Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97300
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅敏輝zh_TW
dc.contributor.advisorMin-Hui Loen
dc.contributor.author張譯心zh_TW
dc.contributor.authorYi-Shin Jnagen
dc.date.accessioned2025-04-02T16:22:02Z-
dc.date.available2025-04-03-
dc.date.copyright2025-04-02-
dc.date.issued2025-
dc.date.submitted2025-03-21-
dc.identifier.citationChapter 7. Reference
Beers T W, Dress P E and Wensel L C 1966 Notes and observations: aspect transformation in site productivity research J. For. 64 691–2
Bendix J, Rollenbeck R, Göttlicher D, Nauß T and Fabian P 2008 Seasonality and diurnal pattern of very low clouds in a deeply incised valley of the eastern tropical Andes (South Ecuador) as observed by a cost‐effective WebCam system Meteorol. Appl. A J. Forecast. Pract. Appl. Train. Tech. Model. 15 281–91
Braganza K, Karoly D J and Arblaster J M 2004 Diurnal temperature range as an index of global climate change during the twentieth century Geophys. Res. Lett. 31 2–5
Bruijnzeel L A, Kappelle M, Mulligan M and Scatena F N 2010 Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world
Bruijnzeel L A, Scatena F N and Hamilton L S 2011 Tropical montane cloud forests: science for conservation and management (Cambridge University Press)
Chan S, Shih W, Chang A, Shen S and Chen I 2019 Contrasting forms of competition set elevational range limits of species Ecol. Lett. 22 1668–79
Chan W-P, Chen I-C, Colwell R K, Liu W-C, Huang C -y. and Shen S-F 2016 Seasonal and daily climate variation have opposite effects on species elevational range size Science (80-. ). 351 1437–9 Online: http://www.sciencemag.org/cgi/doi/10.1126/science.aab4119
Chen I-C, Shiu H-J, Benedick S, Holloway J D, Chey V K, Barlow H S, Hill J K and Thomas C D 2009 Elevation increases in moth assemblages over 42 years on a tropical mountain Proc. Natl. Acad. Sci. 106 1479–83
Chong J-Y, Lo M-H and Huang C 2024 Quantification of the spatiotemporal dynamics of diurnal fog and low stratus occurrence in subtropical montane cloud forests using Himawari-8 imagery and topographic attributes Int. J. Appl. Earth Obs. Geoinf. 134 104212
Chu H Sen, Chang S C, Klemm O, Lai C W, Lin Y Z, Wu C C, Lin J Y, Jiang J Y, Chen J, Gottgens J F and Hsia Y J 2014 Does canopy wetness matter? Evapotranspiration from a subtropical montane cloud forest in Taiwan Hydrol. Process. 28 1190–214
Dai A, Trenberth K E and Karl T R 1999 Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range J. Clim. 12 2451–73
Easterling D R, Horton B, Jones P D, Peterson T C, Karl T R, Parker D E, Salinger M J, Razuvayev V, Plummer N, Jamason P and Folland C K 1997 Maximum and minimum temperature trends for the globe Science (80-. ). 277 364–7
Foster P 2001 The potential impacts of global climate change on tropical montane cloud forests Earth-Science Rev. 55 73–106
Fowler M D, Neale R B, Waterman T, Lawrence D M, Dirmeyer P A, Larson V E, Huang M, Simon J S, Truesdale J and Chaney N W 2024 Assessing the atmospheric response to subgrid surface heterogeneity in the single‐column Community Earth System Model, version 2 (CESM2) J. Adv. Model. Earth Syst. 16 e2022MS003517
De Frenne P, Rodríguez-Sánchez F, Coomes D A, Baeten L, Verstraeten G, Vellen M, Bernhardt-Römermann M, Brown C D, Brunet J, Cornelis J, Decocq G M, Dierschke H, Eriksson O, Gilliam F S, Hédl R, Heinken T, Hermy M, Hommel P, Jenkins M A, Kelly D L, Kirby K J, Mitchell F J G, Naaf T, Newman M, Peterken G, Petřík P, Schultz J, Sonnier G, Van Calster H, Waller D M, Walther G R, White P S, Woods K D, Wulf M, Graae B J and Verheyen K 2013 Microclimate moderates plant responses to macroclimate warming Proc. Natl. Acad. Sci. U. S. A. 110 18561–5
Gheyret G, Mohammat A and Tang Z 2020 Elevational patterns of temperature and humidity in the middle Tianshan Mountain area in Central Asia J. Mt. Sci. 17 397–409
Gu R-Y, Lo M-H, Liao C-Y, Jang Y-S, Juang J-Y, Huang C-Y, Chang S-C, Hsieh C-I, Chen Y-Y and Chu H 2021 Early Peak of Latent Heat Fluxes Regulates Diurnal Temperature Range in Montane Cloud Forests J. Hydrometeorol.
Guo L, Guo X, Luan T, Zhu S and Lyu K 2021 Radiative effects of clouds and fog on long-lasting heavy fog events in northern China Atmos. Res. 252 105444
Hamilton L S 1995 Mountain cloud forest conservation and research: a synopsis Mt. Res. Dev. 259–66
Hansen J, Sato M and Ruedy R 1995 Long-term changes of the diurnal temperature cycle: Implications about mechanisms of global climate change Atmos. Res. 37 175–209
Hayes G L 1941 Influence of altitude and aspect on daily variations in factors of forest-fire danger (US Department of Agriculture)
Helbig M, Gerken T, Beamesderfer E R, Baldocchi D D, Banerjee T, Biraud S C, Brown W O J, Brunsell N A, Burakowski E A and Burns S P 2021 Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions Agric. For. Meteorol. 307 108509
Hijmans R J, Van Etten J, Cheng J, Mattiuzzi M, Sumner M, Greenberg J A, Lamigueiro O P, Bevan A, Racine E B and Shortridge A 2015 Package ‘raster’ R Packag. 734
Hufkens K, Basler D, Milliman T, Melaas E K and Richardson A D 2018 An integrated phenology modelling framework in R Methods Ecol. Evol. 9 1276–85
Jaagus J, Briede A, Rimkus E and Remm K 2014 Variability and trends in daily minimum and maximum temperatures and in the diurnal temperature range in Lithuania, Latvia and Estonia in 1951–2010 Theor. Appl. Climatol. 118 57–68
Jackson L S and Forster P M 2010 An empirical study of geographic and seasonal variations in diurnal temperature range J. Clim. 23 3205–21
Jang Y-S, Swenson S, Juang J-Y, Huang C and Lo M-H 2024 Roles of forests in moderating the diurnal cycle of land-atmosphere interactions Environ. Res. Lett.
Jang Y, Shen S, Juang J, Huang C and Lo M 2022 Discontinuity of diurnal temperature range along elevated regions Geophys. Res. Lett. 49 e2021GL097551
Jiang J, Gao X, Lv Q, Li Z and Li P 2021 Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas Renew. Energy 174 157–69
Juang J, Porporato A, Stoy P C, Siqueira M S, Oishi A C, Detto M, Kim H and Katul G G 2007 Hydrologic and atmospheric controls on initiation of convective precipitation events Water Resour. Res. 43
Karl T R, Knight R W, Gallo K P, Peterson T C, Jones P D, Kukla G, Plummer N, Razuvayev V, Lindseay J and Charlson R J 1993 A New Perspective on Recent Global Warming: Asymmetric Trends of Daily Maximum and Minimum Temperature Bull. Am. Meteorol. Soc. 74 1007–23
Kassambara A 2020 rstatix: pipe-friendly framework for basic statistical tests. R package version 0.4. 0 Avaliable online at: https://cran. r-project. org/web/packages/rstatix/index
Kerr J T, Pindar A, Galpern P, Packer L, Potts S G, Roberts S M, Rasmont P, Schweiger O, Colla S R and Richardson L L 2015 Climate change impacts on bumblebees converge across continents Science (80-. ). 349 177–80
Klinges D H and Scheffers B R 2021 Microgeography, not just latitude, drives climate overlap on mountains from tropical to polar ecosystems Am. Nat. 197 75–92
Körner C 2004 Mountain biodiversity, its causes and function AMBIO A J. Hum. Environ. 33 11–7
Kumar K R, Kumar K K and Pant G B 1994 Diurnal asymmetry of surface temperature trends over India Geophys. Res. Lett. 21 677–80
Kutikoff S, Lin X, Evett S, Gowda P, Moorhead J, Marek G, Colaizzi P, Aiken R and Brauer D 2019 Heat storage and its effect on the surface energy balance closure under advective conditions Agric. For. Meteorol. 265 56–69
Lai G-Y, Liu H-C, Kuo A J and Huang C 2020 Epiphytic bryophyte biomass estimation on tree trunks and upscaling in tropical montane cloud forests PeerJ 8 e9351
Lawrence D M, Fisher R A, Koven C D, Oleson K W, Swenson S C, Bonan G, Collier N, Ghimire B, van Kampenhout L and Kennedy D 2019 The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty J. Adv. Model. Earth Syst. 11 4245–87
Ledo A, Montes F and Condes S 2009 Species dynamics in a montane cloud forest: Identifying factors involved in changes in tree diversity and functional characteristics For. Ecol. Manage. 258 S75–84
Li C, Chytrý M, Zelený D, Chen M, Chen T, Chiou C, Hsia Y, Liu H, Yang S and Yeh C 2013 Classification of T aiwan forest vegetation Appl. Veg. Sci. 16 698–719
Li C, Zelený D, Chytrý M, Chen M, Chen T, Chiou C, Hsia Y, Liu H, Yang S and Yeh C 2015 Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification Ecol. Res. 30 771–91
Li H-J, Lo M-H, Juang J-Y, Wang J and Huang C 2022 Assessment of spatiotemporal dynamics of diurnal fog occurrence in subtropical montane cloud forests Agric. For. Meteorol. 317 108899
Lindroth A, Mölder M and Lagergren F 2010 Heat storage in forest biomass improves energy balance closure Biogeosciences 7 301–13
Meier R, Davin E L, Lejeune Q, Hauser M, Li Y, Martens B, Schultz N M, Sterling S and Thiery W 2018 Evaluating and improving the Community Land Model’s sensitivity to land cover Biogeosciences 15 4731–57
Meier R, Davin E L, Swenson S C, Lawrence D M and Schwaab J 2019a Biomass heat storage dampens diurnal temperature variations in forests Environ. Res. Lett. 14 84026
Meier R, Davin E L, Swenson S C, Lawrence D M and Schwaab J 2019b Erratum: Biomass heat storage dampens diurnal temperature variations in forests (Environmental Research Letters (2019) 14 (084026) DOI: 10.1088/1748-9326/ab2b4e) Environ. Res. Lett. 14
Mildrexler D J, Zhao M and Running S W 2011 A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests J. Geophys. Res. Biogeosciences 116
Moore C J and Fisch G 1986 Estimating heat storage in Amazonian tropical forest Agric. For. Meteorol. 38 147–68
Moritz C, Patton J L, Conroy C J, Parra J L, White G C and Beissinger S R 2008 Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA Science (80-. ). 322 261–4
Myers N, Mittermeier R A, Mittermeier C G, Da Fonseca G A B and Kent J 2000 Biodiversity hotspots for conservation priorities Nature 403 853–8
Pepin N, Bradley R S, Diaz H F, Baraër M, Caceres E B, Forsythe N, Fowler H, Greenwood G, Hashmi M Z and Liu X D 2015 Elevation-dependent warming in mountain regions of the world Nat. Clim. Chang. 5 424–30
Pepin N, Deng H, Zhang H, Zhang F, Kang S and Yao T 2019 An Examination of Temperature Trends at High Elevations Across the Tibetan Plateau: The Use of MODIS LST to Understand Patterns of Elevation-Dependent Warming J. Geophys. Res. Atmos. 124 5738–56
Rapp J M and Silman M R 2012 Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest Clim. Res. 55 17–32
Rumpf S B, Hülber K, Klonner G, Moser D, Schütz M, Wessely J, Willner W, Zimmermann N E and Dullinger S 2018 Range dynamics of mountain plants decrease with elevation Proc. Natl. Acad. Sci. 115 1848–53
Scheffers B R, Edwards D P, Diesmos A, Williams S E and Evans T A 2014 Microhabitats reduce animal’s exposure to climate extremes Glob. Chang. Biol. 20 495–503
Schultz N M, Lawrence P J and Lee X 2017 Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation J. Geophys. Res. Biogeosciences 122 903–17
Schulz H M, Chang S-C, Thies B and Bendix J 2014 Automatic cloud top height determination in mountainous areas using a cost-effective time-lapse camera system Atmos. Meas. Tech. 7 4185–201
Schulz H M, Li C-F, Thies B, Chang S-C and Bendix J 2017 Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data PLoS One 12
Shekhar M S, Devi U, Dash S K, Singh G P and Singh A 2018 Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study Pure Appl. Geophys. 175 3097–109
Shen X, Liu B, Li G, Wu Z, Jin Y, Yu P and Zhou D 2014 Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China J. Geophys. Res. Atmos. 119 13–163
Still C J, Foster P N and Schneider S H 1999 Simulating the effects of climate change on tropical montane cloud forests Nature 398 608–10
Stoy P C, Chu H, Dahl E, Cala D S, Shveytser V, Wiesner S, Desai A R and Novick K A 2023 The global distribution of paired eddy covariance towers bioRxiv 2003–23
Su Y, Zhang C, Ciais P, Zeng Z, Cescatti A, Shang J, Chen J M, Liu J, Wang Y-P and Yuan W 2023 Asymmetric influence of forest cover gain and loss on land surface temperature Nat. Clim. Chang. 13 823–31
Swenson S C, Burns S P and Lawrence D M 2019 The Impact of Biomass Heat Storage on the Canopy Energy Balance and Atmospheric Stability in the Community Land Model J. Adv. Model. Earth Syst. 11 83–98
Teuling A J, Taylor C M, Meirink J F, Melsen L A, Miralles D G, Van Heerwaarden C C, Vautard R, Stegehuis A I, Nabuurs G-J and de Arellano J V-G 2017 Observational evidence for cloud cover enhancement over western European forests Nat. Commun. 8 1–7
Tsai H-Y, Rubenstein D R, Fan Y-M, Yuan T-N, Chen B-F, Tang Y, Chen I-C and Shen S-F 2020 Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles Nat. Commun. 11 1–12
Vose R S, Easterling D R and Gleason B 2005 Maximum and minimum temperature trends for the globe: An update through 2004 Geophys. Res. Lett. 32 1–5
Wang G yi, Zhao M fei, Kang M yi, Xing K xiong, Wang Y hang, Xue F and Chen C 2017 Diurnal and seasonal variation of the elevation gradient of air temperature in the northern flank of the western Qinling Mountain range, China J. Mt. Sci. 14 94–105
Waterman T, Bragg A D, Hay‐Chapman F, Dirmeyer P A, Fowler M D, Simon J and Chaney N 2024 A two‐column model parameterization for subgrid surface heterogeneity driven circulations J. Adv. Model. Earth Syst. 16 e2023MS003936
Xu R, Li Y, Teuling A J, Zhao L, Spracklen D V, Garcia-Carreras L, Meier R, Chen L, Zheng Y and Lin H 2022 Contrasting impacts of forests on cloud cover based on satellite observations Nat. Commun. 13 670
Xue F, Jiang Y, Wang M, Dong M, Ding X, Yang X and Kang M 2020 Temperature and thermal growing season variations along elevational gradients on a sub-alpine, temperate China Theor. Appl. Climatol. 140 15–24
Zellweger F, Coomes D, Lenoir J, Depauw L, Maes S L, Wulf M, Kirby K J, Brunet J, Kopecký M, Máliš F, Schmidt W, Heinrichs S, den Ouden J, Jaroszewicz B, Buyse G, Spicher F, Verheyen K and De Frenne P 2019 Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe Glob. Ecol. Biogeogr. 28 1774–86
Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J, Van Calster H, Chudomelová M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel T A, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Vild O, Wulf M and Coomes D 2020 Forest microclimate dynamics drive plant responses to warming Science 368 772–5
Zeng Z, Wang D, Yang L, Wu J, Ziegler A D, Liu M, Ciais P, Searchinger T D, Yang Z, Chen D, Chen A, Li L Z X, Piao S, Taylor D, Cai X, Pan M, Peng L, Lin P, Gower D, Feng Y, Zheng C, Guan K, Lian X, Wang T, Wang L, Jeong S, Wei Z, Sheffield J, Caylor K and Wood E F 2021 mountain regions regulated by elevation Nat. Geosci. 14 Online: http://dx.doi.org/10.1038/s41561-020-00666-0
Zhang M, Tian P, Zeng H, Wang L, Liang J, Cao X and Zhang L 2021a A comparison of wintertime atmospheric boundary layer heights determined by tethered balloon soundings and lidar at the site of SACOL Remote Sens. 13 1781
Zhang Y, Shen X and Fan G 2021b Elevation-dependent trend in diurnal temperature range in the northeast china during 1961–2015 Atmosphere (Basel). 12 1–11
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97300-
dc.description.abstract森林與雲霧之間交互作用對於微氣候的調節,提供了陸域生態系中不可取代的生態棲位,並擁有相當高且獨特的生物多樣性。森林的遮蔽效應和生物量熱儲存,對微氣候的日夜變化有顯著減緩的作用,使其相較於鄰近的開墾地呈現截然不同的日夜變化特性,這進一步增強了近地面微氣候的空間異質性。頻繁的雲霧事件帶來豐沛的水氣以及降低了地表的日輻射量, 造就了特殊的水文氣候特徵。這些生物和非生物的因子藉由水文和能量循環對邊界層發展產生顯著的影響。
本研究結合現地觀測與理想化模式模擬,探討森林生物量的熱儲存、森林遮蔽效應和雲霧事件對陸地與大氣交互作用日變化的影響。從觀測結果可以看到森林的微氣候日夜變化相較於鄰近的開闊地和緩,這不僅僅發生在林下,林上微氣候的日變化也較為穩定。其中,氣候模式的理想實驗說明生物量熱儲存對林上微氣候貢獻了顯著的調節作用。白天的生物量暫時儲存了部分輻射能量,這使得白天氣溫稍微降低;到了夜間,白天儲存在生物量中的能量釋放出來加熱了夜間的氣溫。因此,若模式忽略了生物量熱儲存的能力,將導致日間可感熱通量與潛熱通量被高估,以及低估夜間溫度。這不僅會導致日間地表熱通量的偏差,更容易高估了日最高溫和邊界層發展高度。然而,具有調節作用的森林與鄰近開闊地所形成的氣候空間岐異度, 則會在雲霧事件發生時被有效弭平。雲霧阻擋了進到地表的太陽輻射,進而降低地表熱通量對於近地面微氣候的影響, 進一步降低了大氣垂直不穩定性,同時也有效降低微氣候在空間與時間上的變異度。也就是,雲霧事件的發生暫時停止了陸地與大氣之間能量的交互作用。
為解決目前侷限於近地面觀測,未來將規劃在不同地表條件上進行成對的地表熱通量測量與垂直剖面觀測。此外,未來也將利用全球氣候模型,評估生物量熱儲存對全球氣候的影響。本研究對於雲霧事件改變陸氣交互作用進而弭平微氣候空間歧異度特性的應用,希望可以延伸至全球其他位處不同植被的成對現地觀測通量站。藉由整合模式和觀測,了解雲霧和不同土地利用特性交互作用下,所形成的全球局地微氣候空間與時間的異質性變化。希望能觀測與模擬所建立的完整實驗架構能夠對於氣候變異對水文及生態系統交互作用的影響有更進一步的理解。
zh_TW
dc.description.abstractForests-fog interactions play a crucial role in regulating microclimates and contributing to an irreplaceable ecological habitat in montane cloud forests (MCFs). The biomass heat storage and canopy shading effect of forests significantly regulate diurnal variations in microclimate, resulting in distinct differences compared to adjacent open fields. Additionally, frequent fog events bring abundant moisture while reducing solar radiation, thereby creating unique hydroclimatic characteristics of MCFs. These biotic and abiotic factors significantly influence microclimates through hydrological and energy cycles.
This study integrates paired in-situ observations and idealized model simulations to examine the impacts of biomass heat storage (BHS), canopy shading, and fog events on the diurnal cycle of land-atmosphere interactions. Analysis of observations demonstrates that forests consistently diminish the diurnal variability of microclimate compared to adjacent open fields. This effect is observed not only within the forest understory but above the forest overstory. Furthermore, idealized climate model experiments highlight the significant role of BHS in microclimate regulation. Biomass absorbs a portion of net radiation as heat flux during the day, inducing a mild cooling effect on air temperature, and subsequently releases the stored heat at night, moderating nocturnal cooling. Thus, omitting BHS in models results in a substantial overestimation of daytime sensible and latent heat fluxes and an underestimation of nighttime temperatures. Meanwhile, cloud and fog events play a crucial role in moderating climatic differences between forests and adjacent open fields. By reducing incoming solar radiation, they lower the influence of surface heat fluxes on near-surface microclimates, thereby decreasing atmospheric vertical instability and stabilizing spatiotemporal variations. Consequently, cloud and fog events temporarily suppress land-atmosphere interactions by altering surface energy balance. By incorporating modeling and observational approaches, this study explores how fog and land-use characteristics shape microclimate spatiotemporal variability. The comprehensive framework established in this study reveals the impacts of climate variability on hydrological and ecosystem interactions.
To comprehensively assess boundary layer development, this study recommends expanding paired heat flux measurements and conducting deeper vertical profiling across diverse land types. Additionally, integrating BHS into global climate models will further elucidate a comprehensive understanding of the impact of diverse land types on climate systems. Furthermore, utilizing global paired flux observations across varying vegetation types will enhance the quantification of land-atmosphere interaction intensity at an hourly scale, offering new insights into microclimate variability. This comprehensive approach is expected to provide actionable insights for land-use management and offers a robust foundation for understanding and mitigating the effects of climate change on ecosystems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:22:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-04-02T16:22:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
致謝 II
Acknowledgement IV
摘要 V
Abstract VII
Contents IX
List of tables XI
List of figures XII
Chapter 1. Introduction 1
1.1 Fog and forests create essential microclimates for mountain ecosystems 2
1.2 Forests as regulators of the diurnal cycle of microclimates 2
1.3 Fog mitigates the magnitude of land-atmosphere interaction 3
Chapter 2. Discontinuity of diurnal temperature range along elevated regions 6
2.1 Abstract 6
2.2 Introduction 6
2.3 Data and method 8
2.4 Results 14
2.4.1 Canopy shade moderates spatial variance in the understory 15
2.4.2 Discontinuous trend of DTR in altitude 16
2.5 Discussion 20
2.6 Conclusion 24
Chapter 3. Roles of forests in moderating the diurnal cycle of land-atmosphere interactions 26
3.1 Abstract 26
3.2 Introduction 26
3.3 Data and method 29
3.4 Results 35
3.4.1 Forest efficiently dampens the diurnal temperature range 35
3.4.2 Models excluding BHS overestimate sensible heat and latent heat fluxes 36
3.4.3 BHS inhibits the development of the planetary boundary layer 38
3.5 Discussion 41
3.6 Conclusion 44
Chapter 4. Fog dampens the spatiotemporal variation of microclimate 46
4.1 Abstract 46
4.2 Introduction 47
4.3 Data and method 49
4.4 Results 53
4.4.1 Fog effectively mitigates the microclimatic spatiotemporal variation 53
4.4.2 Radiation reduction caused by fog pauses the land-atmosphere interaction 55
4.5 Discussion 58
4.6 Conclusion 62
Chapter 5. Conclusions 63
Chapter 6. Future works 65
6.1 The role of biomass heat storage in global climate by land-atmosphere interactions 65
6.2 The role of fog in spatial heterogeneity of land-atmosphere interactions 65
6.3 Defining land-atmosphere interaction hotspots through microclimatic heterogeneity 67
Chapter 7. Reference 69
-
dc.language.isozh_TW-
dc.subject雲霧森林zh_TW
dc.subject陸地大氣交互作用zh_TW
dc.subject日溫差zh_TW
dc.subject生物熱儲量zh_TW
dc.subject微氣候zh_TW
dc.subjectDiurnal temperature rangeen
dc.subjectMontane cloud foresten
dc.subjectMicroclimateen
dc.subjectBiomass heat storageen
dc.subjectLand-atmosphere interactionsen
dc.title雲霧與森林對微氣候時空變異度的影響zh_TW
dc.titleThe effect of abiotic and biotic features on the spatiotemporal variation of microclimate: the role of fog and foresten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳維婷;吳健銘;黃倬英;莊振義;陳奕穎;賴彥任;蘇世顥;林博雄zh_TW
dc.contributor.oralexamcommitteeWei-Ting Chen;Chien-Ming Wu;Cho-ying Huang;Jehn-Yih Juang;Yi-Ying Chen;Yen-Jen Lai;Shih-Hao Su;Po-Hsiung Linen
dc.subject.keyword陸地大氣交互作用,日溫差,生物熱儲量,微氣候,雲霧森林,zh_TW
dc.subject.keywordLand-atmosphere interactions,Diurnal temperature range,Biomass heat storage,Microclimate,Montane cloud forest,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202500781-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-03-21-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-lift2030-03-20-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-03-20
6.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved