Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9729
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇和平
dc.contributor.authorChia-Chun Linen
dc.contributor.author林嘉君zh_TW
dc.date.accessioned2021-05-20T20:37:59Z-
dc.date.available2008-08-05
dc.date.available2021-05-20T20:37:59Z-
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-25
dc.identifier.citation李福臨。2000。乳酸菌分類之研究近況。食品工業。32(8):36-42。
林富美。2004。乳酸菌與免疫調節作用。食品工業。36(3):16-26。
林佩璇。2007。糖類的添加對乳酸菌胞外多醣生成之研究。中國文化大學生活應
用科學研究所碩士論文。
楊政儒。2005。生長溫度與 pH 值對乳酸菌胞外多醣生成影響之研究。中國文
化大學生活應用科學研究所碩士論文。
廖啟成。1998。乳酸菌之分類及應用。食品工業。30(2):1-10。
廖啟成。2007。乳酸菌產業研發服務能量之建構。益生菌之益生機制與應用開發
研討會。
Amatayakul, T., A. L. Halmos, F. Sherkat and N. P. Shah. 2006a. Physical characteristics of yoghurts made using exopolysaccharideproducing starter cultures and varying casein to whey protein ratios. Int. Dairy J. 16:40-51.
Amatayakul, T., F. Sherkat and N. P. Shah. 2006b. Physical characteristics of set yoghurt made with altered casein to whey protein ratios and EPS-producing starter cultures at 9 and 14% total solids. Food Hydrocoll. 20:314-324.
Arunachalam, K. D. 1999. Role of bifidobacteria in nutrition medicine and
technology. Nutr. Res. 19:1559-1597.
Attouri, N. and D. Lemonnier. 1997. Production of interferon induced by Streptococcus thermophilus:role of CD4+ and CD4+ lymphocytes. Nutr. Biochem. 8:25-31.
Beaugerie, L. and J. C. Petit. 2004. Microbiol-gut interactions in health and disease. Antibiotic-associated diarrhea. Best Pract. Res. Clin. Gastroenterol. 18:337-352.
Black, F. T., P. L. Andersen, J. Orskov, F. Orskov, K. Gaarslev and S. Laulund. 1989. Prophylactic efficacy of lactobacilli on traveller’s diarrhoea. Travel Medicine. 1:333-335.
Boels, I. C., R. van Kranenburg, J. Hugenholtz, M. Kleerebezem and W. M. de Vos. 2001. Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int. Dairy J. 11:723-732.
Brashears, M. M., S. E. Gillil and L. M. Buck. 1998. Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. J. Dairy Sci. 81:2103-2110.
Brooker, B. F. and R. Fuller. 1975. Adhension of lactobacilli to the chicken crop epithelium. J. Ultrastruct. Res. 52:21-31.
Brashears, M. M., S. E. Gilliland and L. M. Buck. 1998. Bile salt Deconjugation
and cholesterol removal from media by Lactobacillus casei. J. Dairy Sci. 81:2103-2110.
Cerning, J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87:113-130.
Cerning, J. 1995. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Le. Lait. 75:463-472.
Cerning, J., C. Bouillanne, M. J. Desmazeaud, and M. Landon. 1988. Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnol. Lett. 10:255-260.
Cerning, J., C. Bouillanne, M. Landon and M. Desmazeaud. 1992. Isolation
and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. J. Dairy Sci. 75:692-699.
Collins, E. B. 1972. Biosynthesis of flavor compounds by microorganisms. J. Dairy Sci. 55:1022-1028.
Cross, M. L., L. M. Stevenson and H. S. Gill. 2001. Anti-allergy properties of fermented food:An important innunoregulatory mechanism of lactic acid bacteria. Int. Immunopharmacol. 1:891-901.
De Vos W. M., P. Hols, R. Van Kranenburg, E. Luesink, O. P. Kuipers, J. Van der Oost, M. Kleerebezem and J. Hugenholtz. 1998. Making more of milk sugar by engineering lactic acid bacteria. Int. Dairy J. 3:227-233.
De Vuyst, L. and B. Degeest. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23:153-177.
De Vuyst, L., F. de Vin, F. Vaningelgem and B. Degeest. 2001. Recent developments in the biosynthesis and applications of heteropolysaccharides fromlactic acid bacteria. Int. Dairy J. 11:687-707.
De Vuyst, L., F. Vanderveken, S. Van de Ven and B. Degeest. 1998. Production by and isolation of exopolysaccharide from Streptococcus thermophilus grown in a milk medium and evidence of their growth-associated biosynthesis. J. Applied Microbiol. 84:1059–1068.
De Vuyst, L., M. Zamfir, F, Mozzi, T. Adriany, V. Marshall, B. Degeest and F. Vaningelgem. 2003. Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks.
Duboc, P. and B. Mollet. 2001. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11:759-768.
Ericsson, C. D. 2003. Traveller’s diarrhoea. Int. F. Antimicrob. Agents. 21:116-124.
Faber, E. J., P. Zoon, J. P. Kamerling and J. F. G. Vliegenthart. 1998. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr. Res. 310:269-276.
Folkenberg, D. M., P. Dejmek, A. Skriver and R. Ipsen. 2005. Relation between sensory texture properties and exopolysaccharide distribution in set and stirred yoghurts produced with different starter cultures. J. texture stud. 36:174-189.
Folkenberg, D. M., P. Dejmek, A. Skriver, H. Skov Guldager and R.Ipsen. Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. 2006. 16:111-118.
Gamer-Nourani, L., K. Blondeau and J. Simonet. 1997. Physilogical approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83. J. Appl. Microbiol. 83: 281-287.
Gancel, F., and G. Novel. 1994. Exopolysaccharides production by Streptococcus salivarius spp. Thermophilus cultures. 1. Conditions of production. J. Dairy Sci. 77:685-688.
Gassem, M. A., K. A. Schmidt and J. F. Frank. 1997. Exopolysaccharide
production from whey lactose by fermentation with Lactobacillus
delbrueckii ssp. bulgaricus. J. Food Sci. 62:171-173.
Gibson, G. R. and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125:1401-1412.
Girard, M. and C. Schaffer-Lequart. 2007. Gelation and resistance to shearing of fermented milk:Role of exopolysaccharides. Int. Dairy J. 17:666-673.
Grobben, G. J., I. C. Boels, J. Sikkema, M. R. Smith, and J. A. M. Bont. 2000. Influence of ions on growth and production of exopolysaccharides by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. J. Dairy Res. 67:131-135.
Grobben, G. J., I. Chin-Joe, V. A. Kitzen, I. C. Boels, F. Boer, J. Sikkema, M. R. Smith and J. A. De Bont. 1998. Enhancement of exopolysaccharide
production by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 with a simplified defined medium. Appl. Environ. Microbiol. 64: 1333-1337.
Grobben G. J., M. R. Smith, J. Sikkema, J. A. M. De Bont. 1996. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772. Appl. Microbiol. Biotechnol. 46: 279-284.
Hamann, C., V. E. L. Samalouti, A. J. Ulmev. H. D. Flad and E. T. Rietschel. 1998. Components of gut bacteria as immunomodulators. Int. J. Food Microbiol. 41: 141-154.
Harwalkar, V. R. and M. Kalab. 1986. Relationship between microstructure and susceptibility to syneresis in yoghurt made from reconstituted non-fat dry milk. Food Microstruct. 5:287–294.
Hassan, A. N., J. F. Frank, M. A. Farmer, K. A. Schmidt and S. I. Shalabi. 1995. Formation of yogurt microstructure and three-dimensional visualization as determined by confocal scanning laser microscopy. J. Dairy Sci. 78:2629–2636.
Hassan, A. N., J. F. Frank, K. A. Schmid and S. I. Shalabi. 1996. Textural properties of yogurt made with encapsulated nonropy lactic cultures. J. Dairy Sci. 79: 2098–2103.
Hassan, A. N., R. Ipsen, T. Janzen and K. B. Qvist. 2003. Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides. J. Dairy Sci. 86:1632–1638
Hess, S. J., R. F. Roberts and G. R. Ziegler. 1997. Rheological properties of nonfat yogurt stabilized using Lactobacillus delbrueckii ssp. bulgaricus producing exopolysaccharide or using commercial stabilizer systems. J. Dairy Sci. 80:252–263.
Hosono, A., H. Otani, H. Yasui and M. Watanuki. 2002. Impact of fermented milk on human health:Cholesterol-lowering and immunomodulatory properties of fermented milk. Anim. Sci. J. 73:241-256.
Hosono. A., J. Lee, A. Ametani, M. Natsume, M. Hirayama, T. Adachi,
S. Kaminogawa. 1997. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci. Biotech. Biochem. 61: 312-316.
Hull, R. R., P. L Conway and A. J. Evans.1992. Probiotic foods - a new opportunity.
Food Aust. 44:112–113.
Isolauri, E., T. Arvola, Y. Sutas, E. Moilanen and S. Salminen. 2000. Probiotics in the management of atopic excema. Clin. and Exp. Allergy. 30:1604-1610.
Jiang, T., A. Mustapha and D. A. Savaiano. 1996. Improvement of lactose digestion in humans by injection of unfermented milk containing Bifidobacterium longum. J. Dairy Sci. 79:750-757.
Kimmel, S. A., R. F. Roberts and G. R. Ziegler. 1998. Optimization of
exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR grown in a semidefined medium. Appl. Environ. Microbiol. 64:659-664.
Kitazawa, H.,T. Harata, J. Uemura, T. Saito, T. Kaneko and T. Itoh. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int. J. Food Microbiol. 40:169-175.
Kitazawa, H., T. Yamaguchi, M. Miura, T. Saito and H. Itoh. 1993. B-cell
mitogen produced by slime-forming, encapsulated Lactococcus lactis
ssp. cremoris isolated from ropy sour milk. J. Dairy Sci. 76:
1514-1519.
Kitazawa, H., Y. Ishii, J. Uemura, Y. Kawai, T. Saito. T. Kaneko and T. Itoh. 2000. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii bulgaricus. Food Microbiol. 17:109-118.
Klaver, F. A. and R. van der Meer. 1993. The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 59:1120-1124.
Klimp, A. H., E. G. E. de Vries, G. L. Scherphof, and T. Daemen. 2002. A potential role of macrophage activation in the treatment of cancer. Crit. Rev. Oncol. Hematol. 44:143-161.
Knoshaug, E. P., J. A. Ahlgren and J. E. Trempy. 2000. Growth associated exopolysaccharide expression in Lactococcus lactis subsp. cremoris ropy 352. J. Dairy Sci. 83:633–640.
Kojic, M., M. Vujcic, A. Banina, P. Cocconcelli, J. Cerning and L. Topisorovuc. 1992. Analysis of polysaccharide production by Lactobacillus casei CG11, isolated from cheese. Appl. Environ. Microbiol. 58: 4086-4088.
Law, A., Y. Gu and V. Marshall. 2001. Biosynthesis, characterization, and design of bacteria exopolysaccharides from lactic acid bacteria. Biotechnol. Adv. 19:597-625.
Looijesteijn, P. J. and J. Hugenholtz. 1999. Uncoupling of growth and exopolysaccharide produced by Lactococcus lactis subsp. cremoris NIZO B40 and Optimization of its synthesis. J. Biosci. Bioengineering. 88:178-182.
Looijesteijn, P. J., W. H. M. van Casteren, R. Tuinier, C. H. L. and Dosewijk-Voragen
and J. Hugenholtz. 2000. Influence of different substrate limitations on the yield,
composition and molecular mass of exopolysaccharides produced by
Lactococcus lactis subsp. cremoris in continuous cultures. J. Appl. Microbiol.
89:116-122.
Lo, P. R., R. C. Yu, C. C. Chou and T. H. Tsai. 2002. Antimutagenic activity of
several probiotic bifidobacteria against benzo[a] pyrene. J. Biosci. Bioeng. 94:
148-153.
Low, D., J. A. Ahlgren, D. Horne, D. J. Mcmahon, C. J. Oberg and J. R. Broadbent. 1998. Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. App. Environ. Microbiol. 64:2147-2151.
Lin, T. Y., Chang Chien, M. F. 2007. Exopolysaccharides production as affected by lactic acid bacteria and fermentation time. Food Chemistry 100: 1419-1423.
Macedo, M. G., C. Lacroix, N. J. Gardner and C. P. Chamgagne. 2002. Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. Int. Dairy J. 12:419-426.
Majamaa, H. and E. Isolauri. 1997. Probiotics: a novel approach in the management of food allergy. J. Allergy Clin. Immunol. 99:179-185.
Marshall, V. M., E. Z. Cowie and R. S. Moreron. 1995. Analysis and production of two exopolysaccharides from Lactococcus lactis subsp. cremoris LC330. J. Dairy Res. 62:621-628.
Marshall, V. M. and H. L. Rawson. 1999. Effects of exopolysaccharide-producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. Int. J. Food Sci. Technol. 34:137-143.
Meydani, S. N. and W. K. Ha. 2000. Immunology effects of yogurt. Am. J. Clin. Nutr. 71:861-872.
Mozzi, F., G. S. de Giori, G. Oliver and G. F. de Valdez. 1995. Influence of temperature on the production of exopolysaccharides by thermophilic lactic acid bacteria. Milchwissenscha. 50: 80-82.
Mozzi, F., G. S. de Giori, G. Oliver and G. F. de Valdez. 1996. Exopolysaccharide production by Lactobacillus casei under controlled pH. Biotechnol. Lett. 18:435-439.
Mustapha, A., T. Jiang and D. A. Savaiano. 1997. Improvement of lactose digestion by humans following ingestion of unfermented acidophilus milk: Influence of bile sensitivity, lactose transport, and acid tolerance of Lactobacillus acidophilus. J. Dairy Sci. 80:1537-1545.
Nadathur, S. R., S. J. Gould and A. T. Bakalinsky. 1995. Anitmutagenicity of an acetone extrace of yogurt. Mutat. Res. 334:212-224.
Nagaoka, M., S. Hashimoto, T. Watanbe, T. Yokokura and Y. Mori. 1994. Anti-ulcer effects of lactic acid bacteria and their cell-wall
polysaccharides. Biol. Pharm. Bull. 17:1012-1017.
Nakajima, H., Y. Suzuki, H. Kaizu and T. Hirota. 1992. Cholesterol lowering activity of ropy fermented milk. J. Food Sci. 57:1327-1329.
Nordmark, E. L., Z. Yang, E. Huttunen, and G. Widmalm. 2005. Structural studies of an exopolysaccharide produced by Streptococcus thermophilus THS. Biomacromolecul. 6:105-108.
Oda, M., H. Hasegawa, S. Komatsu, M. Kambe and F. Tsuchiya. 1983. Anti-tumor polysaccharide from Lactobacillus sp. Agric. Biol. Chem. 47: 1623-1625.
Parker, R. B. 1974. Probiotics the other half of the antibiotic story. Anim. Nutr.
Health. 29:4-8.
Petry, S., S. Furlan, E. Waghorne, S. Waghorne, L. Saulnier, J. Cerning and E. Maguin. 2003. Comparison of the thickening properties of four Lactobacillus delbrueckii subsp. bulgaricus strains and physicochemical characterization of their exopolysaccharides. FEMS Microbiol. Lett. 221:285-291.
Plummer, S., M. A. Weaver, J. C. Harris, P. Dee and J. Hunter. 2004. Clostridium difficile pilot study: effect of probiotic supplementation on the incidence of C. difficile diarrhoea. Int. Microbiol. 7:59-62.
Puvanenthiran, A., R. P. W. Williams and M. A. Augustin. 2002. Structure and visco-elastic properties of set yoghurt with altered casein to whey protein ratios. Int. Dairy J. 12:383–391.
Ruas-Madiedo, P., R. Tuinier, M. Kanning and P. Zoon. 2002. Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int. Dairy J. 12:689–695.
Saarela, M., L. Lahteenmaki, R. Crittenden, S. Salminen and T. Mattila-Sandholm. 2002. Gut bacteria and health foods-the European perspective. Int. J. Food Miicrobiol. 78:99-117.
Saavedra, J. M., N. A. Bauman, I. Oung, J. A. Oerman and Y. R. Holken. 1994.
Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhea and sgedding of rotavirus. Lancet. 344:1046-1049.
Salminen, S., E. Isolauri and E. Salminen. 1996. Probiotics and stabilizartion of
the gut mucosal barrier. Asia Pacific J. Clin. Nutr. 5:53-56.
Scheinbach, S. 1998. Probiotics:Functionality and commercial status. Biotechnol. Adv. 16:581-608.
Shihata, T. and N. P. Shah. 2002. Influence of addition of proteolytic Lactobacillus delbrueckii ssp. Bulgaricus to commercial starter cultures on texture of yoghurt, exopolysaccharide production and survival of bacteria. Int. Dairy J. 12:765-772.
Southland, I. W. 1998. Novel and established application of microbial polysaccharide.Tibtech. 16:41-46.
St-Onge, M. P., E. R. Farnworth and P. J. H. Jones. 2000. Consumption of fermented and metabolism. Am. J. Clin. Nutr. 71:674-681.
Sutherland, I. W. 1998. Novel and established application of microbial polysaccharides. Tibtech. J. 16:41-46.
Tallon, R., P. Bressollier and M. C. Urdaci. 2003. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res. Microbial. 154:705-712.
Tanaka, R. and K. Shimosaka. 1982. Investigation of the stool frequency in elderly who are bedridden and its improvement by ingesting of bifidus yogurt. Jpn. Geriater. 19:577-582.
Torino, M. I., M. P. Tarnato, F. Sesma and F. de Valdez. 2001. Heterofermentative pattern and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in response to environmental pH. J. Appl. Microbiol. 91:846-852.
Tuinier, R., P. Zoon, C. Olieman, M. A. Cohen-Stuart, G. J. Fleer and C. G. de Kruif. 1999. Isolation and physical characterization of an exocellular polysaccharide. Biopolymers. 49:1-9.
Tuinier, R., W. H. M. Van Casteren, P. J. Looijesteijn, H. A. Schols, A. G. J. Voragen and P. Zoon. 2001. Effect of structural modifications on some physical characterization of exopolysaccharides from Lactococcus lactis. Biopolymers. 59:160-166.
Tzianabos, A. O. 2000. Polysaccharide immunomodulators as therapeutic agent:Structural aspects and biologic function. Clin. Microbiol. Res. 13:523-533.
Van den Berg, D. J. C., G. W. Robijn, A. C. Janssen, M. L. F. Giuseppin, R. Vreeker, J. P. Kamerling, J. F. G. Vliehenthart, A. M. Ledeboer and C. T. Verrips. 1995. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl. Environ. Microbiol. 61:2840-2844.
Vaningelgem, F., M. Zamfir, F. Mozzi, T. Adriany, M. Vancanney, J. Swings and L. De Vuyst. 2004. Biodiverstiy of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl. Environ. Microbiol. 70:900-912.
Vinderola, C. G. and J. A. Reinheimer. 1999. Culture media for the enumeration of Bifidobacterium bifidum and Lactobacillus acidophilus in the presence of yoghurt bacteria. Int. Dairy J. 9:497-505.
Welman, A. D. and L. S. Maddox. 2003. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 21:269-274.
Wheeler, J. G., M. L. Bogle, M. A. Shema, K. C. Stine, A. J. Pittler, A.W. Burks and R. M. Helm. 1997. Impact of dietary yogurt on immune fuction. Am. J. Med. Sci. 313:120-123.
Whitfield, C. 1988. Bacterial extracellular polysaccharides. Can. J. Microbiol. 34(4):415-420.
Yang, Z., M. Staaf, E. Huttunen, and G. Widmalm. 2000. Structure of a viscous exopolysaccharide produced by Lactobacillus helveticus k16. Carbohyder. Res. 329:465-469.
Zisu, B. and N. P. Shah. 2003. Effects of pH, temperature, supplementation with
whey protein concentrate, and adjunct cultures on the production of
exopolysaccharides by Streptococcus thermophilus 1275. J. Dairy Sci.
86:3405–3415.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9729-
dc.description.abstract乳酸菌胞外多醣 (exopolysaccharide,EPS) 係指乳酸菌分泌於細胞外之多醣。乳酸菌來源的胞外多醣具有多項優點,它屬於食品級安全物質,且可改善產品濃稠度與組織特性,然而乳酸菌之胞外多醣應用於商業上面臨到低產量的問題。本研究的目的為探討接種不同乳酸菌元及培養溫度對胞外多醣產量的影響,以期生產富含胞外多醣及益生菌的酸凝酪產品。分別取(A) 5%酸凝酪菌元 (Lactobacillus bulgaricus與Streptococcus thermophilus),(B) 5%酸凝酪菌元與5%黏質乳酸菌L. helveticus BCRC 14030,(C) 5%酸凝酪菌元與5%益生菌(L. acidophilus、Bifidobacterium bifidum與L. casei),(D) 5%酸凝酪菌元、5% L. helveticus BCRC14030、與5%益生菌與(E) 5%酸凝酪菌元及0.17%果膠,接種於含17%脫脂乳粉之還原乳後,於30、40與50oC,培養至 pH 4.6±0.1,攪拌均勻後製成濃稠酸凝酪,其後進行胞外多醣產量、黏絲性及單醣組成分析、酸凝酪之黏度、離水性、益生菌及L. helveticus BCRC 14030菌數的分析。
結果顯示以30和40 oC進行發酵顯著會有較佳的胞外多醣產量 (0.2~0.6 g/L) (P < 0.05)。然而四種不同菌種組合對胞外多醣產量沒有顯著差異 (P >0.05)。50℃
發酵的酸凝酪有嚴重的離水現象。此外發現使用酸凝酪菌元及黏質乳酸菌 L. helveticus BCRC 14030的組別,以30℃進行發酵培養,有最高 EPS 黏絲性 (96.0 cm)。使用 D 處理組菌元於30、40及50℃ 三種不同溫度下進行發酵培養,EPS黏絲性皆高於使用 A 處理組菌元。以30 oC 進行發酵,發現B處理組酸凝酪,其黏度雖沒有明顯高於 A 處理組 (P>0.05),但有顯著高於 E 處理組。於30、40與50℃下生產酸凝酪,C 與 D 組產品之益生菌數在貯藏15天後,菌數不會下降;B組產品在貯藏15天後之 L. helveticus BCRC 14030菌數會下降,D組之 L. helveticus BCRC 14030菌數則維持不變;以L. helveticus BCRC 14030進行發酵,所生成之EPS會有較高含量的鼠李糖;接種酸凝酪菌元,EPS單醣組成皆不含鼠李糖。官能品評部分,B、C及D產品的濃稠度皆優於商業產品;A、C 及D組產品與商業產品有較佳的總接受度。
綜合上述結論,接種5%酸凝酪菌元、5% L. helveticus BCRC 14030、5%益
生菌組,於30 oC發酵18小時能生產富含EPS、益生菌與 L. helveticus BCRC 14030、具較佳黏絲性以及最低離水現象之酸凝酪。
zh_TW
dc.description.abstractExopolysaccharides (EPS) of lactic acid bacteria are polysaccharides secreted extracellularly by lactic acid bacteria. Several advantages of producing exopolysaccharide by lactic acid bacteria include GRAS nature of the organisms and the enhanced consistency and texture of the products by EPS. However, low EPS yield limited the commercial use of lactic acid bacteria on EPS production. The objective of this study, therefore, was to investigate the effects of lactic acid bacteria and incubation temperature on EPS production for producing EPS and probiotic-rich yogurt. Each of the 4 culture strains including (A) 5% yogurt bacteria (Lactobacillus bulgaricus and Streptococcus thermophilus), (B) 5% yogurt bacteria and 5% ropy L. helveticus BCRC14030, (C) 5% yogurt bacteria and 5% probiotics (L. acidophilus , Bifidobacterium bifidum and L. casei), and (D) 5% yogurt bacteria, 5% ropy L. helveticus BCRC14030, and 5% probiotics was inoculated into a reconstituted milk containing 17% dried milk powder. After incubated at 30, 40, and 50oC until pH reaching 4.6±0.1, the fermented medium was homogenized to yield stirred yogurt. EPS yield, ropiness value, the composition of monosaccharide, viscosity of fermented medium, vible count, syneresis and sensory evaluation were analyzed.
The highest EPS yield of (0.20-0.60 g/L) was observed at 30 and 40 ℃. However, no significant difference in EPS production was found among four different culture strains. The syneresis of yogurt was severe at 50℃. Highest ropiness value of EPS (96 cm) was found in the yogurt inoculated with yogurt bacteria and L. helveticus BCRC14030 at 30oC. Treatment D was fermented under 30,40 and 50℃, and the results showed that treatment D had higher EPS ropiness value than treatment A Under 30℃ of fermentation, the viscosity of treatment B were not significantly higher than treatment A (P > 0.05), but was significantly higher than the treatment E.
Under 30℃,40 and 50℃ of fermentation, probiotic counts did not decrease in treatments C and D during 15 days of storage. However, the viable count of L.
helveticus BCRC 14030 decreased in treatment B. In addition, the viable counts of neither probiotics nor L. helveticus BCRC 14030 changed in treatment D during storage. In sensory evaluation, mouth thickness of treatments B,C and D were better than commercial yoghurt. Treatments A, C, D and commercial yoghurt had acceptable.
In conclusion, inoculation of yogurt bacteria, L. helveticus BCRC 14030 and probiotics with a reconstituted milk and incubated at 30℃ produced the highest EPS yield, ropiness value and probiotic counts, and lowest degree of syneresis, therefore, was suggested for EPS and probiotic-rich yogurt production.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:37:59Z (GMT). No. of bitstreams: 1
ntu-97-R95626017-1.pdf: 1575694 bytes, checksum: b00958909c75a6defb42ac613125a30d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要i
英文摘要iii
緒言v
壹、文獻檢討1
1.1 乳酸菌1
1.1.1 乳酸菌之定義1
1.1.2 乳酸菌之種類2
1.2 益生菌2
1.2.1 益生菌之定義2
1.2.2 益生菌之健康功效3
1.3 微生物來源之胞外多醣5
1.3.1 胞外多醣之分類、組成及分子量5
1.3.2 胞外多醣之生合成6
1.3.3 胞外多醣之生理活性11
1.4 胞外多醣於酸凝酪中之顯微構造15
1.5 胞外多醣對酸凝酪物理特性之影響18
1.6 影響乳酸菌胞外多醣產量之因素20
1.6.1 菌元20
1.6.2 物理因素20
1.6.3 化學因素23
1.7 乳酸菌胞外多醣之應用23
貳、 材料與方法24
2.1 實驗材料24
2.1.1 試驗菌元24
2.1.2 培養基24
2.1.3 藥品24
2.1.4 儀器與設備25
2.2 實驗方法27
2.2.1 乳酸菌元之活化27
2.2.2 酸凝酪之生產27
2.2.3 乳酸菌菌數之測定30
2.2.4 酸凝酪黏度之測定35
2.2.5 酸凝酪離水性之測定35
2.2.6 胞外多醣之分離與定量35
2.2.7 胞外多醣黏絲性之測定36
2.2.8 胞外多醣單糖組成之分析36
2.2.9 品評試驗37
2.2.10 統計分析方法38
參、 結果與討論39
3.1 乳酸菌菌數之測定39
3.2 酸凝酪黏度之測定43
3.3 酸凝酪離水性之測定46
3.4 胞外多醣產量之測定51
3.5 胞外多醣黏絲性之測定54
3.6 胞外多醣單醣組成之分析56
3.7 品評試驗58
肆、 結論60
伍、 參考文獻62
陸、 作者小傳74
dc.language.isozh-TW
dc.title富含胞外多醣及益生菌酸凝酪製品之研究zh_TW
dc.titleStudy on Exopolysaccharide and Probiotic-Rich Yogurt Productionen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor林棟雍
dc.contributor.oralexamcommittee黃加成,駱秋英,林美貞
dc.subject.keyword胞外多醣,益生菌,酸凝酪,乳酸菌,離水性,zh_TW
dc.subject.keywordexopolysaccharide,probiotic,yogurt,lactic acid bacteria,syneresis,en
dc.relation.page73
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf1.54 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved