請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97307完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰 | zh_TW |
| dc.contributor.advisor | Ruey-Feng Chang | en |
| dc.contributor.author | 蔣昀彤 | zh_TW |
| dc.contributor.author | Yun-Tung Chiang | en |
| dc.date.accessioned | 2025-04-07T16:12:21Z | - |
| dc.date.available | 2025-04-08 | - |
| dc.date.copyright | 2025-04-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-03-26 | - |
| dc.identifier.citation | [1] R. L. Siegel, A. N. Giaquinto, and A. Jemal, "Cancer statistics, 2024," CA: a cancer journal for clinicians, vol. 74, no. 1, pp. 12-49, 2024.
[2] A. Vourtsis and W. A. Berg, "Breast density implications and supplemental screening," European radiology, vol. 29, pp. 1762-1777, 2019. [3] B. Wilczek, H. E. Wilczek, L. Rasouliyan, and K. Leifland, "Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: Report from a hospital-based, high-volume, single-center breast cancer screening program," European journal of radiology, vol. 85, no. 9, pp. 1554-1563, 2016. [4] P. Skaane, R. Gullien, E. B. Eben, M. Sandhaug, R. Schulz-Wendtland, and F. Stoeblen, "Interpretation of automated breast ultrasound (ABUS) with and without knowledge of mammography: a reader performance study," Acta Radiologica, vol. 56, no. 4, pp. 404-412, 2015. [5] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International journal of computer vision, vol. 60, pp. 91-110, 2004. [6] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), 2005, vol. 1: Ieee, pp. 886-893. [7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. [8] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 580-587. [9] R. Girshick, "Fast r-cnn," arXiv preprint arXiv:1504.08083, 2015. [10] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 6, pp. 1137-1149, 2016. [11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779-788. [12] J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 7263-7271. [13] J. Redmon, "Yolov3: An incremental improvement," arXiv preprint arXiv:1804.02767, 2018. [14] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "Yolov4: Optimal speed and accuracy of object detection," arXiv preprint arXiv:2004.10934, 2020. [15] Ultralytics YOLOv5. (2020). [Online]. Available: https://github.com/ultralytics/yolov5 [16] Z. Ge, "Yolox: Exceeding yolo series in 2021," arXiv preprint arXiv:2107.08430, 2021. [17] C. Li et al., "YOLOv6: A single-stage object detection framework for industrial applications," arXiv preprint arXiv:2209.02976, 2022. [18] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2023, pp. 7464-7475. [19] Ultralytics YOLOv8. (2023). [Online]. Available: https://github.com/ultralytics/ultralytics [20] D. Kern and A. Mastmeyer, "3D bounding box detection in volumetric medical image data: A systematic literature review," in 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA), 2021: IEEE, pp. 509-516. [21] S. Roy et al., "Mednext: transformer-driven scaling of convnets for medical image segmentation," in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2023: Springer, pp. 405-415. [22] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, "Distance-IoU loss: Faster and better learning for bounding box regression," in Proceedings of the AAAI conference on artificial intelligence, 2020, vol. 34, no. 07, pp. 12993-13000. [23] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, "Path aggregation network for instance segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8759-8768. [24] S. Ioffe, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," arXiv preprint arXiv:1502.03167, 2015. [25] S. Elfwing, E. Uchibe, and K. Doya, "Sigmoid-weighted linear units for neural network function approximation in reinforcement learning," Neural networks, vol. 107, pp. 3-11, 2018. [26] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, "A convnet for the 2020s," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 11976-11986. [27] A. Vaswani, "Attention is all you need," Advances in Neural Information Processing Systems, 2017. [28] Y. Wu and K. He, "Group normalization," in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3-19. [29] D. Hendrycks and K. Gimpel, "Gaussian error linear units (gelus)," arXiv preprint arXiv:1606.08415, 2016. [30] I. Loshchilov and F. Hutter, "Decoupled weight decay regularization," arXiv preprint arXiv:1711.05101, 2017. [31] C. Feng, Y. Zhong, Y. Gao, M. R. Scott, and W. Huang, "Tood: Task-aligned one-stage object detection," in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021: IEEE Computer Society, pp. 3490-3499. [32] X. Li, C. Lv, W. Wang, G. Li, L. Yang, and J. Yang, "Generalized focal loss: Towards efficient representation learning for dense object detection," IEEE transactions on pattern analysis and machine intelligence, vol. 45, no. 3, pp. 3139-3153, 2022. [33] D. P. Chakraborty, "Maximum likelihood analysis of free‐response receiver operating characteristic (FROC) data," Medical physics, vol. 16, no. 4, pp. 561-568, 1989. [34] A. I. Bandos, H. E. Rockette, T. Song, and D. Gur, "Area under the free-response ROC curve (FROC) and a related summary index," Biometrics, vol. 65, no. 1, pp. 247-256, 2009. [35] C.-Y. Wang, I.-H. Yeh, and H.-Y. Mark Liao, "Yolov9: Learning what you want to learn using programmable gradient information," in European conference on computer vision, 2024: Springer, pp. 1-21. [36] A. Wang et al., "Yolov10: Real-time end-to-end object detection," arXiv preprint arXiv:2405.14458, 2024. [37] Ultralytics YOLO11. (2024). [Online]. Available: https://github.com/ultralytics/ultralytics [38] K. J. Zuiderveld, "Contrast limited adaptive histogram equalization," Graphics gems, vol. 4, no. 1, pp. 474-485, 1994. [39] Z. Zheng et al., "Enhancing geometric factors in model learning and inference for object detection and instance segmentation," IEEE transactions on cybernetics, vol. 52, no. 8, pp. 8574-8586, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97307 | - |
| dc.description.abstract | 乳癌是全球女性癌症死亡的主要原因之一。自動乳房超音波(Automated Breast Ultrasound, ABUS)已成為一種重要的篩檢方式,尤其特別適合乳房組織緻密的女性。然而,ABUS影像解讀需要放射科醫師檢視數百張影像切片,導致診斷過程耗時且容易受到解讀者的疲勞影響。因此,本論文提出一種創新的電腦輔助偵測(Computer-aided Detection, CADe)系統,該系統結合了YOLO3D-ABUS,是一種專門設計用於解決ABUS影像解讀的單階段三維卷積神經網路。
本研究提出的CADe系統包含三個主要部分:標準化的體積資料預處理、使用YOLO3D-ABUS進行體積腫瘤偵測,以及結果優化的策略性後處理。我們的腫瘤偵測方法將YOLOv8的偵測框架從原有的二維實作擴展為完全三維架構,直接處理ABUS的三維影像資料,從而消除了二維切片式偵測方法所伴隨的空間連續性問題。此架構整合了MedNeXt的元素,以加強醫學影像環境中的特徵提取能力。為進一步優化模型在乳房腫瘤定位方面的表現,我們的一項關鍵創新是提出scaled 3-D DIOU,該函數將原始DIOU公式擴展為適合考量乳腺腫瘤在三維空間中的體積特性。 我們的系統在使用包含523個確診腫瘤的258個ABUS體積資料進行的全面測試中展現出卓越性能,結果顯示在90%、95%、98%和99%的敏感度下,對應的平均每次掃描假陽性數量分別達到0.65、1.44、5.01和7.54,並且自由反應接收者操作特徵(Free-response Receiver Operating Characteristic , FROC)曲線下標準化部分面積達到0.956。此系統相較於現有方法更能有效處理每個ABUS體積資料,特別是在偵測傳統方法中常常忽略的較小型腫瘤。 本研究對自動化乳癌偵測領域做出貢獻,透過更精確且高效的乳癌篩檢,有望改善臨床工作流程和病患預後。 | zh_TW |
| dc.description.abstract | Breast cancer represents one of the leading causes of cancer-related mortality among women worldwide. Automated breast ultrasound (ABUS) has emerged as a valuable screening modality, particularly beneficial for women with dense breast tissue. However, ABUS interpretation requires radiologists to review hundreds of image slices, creating a time-consuming process prone to interpreter fatigue. Therefore, this thesis presents a novel computer-aided detection (CADe) system incorporating YOLO3D-ABUS, a specialized one-stage 3-D convolutional neural network designed to address the challenge of interpreting ABUS volumes.
The proposed CADe system comprises three main components: volume preprocessing for standardization, volumetric tumor detection using YOLO3D-ABUS, and strategic postprocessing for result refinement. Our tumor detection approach extends the detection framework of YOLOv8 from its original 2-D implementation to a fully 3-D architecture that processes ABUS volumes directly in their three-dimensional form, eliminating the spatial continuity problems associated with 2-D slice-by-slice detection methods. This architecture integrates specialized elements from MedNeXt for enhanced feature extraction in medical imaging contexts. To further optimize the model's performance in localizing breast tumors, a key innovation is our scaled 3-D distance-intersection over union (scaled 3-D DIOU), which extends the original DIOU formulation to properly account for the volumetric nature of breast tumors in three-dimensional space. Our system demonstrated exceptional performance in comprehensive testing using a dataset of 258 ABUS volumes containing 523 confirmed tumors, achieving sensitivities of 90%, 95%, 98%, and 99% with corresponding false positives per pass of 0.65, 1.44, 5.01, and 7.54, respectively, and a normalized partial area under free-response receiver operating characteristic (FROC) curve of 0.956. The system processes each ABUS volume efficiently, representing a significant improvement over existing methods, particularly for detecting smaller tumors that are often missed by conventional approaches. This work contributes to the field of automated breast cancer detection with potential implications for improving clinical workflows and patient outcomes through more accurate and efficient breast cancer screening. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-07T16:12:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-04-07T16:12:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract V Table of Contents VII List of Figures IX List of Tables X Chapter 1. Introduction 1 Chapter 2. Materials 5 Chapter 3. Methods 8 3.1. Volume Preprocessing 9 3.2. Detection model 9 3.2.1. YOLOv8 12 3.2.2. ConvBlock 14 3.2.3. C2f_3D Block 14 3.2.4. MedNeXtDownBlock and MedNeXtUpBlock 16 3.2.5. SPPF_3D block 18 3.2.6. Detect blocks 19 3.3. Non-maximum suppression 20 3.4. Model Training 21 3.4.1. Task Alignment Learning 23 3.4.2. Loss Function 24 3.4.3. Scaled 3-D DIOU 25 Chapter 4. Experimental Results and Discussions 27 4.1. Experiment Environment 27 4.2. Evaluation 27 4.3. Experimental Results 28 4.3.1. Ablation Study 29 4.3.2. Comparison with the original DIOU 30 4.3.3. Comparison with 3-D YOLOv8n 32 4.4. Discussion 35 Chapter 5. Conclusion and Future Work 39 Reference 41 | - |
| dc.language.iso | en | - |
| dc.subject | 電腦輔助偵測 | zh_TW |
| dc.subject | YOLOv8 | zh_TW |
| dc.subject | 自動乳房超音波 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | MedNeXt | zh_TW |
| dc.subject | 三維卷積神經網路 | zh_TW |
| dc.subject | scaled 3-D DIOU | zh_TW |
| dc.subject | scaled 3-D DIOU | en |
| dc.subject | automated breast ultrasound | en |
| dc.subject | computer-aided detection | en |
| dc.subject | deep learning | en |
| dc.subject | 3-D convolutional neural networks | en |
| dc.subject | YOLOv8 | en |
| dc.subject | MedNeXt | en |
| dc.title | 深度學習於自動乳房超音波三維腫瘤偵測 | zh_TW |
| dc.title | 3D Tumor Detection for Automated Breast Ultrasound using Deep Learning Approaches | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅崇銘;黃耀賢 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Ming Lo;Yao-Sian Huang | en |
| dc.subject.keyword | 自動乳房超音波,電腦輔助偵測,深度學習,三維卷積神經網路,YOLOv8,MedNeXt,scaled 3-D DIOU, | zh_TW |
| dc.subject.keyword | automated breast ultrasound,computer-aided detection,deep learning,3-D convolutional neural networks,YOLOv8,MedNeXt,scaled 3-D DIOU, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202500787 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-03-26 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
