D. M. Alber and L. N. Olson. Parallel coarse-grid selection. Numerical Linear Algebra with Applications, 14(8):611–643, 2007.
[2] M. Bailey. Parallel programming: Speedups and amdahl's law. 2021.
[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the solution of linear systems: building blocks for iterative methods. SIAM, 1994.
[4] O. Beaumont, J. Langou, W. Quach, and A. Shilova. A makespan lower bound for the tiled cholesky factorization based on alap schedule. In European Conference on Parallel Processing, pages 134–150. Springer, 2020.
[5] J. D. Booth, N. D. Ellingwood, H. K. Thornquist, and S. Rajamanickam. Basker: Parallel sparse lu factorization utilizing hierarchical parallelism and data layouts. Parallel Computing, 68:17–31, 2017.
[6] T.-H. Chen, J.-L. Tsai, C. C. Chen, and T. Karnik. Hisim: hierarchical interconnectcentric circuit simulator. In IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004., pages 489–496. IEEE, 2004.
[7] Y. Chen, Z. Cai, M. Wei, Z. Lin, and J. Chen. Global and local attention-based inception u-net for static ir drop prediction. In IEEE 42nd International Conference on Computer Design (ICCD), pages 673–680. IEEE, 2024.
[8] C.-H. Chou, N.-Y. Tsai, H. Yu, C.-R. Lee, Y. Shi, and S.-C. Chang. On the preconditioner of conjugate gradient method—a power grid simulation perspective. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 494–497. IEEE, 2011.
[9] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming. IEEE computational science and engineering, 5(1):46–55, 1998.
[10] T.A.Davis. Suitesparse: A suite of sparse matrix software. https://github.com/DrTimothyAldenDavis/SuiteSparse, 2024.
[11] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Transactions on Mathematical Software, 38(1):1–25, 2011.
[12] S. Dey, S. Dash, S. Nandi, and G. Trivedi. PGIREM: reliability-constrained IR drop minimization and electromigration assessment of VLSI power grid networks using cooperative coevolution. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 40–45. IEEE, July 2018.
[13] P. Dimo. Nodal analysis of power systems. International Scholarly Book Services, Inc.,Forest Grove, OR, 01 1975.
[14] G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins University Press, USA, 1996.
[15] G. Guennebaud, B. Jacob, et al. Eigen: C++ template library for linear algebra, version 3.4.0. https://gitlab.com/libeigen/eigen/-/releases/3.4.0, 2021. Released August 18, 2021.
[16] K. Kim, S. Rajamanickam, G. Stelle, H. C. Edwards, and S. L. Olivier. Task parallel incomplete cholesky factorization using 2d partitioned-block layout. arXiv preprint arXiv:1601.05871, 2016.
[17] J. N. Kozhaya, S. R. Nassif, and F. N. Najm. A multigrid-like technique for power grid analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21(10):1148–1160, 2002.
[18] P. Li. Power grid simulation via efficient sampling-based sensitivity analysis and hierarchical symbolic relaxation. In Proceedings of the 42nd annual Design Automation Conference, pages 664–669, 2005.
[19] W. Liu, T. Ma, and Z. Guan. The fast power grid static analysis algorithm based on matrix reordering. In Third International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2024), volume 13181, pages 802–807. SPIE, 2024.
[20] LLNL Scalable Solvers Group. hypre: High Performance Preconditioners. Lawrence Livermore National Laboratory, 2024. https://hypre.readthedocs.io/.
[21] Y. Meng, R. Lyu, Z. Bi, C. Yan, F. Yang, W. Hu, D. Zhou, and X. Zeng. Circuits physics constrained predictor of static ir drop with limited data. In Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1–2. IEEE, 2024.
[22] G. E. Moore. Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1):82–85, 1998.
[23] L. W. Nagel and D. Pederson. Spice (simulation program with integrated circuit emphasis). Technical Report UCB/ERL M382, Apr 1973.
[24] C.-H. Pao, A.-Y. Su, and Y.-M. Lee. Xgbir: An xgboost-based ir drop predictor for power delivery network. In Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1307–1310. IEEE, 2020.
[25] V. S. Rana, M. Lin, and B. Chapman. A scalable task parallelism approach for lu decomposition with multicore cpus. In Second International Workshop on Extreme Scale Programming Models and Middlewar (ESPM2), pages 17–23. IEEE, 2016.
[26] M. Roser, H. Ritchie, and E. Mathieu. What is moore's law? Our World in Data, 2023.
[27] J. W. Ruge and K. Stüben. Algebraic Multigrid, chapter 4, pages 73–130.
[28] K. Stüben and U. Trottenberg. Multigrid methods: Fundamental algorithms, model problem analysis and applications. In Multigrid Methods: Proceedings of the Conference Held at Köln-Porz, November 23–27, 1981, pages 1–176. Springer, 2006.
[29] Synopsys. HSPICEtextsuperscripttextregistered User Guide: Basic Simulation and Analysis. Synopsys, Inc., Mountain View, CA, 2015. Version K-2015.06.
[30] R. Wu. Dynamic scheduling strategy for block parallel cholesky factorization based on activity on edge network. IEEE Access, 7:66317–66324, 2019.
[31] J. Xu and L. Zikatanov. Algebraic multigrid methods. Acta Numerica, 26:591–721, 2017.
[32] J. Yang, Z. Li, Y. Cai, and Q. Zhou. Powerrush: Alinear simulator for power grid. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 482–487. IEEE, 2011.
[33] J. Yang, Z. Li, Y. Cai, and Q. Zhou. Powerrush: An efficient simulator for static power grid analysis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(10):2103–2116, 2013.
[34] P.E.Zaspel. Analysisandparallelizationstrategies for ruge-stübenamgonmany-core processors. 2017.
[35] Z. Zeng, T. Xu, Z. Feng, and P. Li. Fast static analysis of power grids: Algorithms and implementations. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 488–493. IEEE, 2011.
[36] X. Zhao, J. Wang, Z. Feng, and S. Hu. Power grid analysis with hierarchical support graphs. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 543–547. IEEE, 2011.
[37] Y. Zhao, Z. Chai, X. Jiang, Y. Lin, R. Wang, and R. Huang. Pdnnet: Pdn-aware gnn-cnn heterogeneous network for dynamic ir drop prediction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024.
[38] Y. Zhu and A. C. Cangellaris. Multigrid finite element methods for electromagnetic field modeling. John Wiley & Sons, 2006.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97339-
dc.description.abstract隨著積體電路(IC)設計日益複雜,確保大規模電源傳輸網路(Power Delivery Networks, PDNs)的電源完整性已成為一項關鍵挑戰。因此,快速且精確的 IR drop 分析對於細部模組建模以及整體系統的可擴展性而言,皆是不可或缺的關鍵。
本論文提出兩種適用於大規模 PDN 的階層式靜態 IR drop 模擬方法,分別對應於設計後期的驗證與前期的預估需求:HiPSim,一種新開發的階層式並行模擬架構,以及客製化的代數多重網格(Algebraic Multigrid, AMG)求解器。HiPSim 採用結構化的區塊分割策略,並依序進行節點重新排序與內部節點的並行求解,以加速整體模擬效率。而 AMG 解法則運用多層級矩陣粗化與內插技巧,有效處理大規模系統。
與商用模擬工具 Synopsys HSPICE 相比,HiPSim 可達到 15 倍的加速效果,並降低 55% 的記憶體使用量,且控制在 1e-6 以內的電壓誤差;而 AMG 則實現了 23 倍的加速效果與 68% 的記憶體節省,並將誤差控制在 1% 左右。實驗結果顯示,這兩種方法在自建的大型 PDN 測試資料上皆大幅優於傳統平坦式模擬器,展現其在現代 VLSI 電源完整性驗證中的實用性與可擴展性。
zh_TW
dc.description.abstractAs integrated circuit (IC) complexity continues to increase, ensuring power integrity in large-scale power delivery networks (PDNs) has become a critical design challenge. Fast and accurate IR drop analysis is thus essential for both detailed module modeling and overall system scalability.
This work presents two hierarchical static IR drop analysis approaches for scalable PDN simulation, targeting late-stage verification and early-stage estimation: HiPSim, a novel hierarchical and parallel framework, and AMG, a customized multigrid-based solver. HiPSim employs a structured block-partitioning strategy, followed by node reordering and parallel internal node solving to accelerate computation. The AMG solver leverages multilevel matrix coarsening and interpolation techniques to efficiently handle large systems.
Compared to Synopsys HSPICE, HiPSim achieves a speedup of 15 times and 55 percent lower memory usage, with accuracy loss within 1e-6, while AMG achieves a speedup of 23 times and 68 percent memory reduction, with approximately 1 percent accuracy loss. Experiments on self-generated PDN benchmarks show both methods significantly outperform traditional flat solvers, providing scalable and practical solutions for modern VLSI power integrity verification.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-07T16:05:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-05-07T16:05:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMaster's Thesis Acceptance Certificate i
Acknowledgements ii
摘要iv
Abstract v
Contents vii
List of Figures xi
List of Tables xiii
Chapter1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 PreviousWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Commercial Tools for Static IR Drop Analysis . . . . . . . . . . . . 4
1.2.2 Direct Methods for PDN Simulation . . . . . . . . . . . . . . . . . 4
1.2.3 Iterative Methods for PDN Simulation . . . . . . . . . . . . . . . . 5
1.2.4 Hierarchical Methods for PDN Simulation . . . . . . . . . . . . . . 6
1.2.5 Multigrid-based Methods for PDN Simulation . . . . . . . . . . . . 7
1.2.6 AI-based Methods for PDN Simulation. . . . . . . . . . . . . . . . 7
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter2 Background 9
2.1 Nodal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Cholesky Decomposition. . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Multigrid Method(MG) . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Gauss-Seidel Method. . . . . . . . . . . . . . . . . . . . . . . . . . 14
Chapter3 Proposed Methods 16
3.1 Flat PDN Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Hierarchical PDN Simulation . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 HiPSim Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1.1 Block Matrix Transformation of the Conductance Matrix 19
3.2.1.2 Separate External and Internal Nodes . . . . . . . . . . 20
3.2.1.3 Hierarchical Conductance Matrix Decomposition . . . 23
3.2.1.4 Conductance Matrix Reordering for Efficient Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1.5 Solving External Node Voltages in the Conductance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1.6 Parallel Computation of Internal Node Voltages in the Conductance Matrix . . . . . . . . . . . . . . . . . . . 25
3.2.2 Algebraic Multigrid (AMG) Approach . . . . . . . . . . . . . . . . 27
3.2.2.1 Coarse(C) and Fine(F) Point Selection Strategy . . . . 31
3.2.2.2 Interpolation Matrix Construction. . . . . . . . . . . . 34
3.2.2.3 Coarse Grid Matrix Generation . . . . . . . . . . . . . 35
3.2.2.4 Initial Solution on Fine Grid. . . . . . . . . . . . . . . 36
3.2.2.5 Pre-smoothing . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2.6 Compute Residual . . . . . . . . . . . . . . . . . . . . 38
3.2.2.7 Restriction to CoarseGrid. . . . . . . . . . . . . . . . 39
3.2.2.8 Coarse-grid Correction . . . . . . . . . . . . . . . . . 40
3.2.2.9 InterpolationtoFineGrid . . . . . . . . . . . . . . . . 41
3.2.2.10 Post-smoothing . . . . . . . . . . . . . . . . . . . . . 41
3.2.2.11 Summary of Multigrid Operators and Variables . . . . 42
Chapter4 Dataset 43
4.1 Self-Generated Power Grid(SGPG) . . . . . . . . . . . . . . . . . . 43
Chapter5 Experimental Results 45
5.1 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Flat PDN Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Hierarchical PDN Simulation . . . . . . . . . . . . . . . . . . . . . 48
5.3.1 HiPSim Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.1.1 HiPSim: Comparison with Synopsys HSPICE . . . . . 49
5.3.1.2 Speedup Convergence in Large-Scale PDN Simulations 51
5.3.1.3 HiPSim: Comparison with the Reference Flat Solver. . 52
5.3.1.4 HiPSim: CPU Utilization and Parallel Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Algebraic Multigrid(AMG) Approach . . . . . . . . . . . . . . . . 56
5.3.2.1 AMG: Comparison with Synopsys HSPICE . . . . . . 56
5.3.2.2 AMG: Comparison with the Reference Flat Solver . . . 58
5.3.3 Comparison between HiPSim Approach and Algebraic Multigrid(AMG) Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Chapter6 Conclusion 65
6.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.1 Adaptive Solver Selection for Circuit Diversity . . . . . . . . . . . 66
6.2.2 Accuracy-Performance Tuning in AMG . . . . . . . . . . . . . . . 66
6.2.3 Extension to Dynamic IR Drop Simulation . . . . . . . . . . . . . . 67
6.2.4 Integration with Machine Learning Techniques . . . . . . . . . . . 67
6.2.5 Application to Advanced Packaging and Industrial Designs . . . . . 67
References 68
-
dc.language.isoen-
dc.subject壓降分析zh_TW
dc.subject電路模擬zh_TW
dc.subject階層式模擬zh_TW
dc.subject代數多重網格法zh_TW
dc.subject電子設計自動化zh_TW
dc.subject平行運算zh_TW
dc.subject電源傳輸網路zh_TW
dc.subjectParallel Computingen
dc.subjectPower Delivery Networken
dc.subjectIR Drop Analysisen
dc.subjectCircuit Simulationen
dc.subjectHierarchical Simulationen
dc.subjectAlgebraic Multigriden
dc.subjectEDAen
dc.title用於大規模VLSI電源傳輸網路之階級式靜態電壓模擬zh_TW
dc.titleHierarchical Static IR Drop Simulation for Large-Scale VLSI Power Delivery Networksen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊光磊;謝維致zh_TW
dc.contributor.oralexamcommitteeKonrad Young;Wei-Chih Hsiehen
dc.subject.keyword電源傳輸網路,壓降分析,電路模擬,階層式模擬,代數多重網格法,電子設計自動化,平行運算,zh_TW
dc.subject.keywordPower Delivery Network,IR Drop Analysis,Circuit Simulation,Hierarchical Simulation,Algebraic Multigrid,EDA,Parallel Computing,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202500851-
dc.rights.note未授權-
dc.date.accepted2025-04-24-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
6.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved