請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97334完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳亮嘉 | zh_TW |
| dc.contributor.advisor | Liang-Chia Chen | en |
| dc.contributor.author | 洪彥鴻 | zh_TW |
| dc.contributor.author | Yen-Hung Hung | en |
| dc.date.accessioned | 2025-04-24T16:11:44Z | - |
| dc.date.available | 2025-04-25 | - |
| dc.date.copyright | 2025-04-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-15 | - |
| dc.identifier.citation | 1. U. I. A Arefín, Md & Hossen, Md & Prince, Md., "Simulation & Analysis of Characteristics of Quantum-Well FET," 2015, doi: 10.13140/RG.2.1.4439.4409. .
2. P. Hariharan, Optical interferometry, 2e. Elsevier, 2003. 3. J. Park, J.-A. Kim, H. Ahn, J. Bae, and J. Jin, "A review of thickness measurements of thick transparent layers using optical interferometry," International Journal of Precision Engineering and Manufacturing, vol. 20, pp. 463-477, 2019. 4. V. Damian, M. Bojan, P. Schiopu, I. Iordache, B. Ionita, and D. Apostol, "White light interferometry applications in nanometrology," in Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies IV, 2009, vol. 7297: SPIE, pp. 275-278. 5. J. Coupland and J. Lobera, "Measurement of steep surfaces using white light interferometry," Strain, vol. 46, no. 1, pp. 69-78, 2010. 6. R. Windecker and H. J. Tiziani, "Optical roughness measurements using extended white-light interferometry," Optical Engineering, vol. 38, no. 6, pp. 1081-1087, 1999. 7. L. L. Deck, "Fourier-transform phase-shifting interferometry," Applied Optics, vol. 42, no. 13, pp. 2354-2365, 2003. 8. P. de Groot, "Phase shifting interferometry," in Optical measurement of surface topography: Springer, 2011, pp. 167-186. 9. T. Jo, S. Kim, and H. Pahk, "3D measurement of TSVs using low numerical aperture white-light scanning interferometry," Journal of the Optical Society of Korea, vol. 17, no. 4, pp. 317-322, 2013. 10. C. Hyun, S. Kim, and H. Pahk, "Methods to measure the critical dimension of the bottoms of through-silicon vias using white-light scanning interferometry," Journal of the Optical Society of Korea, vol. 18, no. 5, pp. 531-537, 2014. 11. P. Timoney et al., "New interferometric measurement technique for small diameter TSV," in 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014), 2014: IEEE, pp. 37-41. 12. H. Fujiwara, Spectroscopic ellipsometry: principles and applications. John Wiley & Sons, 2007. 13. H. G. Tompkins and J. N. Hilfiker, Spectroscopic ellipsometry: practical application to thin film characterization. Momentum Press, 2015. 14. E. Hecht, Optics. Pearson Education India, 2012. 15. J. N. Hilfiker, N. Hong, and S. Schoeche, "Mueller matrix spectroscopic ellipsometry," Advanced Optical Technologies, vol. 11, no. 3-4, pp. 59-91, 2022. 16. H. Tompkins and E. A. Irene, Handbook of ellipsometry. William Andrew, 2005. 17. S. A. Taya, T. M. El-Agez, and A. A. Alkanoo, "Thin film characterization using rotating polarizer analyzer ellipsometer with a speed ratio 1: 3," Journal of Electromagnetic Analysis and Applications, vol. 2011, 2011. 18. R. Collins and J. Koh, "Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films," JOSA A, vol. 16, no. 8, pp. 1997-2006, 1999. 19. A. C. Diebold, A. Antonelli, and N. Keller, "Perspective: Optical measurement of feature dimensions and shapes by scatterometry," Apl Materials, vol. 6, no. 5, 2018. 20. J. Son et al., "Massive overlay metrology solution by realizing imaging Mueller matrix spectroscopic ellipsometry," in Metrology, Inspection, and Process Control XXXVII, 2023, vol. 12496: SPIE, pp. 151-157. 21. Y. B. Seo, Y. H. Yun, and K.-N. Joo, "3D multi-layered film thickness profile measurements based on photometric type imaging ellipsometry," International Journal of Precision Engineering and Manufacturing, vol. 17, pp. 989-993, 2016. 22. R. Kenaz and R. Rapaport, "Mapping spectroscopic micro-ellipsometry with sub-5 microns lateral resolution and simultaneous broadband acquisition at multiple angles," Review of Scientific Instruments, vol. 94, no. 2, 2023. 23. L. Jin, E. Kondoh, Y. Iizuka, M. Otake, and B. Gelloz, "Lateral ellipsometry resolution for imaging ellipsometry measurement," Japanese Journal of Applied Physics, vol. 60, no. 5, p. 058003, 2021. 24. S. Liu, W. Du, X. Chen, H. Jiang, and C. Zhang, "Mueller matrix imaging ellipsometry for nanostructure metrology," Optics express, vol. 23, no. 13, pp. 17316-17329, 2015. 25. D.-G. Yang, Y.-S. Ghim, and H.-G. Rhee, "High precision micro-ellipsometry based on a pixelated polarizing camera," Optics and Lasers in Engineering, vol. 178, p. 108240, 2024. 26. M. H. Madsen and P.-E. Hansen, "Scatterometry—fast and robust measurements of nano-textured surfaces," Surface Topography: Metrology and Properties, vol. 4, no. 2, p. 023003, 2016. 27. W.-T. Hsu and Y.-S. Ku, "Reflectometry for TSV etching depth inspection," in Optical Measurement Systems for Industrial Inspection VII, 2011, vol. 8082: SPIE, pp. 674-680. 28. N. Kumar et al., "Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology," in Metrology, Inspection, and Process Control for Microlithography XXVI, 2012, vol. 8324: SPIE, pp. 279-286. 29. M. L. Gödecke, K. Frenner, and W. Osten, "Model-based characterisation of complex periodic nanostructures by white-light Mueller-matrix Fourier scatterometry," Light: Advanced Manufacturing, vol. 2, no. 3, pp. 237-250, 2021. 30. D. Schmidt et al., "Vertical travelling scatterometry for metrology on fully integrated devices," in Metrology, Inspection, and Process Control XXXVI, 2022, vol. 12053: SPIE, pp. 261-269. 31. G. Dai, L. Koenders, J. Fluegge, and M. Hemmleb, "Fast and accurate: high-speed metrological large-range AFM for surface and nanometrology," Measurement Science and Technology, vol. 29, no. 5, p. 054012, 2018. 32. D. Hussain, K. Ahmad, J. Song, and H. Xie, "Advances in the atomic force microscopy for critical dimension metrology," Measurement Science and Technology, vol. 28, no. 1, p. 012001, 2016. 33. G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, no. 9, p. 930, 1986. 34. B. Cappella, P. Baschieri, C. Frediani, P. Miccoli, and C. Ascoli, "Force-distance curves by AFM," IEEE engineering in medicine and biology magazine, vol. 16, no. 2, pp. 58-65, 1997. 35. N. G. Orji and R. G. Dixson, "Higher order tip effects in traceable CD-AFM-based linewidth measurements," Measurement Science and Technology, vol. 18, no. 2, p. 448, 2007. 36. J. Foucher, R. Thérèse, Y. Lee, S.-I. Park, and S.-J. Cho, "Introduction of next-generation 3D AFM for advanced process control," in Metrology, Inspection, and Process Control for Microlithography XXVII, 2013, vol. 8681: SPIE, pp. 45-52. 37. Y. Martin and H. K. Wickramasinghe, "Method for imaging sidewalls by atomic force microscopy," Applied Physics Letters, vol. 64, no. 19, pp. 2498-2500, 1994. 38. T. Morimoto, H. Kuroda, Y. Minomoto, Y. Nagano, Y. Kembo, and S. Hosaka, "Atomic force microscopy for high aspect ratio structure metrology," Japanese journal of applied physics, vol. 41, no. 6S, p. 4238, 2002. 39. K. Murayama, S. Gonda, H. Koyanagi, T. Terasawa, and S. Hosaka, "Side-wall measurement using tilt-scanning method in atomic force microscope," Japanese journal of applied physics, vol. 45, no. 6S, p. 5423, 2006. 40. K. Murayama, S. Gonda, H. Koyanagi, T. Terasawa, and S. Hosaka, "Critical-dimension measurement using multi-angle-scanning method in atomic force microscope," Japanese journal of applied physics, vol. 45, no. 7R, p. 5928, 2006. 41. H. Xie, D. Hussain, F. Yang, and L. Sun, "Development of three-dimensional atomic force microscope for sidewall structures imaging with controllable scanning density," IEEE/ASME Transactions on Mechatronics, vol. 21, no. 1, pp. 316-328, 2015. 42. G. Dai et al., "Measurements of CD and sidewall profile of EUV photomask structures using CD-AFM and tilting-AFM," Measurement Science and Technology, vol. 25, no. 4, p. 044002, 2014. 43. B. Su, K. Rajkumar, and M. Agrawal, "Limitation of CD AFM on resist foot detection," in Metrology, Inspection, and Process Control for Microlithography XII, 1998, vol. 3332: SPIE, pp. 151-162. 44. Wikipedia contributors, "Scanning electron microscope," in Wikipedia, The Free Encyclopedia., ed. 45. B. Bunday, A. Cepler, A. Cordes, and A. Arceo, "CD-SEM metrology for sub-10nm width features," in Metrology, Inspection, and Process Control for Microlithography XXVIII, 2014, vol. 9050: SPIE, pp. 238-257. 46. K. Crosby, A. L. Eberle, and D. Zeidler, "Multi-beam SEM technology for high throughput imaging," MRS Advances, vol. 1, no. 26, pp. 1915-1920, 2016. 47. M. Malloy et al., "Massively parallel E-beam inspection: enabling next-generation patterned defect inspection for wafer and mask manufacturing," in Alternative Lithographic Technologies VII, 2015, vol. 9423: SPIE, pp. 265-274. 48. O. D. Patterson, E. Ma, F. Wang, M. Kea, K. Chou, and M. Ebert, "Advancement in Massively Parallel Electron Beam Inspection Technology for 7nm and Below Process Development and Manufacturing," in International Conference on Frontiers of Characterization and Metrology for Nanoelectronics, 2019. 49. M. de Goede, E. Johlin, B. Sciacca, F. Boughorbel, and E. C. Garnett, "3D multi-energy deconvolution electron microscopy," Nanoscale, vol. 9, no. 2, pp. 684-689, 2017. 50. C. S. Xu et al., "Enhanced FIB-SEM systems for large-volume 3D imaging," elife, vol. 6, p. e25916, 2017. 51. A. Wolff. "Focused ion beams: An overview of the technology and its capabilities." Wiley Analytical Science. https://analyticalscience.wiley.com/content/article-do/focused-ion-beams-overview-technology-and-its-capabilities#was.auth.WolffA (accessed. 52. E. Borgonovo and E. Plischke, "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, vol. 248, no. 3, pp. 869-887, 2016. 53. R. A. Howard, "Uncertainty about probability: A decision analysis perspective," Risk Analysis, vol. 8, no. 1, pp. 91-98, 1988. 54. C. Filippi, "A fresh view on the tolerance approach to sensitivity analysis in linear programming," European journal of operational research, vol. 167, no. 1, pp. 1-19, 2005. 55. T. G. Eschenbach, "Spiderplots versus tornado diagrams for sensitivity analysis," Interfaces, vol. 22, no. 6, pp. 40-46, 1992. 56. E. Borgonovo, "The reliability importance of components and prime implicants in coherent and non-coherent systems including total-order interactions," European Journal of Operational Research, vol. 204, no. 3, pp. 485-495, 2010. 57. O. Tietje, "Identification of a small reliable and efficient set of consistent scenarios," European Journal of Operational Research, vol. 162, no. 2, pp. 418-432, 2005. 58. H. Jungermann and M. Thüring, "The labyrinth of experts' minds: some reasoning strategies and their pitfalls," Annals of Operations Research, vol. 16, pp. 117-130, 1988. 59. F. A. O’Brien, "Scenario planning––lessons for practice from teaching and learning," european Journal of operational research, vol. 152, no. 3, pp. 709-722, 2004. 60. J. P. Kleijnen, "Sensitivity analysis of simulation models: an overview," Procedia-Social and Behavioral Sciences, vol. 2, no. 6, pp. 7585-7586, 2010. 61. J. C. Helton, "Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal," Reliability Engineering & System Safety, vol. 42, no. 2-3, pp. 327-367, 1993. 62. E. Borgonovo and G. E. Apostolakis, "A new importance measure for risk-informed decision making," Reliability Engineering & System Safety, vol. 72, no. 2, pp. 193-212, 2001. 63. P. Do Van, A. Barros, and C. Bérenguer, "Reliability importance analysis of Markovian systems at steady state using perturbation analysis," Reliability Engineering & System Safety, vol. 93, no. 11, pp. 1605-1615, 2008. 64. L. Lu and J. Jiang, "Joint failure importance for noncoherent fault trees," IEEE transactions on reliability, vol. 56, no. 3, pp. 435-443, 2007. 65. X. Gao, L. Cui, and J. Li, "Analysis for joint importance of components in a coherent system," European Journal of Operational Research, vol. 182, no. 1, pp. 282-299, 2007. 66. A. Saltelli et al., Global sensitivity analysis: the primer. John Wiley & Sons, 2008. 67. B. Iooss and P. Lemaître, "A review on global sensitivity analysis methods," Uncertainty management in simulation-optimization of complex systems: algorithms and applications, pp. 101-122, 2015. 68. A. Saltelli, "Making best use of model evaluations to compute sensitivity indices," Computer physics communications, vol. 145, no. 2, pp. 280-297, 2002. 69. M.-H. Chun, S.-J. Han, and N.-I. Tak, "An uncertainty importance measure using a distance metric for the change in a cumulative distribution function," Reliability Engineering & System Safety, vol. 70, no. 3, pp. 313-321, 2000. 70. C. K. Park and K.-I. Ahn, "A new approach for measuring uncertainty importance and distributional sensitivity in probabilistic safety assessment," Reliability Engineering & System Safety, vol. 46, no. 3, pp. 253-261, 1994. 71. E. Borgonovo, "A new uncertainty importance measure," Reliability Engineering & System Safety, vol. 92, no. 6, pp. 771-784, 2007. 72. F. Pianosi and T. Wagener, "A simple and efficient method for global sensitivity analysis based on cumulative distribution functions," Environmental Modelling & Software, vol. 67, pp. 1-11, 2015. 73. F. Pianosi and T. Wagener, "Distribution-based sensitivity analysis from a generic input-output sample," Environmental Modelling & Software, vol. 108, pp. 197-207, 2018. 74. R. Bracewell and P. B. Kahn, "The Fourier transform and its applications," American Journal of Physics, vol. 34, no. 8, pp. 712-712, 1966. 75. M. Hammerschmidt. "The Finite-Element Method (FEM) for Nano-Optics Simulations." https://jcmwave.com/company/blog/item/1049-fem-for-nano-optics-simulations (accessed 2024). 76. W. contributors, "Finite-difference time-domain method," 2024. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Finite-difference_time-domain_method&oldid=1221966521. 77. J. A. Kurvits, M. Jiang, and R. Zia, "Comparative analysis of imaging configurations and objectives for Fourier microscopy," JOSA A, vol. 32, no. 11, pp. 2082-2092, 2015. 78. Thorlabs, "Thorlabs High-Resolution Plan Apochromatic VIS+ Objective." [Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9922&pn=HPA50XAB. 79. I. M. Sobol, "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates," Mathematics and computers in simulation, vol. 55, no. 1-3, pp. 271-280, 2001. 80. N. SimCenter, "Global Sensitivity Analysis." [Online]. Available: https://simcenter.designsafe-ci.org/media/filer_public/eb/a1/eba14491-7342-48ee-a444-14feb6ff8312/3sensitivity_lecture_note.pdf. 81. G. Hooker, "Generalized functional anova diagnostics for high-dimensional functions of dependent variables," Journal of computational and graphical statistics, vol. 16, no. 3, pp. 709-732, 2007. 82. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola, "Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index," Computer physics communications, vol. 181, no. 2, pp. 259-270, 2010. 83. J. Jacques, C. Lavergne, and N. Devictor, "Sensitivity analysis in presence of model uncertainty and correlated inputs," Reliability Engineering & System Safety, vol. 91, no. 10-11, pp. 1126-1134, 2006. 84. A. Saltelli and S. Tarantola, "On the relative importance of input factors in mathematical models: safety assessment for nuclear waste disposal," Journal of the American Statistical Association, vol. 97, no. 459, pp. 702-709, 2002. 85. C. Xu and G. Z. Gertner, "A general first-order global sensitivity analysis method," Reliability Engineering & System Safety, vol. 93, no. 7, pp. 1060-1071, 2008. 86. I. Soboĺ, "Sensitivity estimates for nonlinear mathematical models," Math. Model. Comput. Exp., vol. 1, p. 407, 1993. 87. M. J. Jansen, "Analysis of variance designs for model output," Computer Physics Communications, vol. 117, no. 1-2, pp. 35-43, 1999. 88. T. Ishigami and T. Homma, "An importance quantification technique in uncertainty analysis for computer models," in [1990] Proceedings. First international symposium on uncertainty modeling and analysis, 1990: IEEE, pp. 398-403. 89. W. contributors. "Response surface methodology." https://en.wikipedia.org/w/index.php?title=Response_surface_methodology&oldid=1192190951 (accessed. 90. D. C. Montgomery, 巫佳煌, 唐麗英, and 黎正中, Design and Analysis of Experiments, 10 e. 2023, pp. 525-601. 91. B. Jones and R. T. Johnson, "Design and analysis for the Gaussian process model," Quality and Reliability Engineering International, vol. 25, no. 5, pp. 515-524, 2009. 92. T. J. Santner, B. J. Williams, W. I. Notz, and B. J. Williams, The design and analysis of computer experiments. Springer, 2003. 93. E. Schulz, M. Speekenbrink, and A. Krause, "A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions," Journal of Mathematical Psychology, vol. 85, pp. 1-16, 2018. 94. J. Wang, "An intuitive tutorial to Gaussian processes regression," Computing in Science & Engineering, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97334 | - |
| dc.description.abstract | 隨著電晶體的微型化和先進封裝技術的發展,三維封裝技術已成為異質整合中的關鍵架構。然而,隨著製程中結構類型的改變以及關鍵尺寸(Critical Dimension, CD)的縮小,傳統光學關鍵尺寸量測技術面臨嚴峻挑戰。這些挑戰包括結構的深寬比增加以及結構的複雜化,導致反向解析關鍵尺寸的難度大增,對產品良率的維持產生了重大影響。因此,如何有效量測這些複雜結構尺寸並實際應用於線上關鍵尺寸量測技術,成為推進先進封裝製程發展的關鍵。
本篇碩士論文旨在開發一套最佳化光學關鍵尺寸量測系統的演算法,透過該演算法制定光學系統照明條件參數及量測策略,以提升次微米級高深寬結構關鍵尺寸量測的準確性。針對此目標,我們在研究過程中深入探討了光學響應的物理背景,並藉由有限時域差分法建立相應的物理和電磁模擬模型,從而理解真實情境中電磁波與結構幾何的交互作用及其響應特性。隨後,我們設計了基於全局敏感度分析(Global sensitivity analysis)和實驗設計(Experimental design)的最佳化演算法,利用該演算法揭示光學系統在何種條件下能達到最高的關鍵尺寸量測能力。同時,我們也通過全局敏感度分析方法揭示了關鍵尺寸間的交互作用對光學響應的影響程度,從而制定出合理且有效的量測策略。 研究結果顯示,將本研究開發的敏感度分析和量測能力最佳化演算法應用於光譜式反射儀時,我們能夠量化量測條件的差異對光學系統量測能力的影響,並推斷出光譜式反射儀的最佳量測條件。實際量測結果驗證了這些最佳條件對提升量測準確度的有效性,並且在最佳量測條件下與掃描式電子顯微鏡相比,光譜式反射儀對次微米級高深寬比結構之深度、線寬、側壁倾角量測誤差皆小於2%。此外,本研究還將自行開發的演算法應用於高光譜散射儀上,展示其對多種量測條件最佳化分析的能力。最佳化分析結果揭示了量測條件對量測能力的影響趨勢,為次微米級高深寬結構的關鍵尺寸量測提供了實用的策略建議。這些策略不僅可以提高光學量測技術的準確性,也為未來技術的發展提供了可操作的指導。 | zh_TW |
| dc.description.abstract | With the miniaturization of transistors and the development of advanced packaging technologies, three-dimensional (3D) packaging has become a critical architecture in heterogeneous integration. However, as the types of structures in the manufacturing process change and the critical dimensions (CD) shrink, traditional optical critical dimension (OCD) measurement techniques face severe challenges. These challenges include increased structure aspect ratios and complexity, making it significantly more difficult to reverse-engineer the CDs and maintain product yield. Therefore, effectively measuring these complex structure dimensions and applying them in online CD measurement techniques is crucial for advancing the development of advanced packaging processes.
This master's thesis aims to develop an algorithm to optimize the measurement capabilities of an OCD measurement system. Through this innovative algorithm, we establish illumination conditions and measurement strategies for the optical system to enhance the accuracy of measuring CDs of submicron high aspect ratio structures. To achieve this goal, we deeply explore the physical background of optical responses and utilize finite-difference time-domain to build corresponding physical and electromagnetic simulation models to understand electromagnetic waves' interactions and response characteristics with structural geometries in real-world scenarios. Subsequently, we develop an optimization algorithm based on global sensitivity analysis (GSA) and experimental design to reveal under which conditions the system achieves the highest CD measurement capabilities. Additionally, we use GSA to reveal the impact of interactions between CDs on optical responses, thereby formulating effective measurement strategies. The research results show that applying the sensitivity analysis and measurement capability optimization algorithm developed in this study to a spectral reflectometry allows us to quantify the impact of different measurement conditions on the measurement capabilities of the optical system and deduce the optimal measurement conditions for the reflectometry. Actual measurement results validate the effectiveness of these optimal conditions in improving measurement accuracy. Under the optimal conditions, compared with scanning electron microscopes, the depth, spacing, and side wall angle measurement bias of the spectral reflectometry are less than 2 %. Furthermore, this study also applies the self-developed algorithm to a hyperspectral scatterometry, demonstrating its ability to optimize analysis under various measurement conditions. The optimization analysis results reveal trends in the impact of measurement conditions on measurement capabilities, providing practical strategies for measuring the CDs of submicron high aspect ratio structures. These strategies not only improve the accuracy of optical measurement technology but also provide actionable guidance for the development of future technologies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-24T16:11:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-04-24T16:11:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 vi 圖次 x 表次 xvii 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究目標 4 1.4 論文架構 4 第2章 文獻回顧 6 2.1 量測技術與系統 6 2.1.1 白光干涉儀 (White Light Interferometry, WLI) 6 2.1.2 光譜式橢圓偏振儀 (Spectroscopic Ellipsometry) 8 2.1.3 光學散射術 (Optical Scatterometry) 12 2.1.4 原子力顯微鏡 (Atomic Force Microscope, AFM) 16 2.1.5 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 19 2.2 敏感度分析 22 2.2.1 簡介 22 2.2.2 局部敏感度分析 (Local sensitivity analysis, LSA) 23 2.2.3 全局敏感度分析 (Global sensitivity analysis, GSA) 26 第3章 光學散射術量測原理與理論背景 30 3.1 簡介 30 3.2 反射式干涉光譜 30 3.2.1 光干涉模型 30 3.2.2 段差結構之光干涉模型 34 3.3 繞射理論與傅立葉光學 35 3.3.1 菲涅耳繞射與夫朗和斐繞射理論 35 3.3.2 狹縫之夫朗和斐繞射分佈 38 3.3.3 傅立葉光學與薄透鏡 41 3.4 電磁模擬模型 43 3.4.1 簡介 43 3.5 週期性柵狀結構之電磁模擬模型 47 3.5.1 模型維度 47 3.5.2 照明條件 48 3.5.3 邊界條件 48 3.5.4 虛擬感測器 49 3.5.5 週期性柵狀結構之模型 49 3.6 柵狀結構之理論模型與電磁模擬實例 50 3.6.1 週期性柵狀結構之電磁模擬實例 50 3.6.2 理論與電磁模擬響應差異性 52 3.6.3 照明條件對光學響應之影響 55 第4章 光學系統量測架構與關鍵尺寸量測方法 59 4.1 光學量測系統架構 59 4.1.1 簡介 59 4.1.2 光譜式反射儀系統架構 59 4.1.3 高光譜散射儀系統架構 66 4.2 光學散射術的關鍵尺寸反向問題求解 71 4.3 光學響應之擷取與關鍵尺寸反向問題模型 75 4.3.1 光譜反射率之擷取 75 4.3.2 資料庫搜尋方法 76 4.3.3 高光譜訊號之擷取 78 第5章 量測能力分析與最佳化演算法 81 5.1 簡介 81 5.2 基於變異數之敏感度分析 82 5.2.1 簡介 82 5.2.2 主效應(一階)敏感度指數 84 5.2.3 高階敏感度指數 85 5.2.4 總效應敏感度指數 86 5.2.5 函數變異數分析分解 87 5.2.6 主效應指數Si與總效應指數STi基於蒙地卡羅估計的數值計算 89 5.2.7 不同量測條件下VBSA敏感度指數的比較 92 5.3 響應曲面法 94 5.3.1 簡介 94 5.3.2 響應曲面設計與最佳化 95 5.3.3 高斯過程回歸模型 98 5.4 光學系統量測敏感度分析與量測能力最佳化方法 105 5.4.1 光學響應對關鍵尺寸之敏感度分析演算法 105 5.4.2 光學系統量測能力之最佳化演算法 108 第6章 研究結果 111 6.1 光譜式反射儀 111 6.1.1 模擬模型與分析資料建立 111 6.1.2 光學系統量測條件最佳化分析 114 6.1.3 關鍵尺寸之敏感度分析 118 6.1.4 關鍵尺寸量測結果與驗證 120 6.2 高光譜散射儀 126 6.2.1 模擬模型與分析資料建立 126 6.2.2 繞射訊號光譜強度對關鍵尺寸量測之最佳化量測條件分析 129 6.2.3 繞射訊號角度對關鍵尺寸量測之最佳化量測條件分析 139 6.2.4 關鍵尺寸之最佳量測策略探討 147 第7章 結論與未來展望 152 7.1 結論 152 7.2 未來展望 153 參考文獻 155 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光譜式反射儀 | zh_TW |
| dc.subject | 實驗設計 | zh_TW |
| dc.subject | 全局敏感度分析 | zh_TW |
| dc.subject | 有限時域差分法 | zh_TW |
| dc.subject | 光學散射儀 | zh_TW |
| dc.subject | 光學關鍵尺寸量測 | zh_TW |
| dc.subject | finite-difference time-domain (FDTD) method | en |
| dc.subject | optical scatterometry | en |
| dc.subject | Spectral reflectometry | en |
| dc.subject | Optical critical dimension (OCD) measurement | en |
| dc.subject | Experimental design | en |
| dc.subject | Global sensitivity analysis (GSA) | en |
| dc.title | 基於全局敏感度分析之次微米高深寬結構關鍵尺寸光學量測系統設計最佳化研究 | zh_TW |
| dc.title | Optimization Study of Optical Measurement System Design for Critical Dimension in Submicron High Aspect Ratio Structures Based on Global Sensitivity Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 章明;劉建豪;林俊宏 | zh_TW |
| dc.contributor.oralexamcommittee | Ming Chang;Chien-Hao Liu;Chun-Hung Lin | en |
| dc.subject.keyword | 光學關鍵尺寸量測,光譜式反射儀,光學散射儀,有限時域差分法,全局敏感度分析,實驗設計, | zh_TW |
| dc.subject.keyword | Optical critical dimension (OCD) measurement,Spectral reflectometry,optical scatterometry,finite-difference time-domain (FDTD) method,Global sensitivity analysis (GSA),Experimental design, | en |
| dc.relation.page | 161 | - |
| dc.identifier.doi | 10.6342/NTU202404402 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-10-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2029-09-23 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
