Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君zh_TW
dc.contributor.advisorI-Chun Chengen
dc.contributor.author張子萱zh_TW
dc.contributor.authorTZU-HSUAN CHANGen
dc.date.accessioned2025-04-24T16:06:47Z-
dc.date.available2025-04-25-
dc.date.copyright2025-04-24-
dc.date.issued2025-
dc.date.submitted2025-03-28-
dc.identifier.citation[1] The Business Research Company. (2017). Plastics Product Manufacturing Global Market Report. Philadelphia: The Business Research Company.
[2] Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of The Total Environment, 586, 127-141.
[3] Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
[4] Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588-2597.
[5] Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: A micro issue? Environmental Science & Technology, 51(12), 6634-6647.
[6] Rochman, C. M., Tahir, A., Williams, S. L., Baxa, D. V., Lam, R., Miller, J. T., ... & Teh, S. J. (2015). Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports, 5, 14340.
[7] Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5(3), 375-386.
[8] Lavers, J. L., Hutton, I., & Bond, A. L. (2019). Clinical pathology of plastic ingestion in marine birds and relationships with blood chemistry. Environmental Science & Technology, 53(15), 9224–9231.
[9] Jacobsen, J. K., Massey, L., & Gulland, F. (2010). Fatal ingestion of floating net debris by two sperm whales (Physeter macrocephalus). Marine Pollution Bulletin, 60(5), 765–767.
[10] Duncan, E. M., Botterell, Z. L. R., Broderick, A. C., Galloway, T. S., Lindeque, P. K., Nuno, A., & Godley, B. J. (2017). A global review of marine turtle entanglement in anthropogenic debris: A baseline for further action. Endangered Species Research, 34, 431–448.
[11] Miedzinski, M., Mazzucato, M., & Ekins, P. (2019). A framework for mission-oriented innovation policy roadmapping for the SDGs: The case of plastic-free oceans. https://doi.org/10.13140/RG.2.2.32445.82404
[12] Thompson, R., Olsen, Y., Mitchell, R., Davis, A., Rowland, S., John, A., McGonigle, D. F., & Russell, A. (2004). Lost at Sea: Where Is All the Plastic? Science (New York, N.Y.), 304, 838. https://doi.org/10.1126/science.1094559
[13] Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic ingestion by zooplankton. Environmental Science & Technology, 47(12), 6646–6655.
[14] Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483–492.
[15] Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). *Environmental Science & TechnolEnvironmental Science & Technology, 42(13), 5026–5031.
[16] Setälä, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the planktonic food web. Environmental Pollution, 185, 77–83. https://doi.org/10.1016/j.envpol.2014.02.003
[17] Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
[18] Browne, M. A., Galloway, T. S., & Thompson, R. C. (2007). Microplastic—an emerging contaminant of potential concern? Integrated Environmental Assessment and Management, 3(4), 559–561. https://doi.org/10.1002/ieam.1017
[19] Zhang, S., Ding, J., Razanajatovo, R. M., Jiang, H., Zou, H., & Zhu, W. (2019). Accumulation of microplastics in marine fishes in the East China Sea. Environmental Pollution, 249, 108–115.
[20] Liu, S., & Zhu, L. (2019). Environmental behavior and ecological toxicity of microplastics. Advances in Environmental Science, 28(5), 857–868.
[21] Kumar, Lamba, M., Pachar, A., Yadav, S., & Acharya, A. (2024). Microplastics – A Growing Concern as Carcinogens in Cancer Etiology: Emphasis on Biochemical and Molecular Mechanisms. Cell Biochemistry and Biophysics, 82, 3109-3121. https://doi.org/10.1007/s12013-024-01436-0
[22] Tahir, Z., Nazir, M. S., Fatima, M., ul Hassan, S., Ali, Z., & Abdullah, M. A. (2021). Identification and Remediation of Plastics as Water Contaminant. In Inamuddin, M. I. Ahamed, & E. Lichtfouse (Eds.), Water Pollution and Remediation: Organic Pollutants (pp. 45-88). Springer International Publishing. https://doi.org/10.1007/978-3-030-52395-4_2
[23] https://environment.ec.europa.eu/topics/water/water-framework-directive_en
[24] Apostolaki, S., Koundouri, P., & Pittis, N. (2019). Using a systemic approach to address the requirement for Integrated Water Resource Management within the Water Framework Directive. Science of The Total Environment, 679, 70-79. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.05.077
[25] https://www.epa.gov/ccl/contaminant-candidate-list-5-ccl-5
[26] https://www.unep.org/inc-plastic-pollution
[27] https://echa.europa.eu/substances-restricted-under-reach
[28] https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=202120220SB1422
[29] https://www.globalplasticlaws.org/un-global-plastics-treaty
[30] https://www.japaneselawtranslation.go.jp/en/laws/view/2815/en
[31] https://sso.agc.gov.sg/Acts-Supp/9-1999/
[32] Durst, F., Melling, A., & Whitelaw, J. H. (1976). Principles and practice of laser Doppler anemometry. Academic Press.
[33] Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23, 261–304.
[34] Riva, G., Menon, C., & Cobelli, C. (1991). Laser Doppler flowmetry: A new tool for microcirculatory studies. Medical & Biological Engineering & Computing, 29(3), 231–236.
[35] Ferguson, J. W., & Gibson, M. (2002). Laser Doppler flowmetry: Theory, instrumentation, and clinical applications. IEEE Engineering in Medicine and Biology Magazine, 21(2), 29–36.
[36] Mieczkowski, J., & Knight, J. (2012). Laser Doppler flowmetry: Principles and applications in microvascular assessment. Vascular Health and Risk Management, 8, 705–712.
[37] Maniewski, R., Liebert, A., Kacprzak, M., & Zbieae, A. (2004). Selected applications of near infrared optical methods in medical diagnosis. Opto-Electronics Review, 12.
[38] Zherebtsov, E., Zharkikh, E., Loktionova, Y., Zherebtsova, A., Sidorov, V., Rafailov, E. U., & Dunaev, A. (2023). Wireless Dynamic Light Scattering Sensors Detect Microvascular Changes Associated With Ageing and Diabetes. IEEE transactions on bio-medical engineering, 70, 3073-3081. https://doi.org/10.1109/TBME.2023.3275654
[39] Indolfi, C., Passafaro, F., Sorrentino, S., Spaccarotella, C., Mongiardo, A., Torella, D., Polimeni, A., Sabatino, J., Curcio, A., & De Rosa, S. (2018). Hand Laser Perfusion Imaging to Assess Radial Artery Patency: A Pilot Study. Journal of Clinical Medicine, 7, 319. https://doi.org/10.3390/jcm7100319
[40] Cracowski, J. L., Roustit, M., & Regnard, J. (2011). Laser Doppler imaging: Recent developments and clinical applications. Microvascular Research, 81(1), 106–112.
[41] Briers, J. D. (1998). Laser Doppler vibrometry: Recent advances and industrial applications. Measurement Science and Technology, 9(9), 1233–1242.
[42] Spoor, E., Rädle, M., & Repke, J.-U. (2024). Raman Spectroscopy of Glass Beads in Ammonium Nitrate Solution and Compensation of Signal Losses. Sensors, 24(2), 314. https://doi.org/10.3390/s24020314
[43] Ly, N. H., Kim, M.-K., Lee, H., Lee, C., Son, S. J., Zoh, K.-D., Vasseghian, Y., & Joo, S.-W. (2022). Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates. Journal of Nanostructure in Chemistry, 12(5), 865-888. https://doi.org/10.1007/s40097-022-00506-0
[44] https://www.transformsci.com/laser-diffraction-particle-size-analyzer-winner-2308.html
[45] Roustit, M., Cracowski, J. L., & Provost, M. C. (2013). Assessment of cutaneous microvascular function in humans: Relevance and potential for clinical research. Trends in Pharmacological Sciences, 34(9), 592–600.
[46] Wang, X., & Sugiura, K. (2008). Laser Doppler flowmetry: A noninvasive tool for monitoring microcirculatory blood flow. Journal of Biomedical Optics, 13(4), 044030.
[47] Ferguson, J. W., & Gibson, M. (2003). Laser Doppler flowmetry: A review of principles and applications. IEEE Transactions on Biomedical Engineering, 50(12), 1467–1474.
[48] Holstein-Rathlou, N. H., & Spang, E. (2007). Advances in laser Doppler flowmetry for tissue perfusion measurements. Microvascular Research, 73(1), 1–7.
[49] Petrofsky, J. S., & Laymon, M. (2009). Comparative analysis of blood flow measurement techniques: Laser Doppler flowmetry versus thermography. Journal of Medical Engineering & Technology, 33(6), 388–395.
[50] Piestun, R., Gordon, C. R., & Grotberg, J. B. (2007). Laser Doppler measurements of blood flow in microchannels: An experimental and theoretical investigation. Annals of Biomedical Engineering, 35(4), 667–677.
[51] Fuss, Z. V. I., Lin, S., & Tsesis, I. (2007). CHAPTER 2 - PATIENT ASSESSMENT. In L. H. Berman, L. Blanco, & S. Cohen (Eds.), A Clinical Guide to Dental Traumatology (pp. 12-26). Mosby. https://doi.org/https://doi.org/10.1016/B978-0-323-04039-6.50008-1
[52] Durst, F., Melling, A., & Whitelaw, J. H. (1976). Principles and practice of laser Doppler anemometry. Academic Press.
[53] Oppenheim, A. V., & Schafer, R. W. (2010). Discrete-time signal processing (3rd ed.). Pearson.
[54] Proakis, J. G., & Manolakis, D. G. (2007). Digital signal processing: Principles, algorithms, and applications (4th ed.). Pearson Prentice Hall.
[55] Walden, R. H. (1999). Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications, 17(4), 539–550.
[56] Oppenheim, A. V., & Schafer, R. W. (2009). Discrete-time signal processing (3rd ed.). Prentice-Hall.
[57] Born, M., & Wolf, E. (1999). Principles of Optics (7th ed.). Cambridge University Press.
[58] Bohren, C. F., & Huffman, D. R. (2008). Absorption and Scattering of Light by Small Particles. Wiley-VCH.
[59] Briers, J. D. (1998). Laser Doppler vibrometry: Recent advances and industrial applications. Measurement Science and Technology, 9(9), 1233–1242.
[60] Goodman, J. W. (2005). Introduction to Fourier Optics (3rd ed.). Roberts and Company Publishers.
[61] Koch, G. (2000). Interferometric techniques for flow measurements: An overview. Journal of Physics D: Applied Physics, 33(12), R121–R130.
[62] Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51–83.
[63] Allen, J. B., & Rabiner, L. R. (1977). A unified approach to short-time Fourier analysis and synthesis. Proceedings of the IEEE, 65(11), 1558–1564.
[64] Smith, S. W. (1997). The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing.
[65] Wang, X., Li, Y., & Chen, Z. (2023). Optical scattering in complex media: New insights and applications. Optics Express, 31(7), 11234–11250. https://doi.org/10.1364/OE.2023.011234
[66] Garcia, M., & Patel, R. (2023). Advances in the theory of light scattering for biomedical applications. Biomedical Optics Express, 14(5), 3456–3472. https://doi.org/10.1364/BOE.2023.003456
[67] Kim, S. H., & Park, J. W. (2022). Novel computational models for optical scattering analysis in nanostructured materials. Journal of Nanophotonics, 16(2), 023456. https://doi.org/10.1117/1.JNP.16.2.023456
[68] Demtröder, W. (2013). Laser spectroscopy: Basic concepts and instrumentation (4th ed.). Springer.
[69] Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis (7th ed.). Cengage Learning.
[70] Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). Springer
[71] Happel, J., & Brenner, H. (1983). Low Reynolds Number Hydrodynamics. Springer.
[72] White, F. M. (2006). Viscous Fluid Flow (3rd ed.). McGraw-Hill.
[73] Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press.
[74] https://www.mathworks.com/help/signal/ref/bandpass.html
[75] https://www.mathworks.com/help/signal/ref/lowpass.html
[76] Mallat, S. (2009). A wavelet tour of signal processing: The sparse way (3rd ed.). Academic Press.
[77] Addison, P. S. (2017). The illustrated wavelet transform handbook: Introductory theory and applications in science, engineering, medicine and finance (2nd ed.). CRC Press.
[78] Yan, Y., Zhou, M., Zhang, D., & Geng, S. (2023). Scale-invariant Mexican Hat wavelet descriptor for non-rigid shape similarity measurement. Scientific Reports, 13(1), 2518. https://doi.org/10.1038/s41598-023-29047-4
[79] Shi, Z., Cao, Y.-y., & Chen, Q.-j. (2012). Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method. Applied Mathematical Modelling, 36(11), 5143-5161. https://doi.org/https://doi.org/10.1016/j.apm.2011.11.078
[80] http://www.lefoscience.com/product/view/183
[81] https://www.cospheric.com/CPMS_polymer_clear_microspheres_density096.htm
[82] Wagner, M., & Lambert, S. (2018). "Freshwater Microplastics: Emerging Environmental Contaminants?" In Freshwater Microplastics (pp. 1-23). Springer, Cham.
[83] Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). "Microplastics in Freshwater Systems: A Review of the Emerging Impacts on Aquatic Organisms." In Science of the Total Environment, 505, 1220-1231.
[84] Su, L., Zhang, K., & Zhang, Y. (2016). "Microplastic Pollution in the Taihu Lake, China." In Environmental Pollution, 216, 711-719.
[85] Corcoran, P. L., Biesinger, M. C., & Grifi, M. (2015). "Plastics and Beaches: A Decade of Experience in Assessing Plastic Debris in the Marine Environment." In Marine Pollution Bulletin, 101(1), 1-8.
[86] Wojtkiewicz, S., Liebert, A., Rix, H., Sawosz, P., & Maniewski, R. (2013). Estimation of scattering phase function utilizing laser Doppler power density spectra. Physics in medicine and biology, 58, 937-955. https://doi.org/10.1088/0031-9155/58/4/937
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97316-
dc.description.abstract隨著全球塑膠污染問題日益嚴重,微塑粒(Microplastics)的檢測與量化已成為環境科學與水質監測領域的核心議題。其不僅對水體生態系統造成深遠影響,亦對人類健康構成潛在風險,因此發展高精度監測技術以評估其污染程度至關重要。本研究結合雷射杜卜勒流量計(Laser Doppler Flowmeter, LDF)、光學散射模型(Optical Scattering Model)與流體力學模型(Fluid Dynamics Model),評估水體中微塑粒污染嚴重程度,並探討 LDF 在不同粒徑組成、濃度與通量條件下之適用性與解析能力。
本研究採用混和粒徑 1~4 µm及不同濃度微塑粒進行連續流場模擬實驗,透過 LDF 精確測量水體微塑粒灌流濃度,並將該訊號作為污染評估指標。基於光學散射理論分析 LDF 訊號如何受到微塑粒粒徑分佈、折射率與濃度變化影響,同時透過流體力學模型推導微塑粒運動行為,以確保測量結果的物理合理性。且在數據處理上進一步整合濾波技術與連續小波轉換(Continuous Wavelet Transform, CWT)進行訊號處理,成功提取關鍵特徵,增強數據穩定性並提升污染監測精度。
研究結果顯示,LDF 訊號與微塑粒水溶液濃度呈顯著正相關,當濃度自 5 µg/L 增加至 1000 µg/L,LDF 訊號穩定增強。未知濃度測量的擬合曲線分析(Curve Fitting Analysis)顯示其相關係數 R² = 0.92,證實 LDF 在不同污染濃度條件下均可提供穩定且準確的評估。此外,LDF 技術展現高度靈活性,適用於淡水、海水及不同污染程度水體,為未來低成本、高效率水質監測提供可行解決方案。
本研究不僅提出 LDF 在微塑粒水污染監測之新應用,更結合光學散射理論與流體力學模型,提升測量物理合理性與解析度,為環保政策制定及後續研究提供關鍵科學依據,以促進微塑粒污染防治與永續水資源管理。
zh_TW
dc.description.abstractWith the escalating global plastic pollution crisis, the detection and quantification of microplastics have become central issues in environmental science and water quality monitoring. Microplastics pose significant threats to aquatic ecosystems and human health, making the development of high-precision monitoring technologies essential for assessing pollution severity. This study integrates Laser Doppler Flowmetry(LDF), Optical Scattering Models, and Fluid Dynamics Models to evaluate the severity of microplastic contamination in water bodies. It investigates the applicability and resolution of LDF under varying particle size distributions, concentrations, and flow conditions.
A controlled experimental setup was established using mixed microplastic particle sizes 1~4 µm and varying concentrations to simulate continuous flow conditions. LDF was utilized to quantify microplastic perfusion concentration, providing a robust indicator for pollution assessment. Optical scattering theory was applied to evaluate the effects of particle size distribution, refractive index, and concentration variations on LDF signals, while fluid dynamics modeling characterized microplastic transport behavior to ensure measurement validity. Advanced signal processing techniques, including filtering algorithms and Continuous Wavelet Transform(CWT), were implemented to extract key spectral features, enhance data stability, and refine pollution monitoring precision.
The experimental results demonstrate a strong positive correlation between LDF signals and microplastic concentration in aqueous solutions. As the concentration increased from 5 µg/L to 1000 µg/L, the LDF signal exhibited a stable and significant enhancement. Further curve fitting analysis of unknown concentration measurements revealed a correlation coefficient of R^2=0.92, confirming the ability of LDF to provide consistent and accurate pollution assessments across different concentration levels. Moreover, LDF technology exhibits high flexibility and adaptability, making it suitable for application in freshwater, seawater, and various pollution levels, thus presenting a feasible and cost-effective solution for high-efficiency water quality monitoring.
This study not only proposes a novel application of LDF in microplastic pollution monitoring but also integrates optical scattering models and fluid dynamics theories to enhance the physical validity and resolution of LDF measurements. The findings provide critical scientific evidence for environmental policy development and future research, contributing to microplastic pollution mitigation and sustainable water resource management.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-24T16:06:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-04-24T16:06:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 viii
表次 xi
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 6
1.2.1 全球各國微塑粒污染標準 6
1.2.2 非侵入式雷射杜卜勒技術的發展 9
1.2.3 不同非侵入式量測技術的比較與評估 15
1.3 研究目的 21
1.4 論文範疇 22
Chapter 2 研究原理與方法 26
2.1 雷射杜卜勒微流儀原理 26
2.1.1 杜卜勒位移光在微粒中的相互作用 27
2.1.2 相位調制與頻譜分析 30
2.1.3 粒子訊號的總強度與功率頻譜密度 31
2.2 光學散射模型(Optical Scattering Model) 33
2.3 Beer-Lambert 定律 37
2.4 Stokes-Couette 流體模型 40
2.5 流體準靜態條件(Quasi-Static State)之分析 46
2.5.1 準靜態流場之數學描述 46
2.5.2 LDF 訊號變化機制 48
2.6 訊號量測與處理 48
2.6.1 濾波器設計 49
2.6.2 連續小波轉換(Continuous Wavelet Transform, CWT) 52
Chapter 3 實驗架設與分析 56
3.1 儀器設備 57
3.1.1 LDF裝置 57
3.1.2 蠕動幫浦 59
3.2 樣本溶液配置 61
3.3 實驗環境與設備 66
3.4 LDF 訊號量測 68
3.4.1 散射模型 69
3.4.2 實驗條件下是否存在多重散射現象的分析 70
3.4.3 OPL計算 70
3.4.4 散射角與接收範圍的影響 73
3.4.5 非等向性散射光的角度分布: Henyey-Greenstein (HG) Phase Function 74
3.4.6 LDF訊號的頻譜強度公式推導 75
3.5 訊號處理與分析 76
Chapter 4 實驗結果與討論 83
4.1 不同粒徑微塑粒之散射影響分布 83
4.2 微塑粒濃度之臨界濃度計算與檢測範圍分析 84
4.3 不同濃度下LDF量測訊號的SNR分析 86
4.4 微塑粒濃度量測結果分析 88
4.5 微粒濃度擬合曲線 98
Chapter 5 結論與未來展望 102
5.1 結論 102
5.2 未來展望 103
參考文獻 107
-
dc.language.isozh_TW-
dc.subject微塑粒zh_TW
dc.subject連續小波轉換zh_TW
dc.subject流體力學模型zh_TW
dc.subject光學散射模型zh_TW
dc.subject水質監測zh_TW
dc.subject雷射杜卜勒流量計zh_TW
dc.subjectOptical Scattering Modelen
dc.subjectWater Quality Monitoringen
dc.subjectMicroplasticsen
dc.subjectLaser Doppler Flowmetry(LDF)en
dc.subjectContinuous Wavelet Transform(CWT)en
dc.subjectFluid Dynamics Modelen
dc.title雷射杜卜勒流量計於水體污染評估之應用: 基於光學散射與流體動力學模型之整合分析zh_TW
dc.titleApplication of Laser Doppler Flowmetry for Assessing Microplastic Pollution in Aquatic Environments: Integrated Analysis Based on Optical Scattering and Fluid Dynamic Modelsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李世光;蕭惠心;李舒昇zh_TW
dc.contributor.oralexamcommitteeChih-Kung Lee;Hui-Hsin Hsiao;Shu-Sheng Leeen
dc.subject.keyword雷射杜卜勒流量計,微塑粒,水質監測,光學散射模型,流體力學模型,連續小波轉換,zh_TW
dc.subject.keywordLaser Doppler Flowmetry(LDF),Microplastics,Water Quality Monitoring,Optical Scattering Model,Fluid Dynamics Model,Continuous Wavelet Transform(CWT),en
dc.relation.page118-
dc.identifier.doi10.6342/NTU202500725-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-03-28-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2025-04-25-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved