Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97315
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾惠斌zh_TW
dc.contributor.advisorHui-Ping Tserngen
dc.contributor.author劉家銘zh_TW
dc.contributor.authorChia-Ming Liuen
dc.date.accessioned2025-04-24T16:06:31Z-
dc.date.available2025-04-25-
dc.date.copyright2025-04-24-
dc.date.issued2025-
dc.date.submitted2025-03-28-
dc.identifier.citation參考文獻
1.Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R., Ogale, A., Vincent, L., Weaver, J., 2010. Google Street View: Capturing the World at Street Level. Computer 43, 32-38.
2.Chae, M.J., Yoo, H.S., Kim, J.Y., Cho, M.Y., 2012. Development of a wireless sensor network system for suspension bridge health monitoring. Automation in Construction 21, 237-252.
3.Chen, S., Laefer Debra, F., Mangina, E., Zolanvari, S. M. I., and Byrne, J., "UAV Bridge Inspection through Evaluated 3D Reconstructions," Journal of Bridge Engineering, vol. 24, no. 4, p. 05019001, 2019/04/01 2019.
4.Chen, X., and Li, J., 2016. “A feasibility study on use of generic mobile laser scanning system for detecting asphalt pavement cracks.” In Proc., XXIII ISPRS Congress. Prague, Czech Republic: 545-549.
5.Colomina, I., Molina, P., 2014. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing 92, 79-97.
6.Comisu, C.-C., Taranu, N., Boaca, G., Scutaru, M.-C., 2017. Structural health monitoring system of bridges. Procedia Engineering 199, 2054-2059.
7.De Blasiis, M. R., Di Benedetto, A., Fiani, M., and Garozzo, M., 2019. “Assessing the effect of pavement distresses by means of LiDAR technology.” In Proc., ASCE International Conference on Computing in Civil Engineering 2019.
8.Dorafshan, S., Maguire, M., 2018. Bridge inspection: human performance, unmanned aerial systems and automation. Journal of Civil Structural Health Monitoring 8, 443-476.
9.Du, Z., Yuan, J., Xiao, F., and Hettiarachchi, C., 2021. “Application of image technology on pavement distress detection: A review.” Measurement. 184: 109900.
10.Gao, R., Zhang, X., Sun, Q., Sun, M., and Zhao, Q., 2018. “Road pavement monitoring and roughness assessment based on UAV LiDAR data.” Journal of Basic Science and Engineering. 26 (4): 681-696.
11.Ghosh, R., 2022.“Improving vision-based automated pavement condition data acquisition and assessment through deep learning and data-driven techniques.” Doctoral dissertation, Dept. of Civil Engineering, Iowa State Univ., 200 pages.
12.GISGeography., 2024. “DEM, DSM & DTM: Elevation models in GIS.” Accessed June 10, 2024. https://gisgeography.com/dem-dsm-dtm-differences/.
13.Han, S., Chung, I., Jiang, Y., and Uwakweh, B., 2023. “PCIer: Pavement condition evaluation using aerial imagery and deep learning.” Special Issue: Advanced Technologies in Spatial Data Collection and Analysis, Edited by Prof. Dr. Hochmair, H. H., G. Navratil, and H. Huang. Geographies. 3 (1): 132-142.
14.He, J., Lin, J., Zhang, X., and Liao, X., "Accurate estimation of surface water volume in tufa lake group using UAV-captured imagery and ANNs," Measurement, vol. 220, p. 113391, 2023/10/01/ 2023.
15.Jhan, J. P., Kerle, N., & Rau, J. Y., (2021). Integrating UAV and Ground Panoramic Images for Point Cloud Analysis of Damaged Building. IEEE Geoscience and Remote Sensing Letters, 1-5. doi:10.1109/LGRS.2020.3048150.
16.Jhan, J. P., Kerle, N., and Rau, J. Y., "Integrating UAV and Ground Panoramic Images for Point Cloud Analysis of Damaged Building," IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022.
17.Khaloo, A., Lattanzi, D., Cunningham, K., Dell’Andrea, R., and Riley, M., "Unmanned aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D modelling," Structure and Infrastructure Engineering, vol. 14, no. 1, pp. 124-136, 2018/01/02 2018.
18.Knyaz, V. A., and Chibunichev, A. G. 2016., “Photogrammetric techniques for road surface analysis.” In Proc., XXIII ISPRS Congress. Prague, Czech Republic: 515-520.
19.Li, R., Yu, J., Li, F., Yang, R., Wang, Y., and Peng, Z., "Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN," Construction and Building Materials, vol. 362, p. 129659, 2023/01/02/ 2023.
20.Li, Y.-S. and Ning, F.-S., "Research into GNSS levelling using network RTK in Taiwan," Survey Review, vol. 51, no. 364, pp. 17-25, 2019/01/02 2019.
21.Liao, H.-K., Jallow, M., Nie-Jia, Y., Jiang, M.-Y., Jyun-Hao, H., Cheng-Wei, S., Po Yuan, C., 2017. Comparison of Bridge Inspection Methodologies and Evaluation Criteria in Taiwan and Foreign Practices.
22.Mikhail, E. M., Bethel, J. S., and McGlone, J. C., Introduction to modern photogrammetry. John Wiley & Sons, 2001.
23.NCDOT Digital Imagery Distress Evaluation Handbook (Version 1.0)., 2011. North Carolina Department of Transportation, Pavement Management Unit.
24.Nguyen, T., Pin, K. L. Y., Tan, J. Y., and Ho, N. Y., 2023. “Proposed severity ranking for ASTM E3303-21 protocol to quantify asphalt pavement cracking from automated 3D surveys.” In IOP Conference Series: Materials Science and Engineering 1289: 012057.
25.Ntotsios, E., Papadimitriou, C., Panetsos, P., Karaiskos, G., Perros, K., Perdikaris, P.C., 2008. Bridge health monitoring system based on vibration measurements. Bulletin of Earthquake Engineering 7, 469.
26.Pan, Y., Dong, Y., Wang, D., Chen, A., and Ye, Z., "Three-Dimensional Reconstruction of Structural Surface Model of Heritage Bridges Using UAV-Based Photogrammetric Point Clouds," Remote Sensing, vol. 11, no. 10, p. 1204, 2019.
27.Petrie, G., 2010. Mobile Mapping Systems: An Introduction to the Technology. Geoinformatics 13, 32-43.
28.Qureshi, W. S., Hassan, S. I., McKeever, S., Power, D., Mulry, B., Feighan, K., and O’Sullivan, D., 2022. “An exploration of recent intelligent image analysis techniques for visual pavement surface condition assessment.” Special Issue: Sensors for Smart Vehicle Applications. Sensors. 22 (22): 9019.
29.Rau, J., Hsiao, W., Jhan, J.-P., Wang, S., Fang, W., and Wang, J., "BRIDGE CRACK DETECTION USING MULTI-ROTARY UAV AND OBJECT-BASE IMAGE ANALYSIS," ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W6, pp. 311-318, 08/24 2017.
30.Rau, J. Y., Jhan, J. P., and Li,Y. T., "Development of a Large-Format UAS Imaging System With the Construction of a One Sensor Geometry From a Multicamera Array," IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 10, pp. 5925-5934, 2016.
31.Ruzgienė, B., Berteška, T., Gečyte, S., Jakubauskienė, E., and Aksamitauskas, V. Č., "The surface modelling based on UAV Photogrammetry and qualitative estimation," Measurement, vol. 73, pp. 619-627, 2015/09/01/ 2015.
32.Wikipedia. 2024. “Epipolar geometry.” Accessed June 10, 2024. https://en.wikipedia.org/wiki/Epipolar_geometry.
33.Zhang, Q., Zhou, Y., 2007. Investigation of the applicability of current bridge health monitoring technology. Structure and Infrastructure Engineering 3, 159-168.
34.王仲宇,科學發展期刊,橋梁的健康診斷,2009年2月434期。
35.宋裕祺、張國鎮、陳俊仲、李政寬、洪曉慧、蘇進國,土木水利期刊,橋梁監測結構健康診斷, 2018年8月,第45卷第5期。
36.臺北市政府工務局新建工程處,臺北市橋涵安全檢測專刊,2021.10.。
37.台灣營建研究院(呂良正、曾惠斌、詹鈞評),臺北市政府工務局110年度工務建設科學研究創新計畫結案報告書,行動測繪技術應用於橋梁橋面版沉陷與伸縮縫變形檢測,2021.。
38.交通部運研所,橋梁檢測工具效能提升計畫,106年12月。
39.國立成功大學(饒見有、曾惠斌、詹鈞評),臺北市政府工務局111年度工務建設科學研究創新計畫期末報告書(修正版),應用行動測繪與近景攝影測量進行斜張橋之變位量測,2022.。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97315-
dc.description.abstract橋梁為道路系統之一環,尤其橋梁更肩負著跨越兩岸(地)障礙,且承載大量交通運輸工具與載重,是連通兩地整個道路系統之關鍵,因此需定期檢測橋面版的變形與損傷狀況以評估其安全性。目前臺灣各橋梁管理單位對於橋梁安全之一般性巡查及定期性檢測大都仍仰賴以人工為主之巡查與檢測方式進行。有關橋面版變形檢測目前是以每兩年一次的頻率進行橋面版的水準高程測量,雖然水準測量具備高精準度,但因只能獲得離散點的資料,故無法知道橋面版的地形全貌及全面檢測出橋面版之變形與損傷情形,且檢測人員在車流眾多環境下進行檢測作業極具高危險性,無法達到講求效率、準確、安全之現代化橋檢要求。
本研究利用行動測繪技術(Mobile Mapping Technology, MMT)突破現行橋檢作業模式,所建置之立體環景行動測繪系統(Stereo Panoramic Mobile Mapping System, SPMMS)經過實地驗證結果,不僅具備可隨時出動之快速與機動性及可加速檢測頻率外,藉由攝影測量(Photogrammetry)與電腦視覺(Computer vision)技術重建3D橋面版,並由數值地表模型(digital surface model, DSM)連續高程剖面來檢測橋面版的沉陷變形,以及利用多時期的正射影像(Ortho Images)來觀察伸縮縫與鋪面的損壞變化狀況。經以臺北市民權大橋等現場實際驗證結果,可獲得具備公分級的定位精度(RTK)(水平2公分,高程5公分)、量測精度小於 1 mm、控制測量精度可達6 mm、解析度高達6 mm等級之數值表面模型(DSM)與解析度高達3 mm等級之正射影像(Ortho Images)之橋面版的沉陷變形、伸縮縫變形與損傷、以及鋪面劣化與損傷等之檢測資訊。有效解決現有檢測方法「偏人工、單點資料、工作不安全」等缺點,成功建立一個以行動測繪技術(MMT)方式辦理之新的橋梁檢測方法,達到「科學化、科技化」具有「高效率、高準確度、高安全性」的新橋梁維護管理技術與方法。
zh_TW
dc.description.abstractBridges are part of the road system. In particular, bridges are responsible for crossing obstacles on both sides of the river (land) and carrying a large number of transportation vehicles and loads. They are the key to the entire road system connecting the two places. Therefore, it is necessary to regularly inspect the deformation and damage of the bridge deck to evaluate its safety. Currently, Taiwan's bridge management units still rely on manual inspections and testing methods to conduct general inspections and periodic tests on bridge safety. Currently, bridge deck deformation detection is carried out by measuring the bridge deck level every two years. Although leveling is highly accurate, it can only obtain data from discrete points, so it is impossible to know the overall topography of the bridge deck and fully detect the deformation and damage of the bridge deck. In addition, it is extremely dangerous for inspectors to perform inspections in an environment with heavy traffic, and it is impossible to meet the modern bridge inspection requirements that emphasize efficiency, accuracy, and safety.
This study uses mobile mapping technology (MMT) to break through the current bridge inspection operation mode. The built stereo panoramic mobile mapping system (SPMMS) has been verified in the field. It not only has the rapidity and mobility to be deployed at any time and can accelerate the inspection frequency, but also reconstructs the 3D bridge deck through photogrammetry and computer vision technology, and detects the sinking and deformation of the bridge deck through the continuous elevation profile of the digital surface model (DSM), and uses ortho images from multiple periods to observe the damage changes of expansion joints and pavement. Through actual verification results on the Minquan Bridge in Taipei, we can obtain detection information on bridge deck subsidence deformation, expansion joint deformation and damage, and pavement deterioration and damage with centimeter-level positioning accuracy (RTK) (2 cm horizontally, 5 cm vertically), measurement accuracy less than 1 mm, control measurement accuracy up to 6 mm, numerical surface model (DSM) with a resolution of up to 6 mm, and orthoimages with a resolution of up to 3 mm. It effectively solves the shortcomings of existing inspection methods such as "manual, single-point data, and unsafe work", and successfully establishes a new bridge inspection method based on mobile mapping technology (MMT), achieving a new bridge maintenance management technology and method that is "scientific, technological, and highly efficient, accurate, and safe".
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-24T16:06:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-04-24T16:06:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員審定書i
誌謝ii
中文摘要iii
Abstractiv
目次vi
圖次x
表次xiv
第一章緒論1
1.1研究緣起2
1.2研究動機5
1.3研究目的7
1.4研究場域8
1.5研究方式12
第二章文獻回顧13
2.1影像應於鋪面破壞調查回顧13
2.2攝影測量技術15
2.3三維模型19
2.4行動測繪技術22
第三章研究方法24
3.1行動測繪技術24
3.2立體環景行動測繪系統26
3.2.1系統率定與自動化處理32
3.2.1.1系統同步與照片預處理33
3.2.1.1.1雙相機同步33
3.2.1.1.2相機與全球導航衛星定位系統同步34
3.2.1.1.3照片與座標擷取35
3.2.1.1.4照片遮罩35
3.2.1.2相機率定36
3.2.2成果與精度分析38
3.2.2.1相機率定38
3.2.2.1.1內方位參數39
3.2.2.1.2相對方位參數40
3.2.2.2全球導航衛星定位系統偏移量率定與定位精度分析41
3.2.1.3全球導航衛星定位系統偏移率定43
3.2.2.3三維點雲精度分析45
3.2.2.4自動化處理成果47
3.2.3總結與說明48
3.2.3.1注意事項48
3.2.3.1.1相機率定49
3.2.3.1.2滾動式快門49
3.2.3.1.3商用軟體49
3.2.3.1.4系統同步50
3.2.3.1.5影像內插50
3.2.3.1.6照片擷取50
3.2.3.1.7最佳車道拍攝範圍50
3.2.3.2成果51
3.2.4 量測精度驗證51
3.3攝影測量技術與電腦視覺技術應用54
第四章現場實驗56
4.1實驗場域56
4.2實驗步驟與流程56
4.2.1建立地面標記與立體環景行動測繪系統影片蒐集57
4.2.1.1影片處理59
4.2.2橋面版3D建置59
4.2.2.1影像方位重建60
4.2.2.2密集三維點雲產製61
4.2.2.3數值表面模型網格內插與正射鑲嵌61
4.2.3橋面版損傷檢測61
4.2.3.1單點變位檢測62
4.3 現場測繪與資料蒐集63
4.3.1實驗場域現場勘查及實驗準備66
4.3.2控制點建置與維護71
4.3.3車載環景影像蒐集81
第五章實驗成果運算與分析86
5.1車輛遮罩86
5.2影像方位重建88
5.3密集點雲匹配95
5.4數值表面模型與正射影像97
5.5地形測繪102
5.6實驗成果運算與分析106
5.6.1民權大橋與麥帥二橋數值表面模型與正射影像106
5.6.2民權大橋多時期資料分析111
5.6.2.1鋪面狀況111
5.6.2.2伸縮縫寬度變化114
5.6.2.3鉸接處高程變化116
5.7實驗成果運算與分析總結118
5.7.1高程剖面分析119
5.7.2整座橋梁高度剖面圖分析119
5.7.3鉸接點高程剖面分析120
5.7.4各EJ的高程分佈分析122
5.7.5伸縮縫變形量測123
5.7.6鋪面狀況差異比較124
5.7.7單點變位分析125
第六章結論與建議128
6.1結論130
6.2建議137
6.2.1橋梁維管單位137
6.2.2 立體環景行動測繪系統需注意事項及後續可再精進之處137
參考文獻140
-
dc.language.isozh_TW-
dc.subject沉陷變形zh_TW
dc.subject橋梁檢測zh_TW
dc.subject電腦視覺技術zh_TW
dc.subject攝影測量技術zh_TW
dc.subject行動測繪技術zh_TW
dc.subjectbridge detectionen
dc.subjectMobile surveying and mapping technologyen
dc.subjectphotogrammetry technologyen
dc.subjectcomputer vision technologyen
dc.subjectsubsidence and deformationen
dc.title應用行動測繪技術於橋面版之3D建置與損傷檢測研究zh_TW
dc.titleApplying Mobile Mapping Technology for Bridge Deck 3D Construction and Damage Inspection studiesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳柏翰;林之謙;林偲妘;林國峰;郭斯傑;曾仁杰;詹鈞評zh_TW
dc.contributor.oralexamcommitteePo-Han Chen;Je-Chian Lin;Szu-Yun Lin;Gwo-Fong Lin;Sy-Jye Guo;Ren-Jye Dzeng;Jyun-Ping Jhanen
dc.subject.keyword行動測繪技術,攝影測量技術,電腦視覺技術,沉陷變形,橋梁檢測,zh_TW
dc.subject.keywordMobile surveying and mapping technology,photogrammetry technology,computer vision technology,subsidence and deformation,bridge detection,en
dc.relation.page144-
dc.identifier.doi10.6342/NTU202500803-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-03-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-04-25-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf7.92 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved