請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97293完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | zh_TW |
| dc.contributor.advisor | Shang-Lien Lo | en |
| dc.contributor.author | 楊曜銘 | zh_TW |
| dc.contributor.author | Yao-Ming Yang | en |
| dc.date.accessioned | 2025-04-02T16:20:03Z | - |
| dc.date.available | 2025-04-03 | - |
| dc.date.copyright | 2025-04-02 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-01-10 | - |
| dc.identifier.citation | Azevedo, M., Campagnol, N., Hagenbruch, T., Hoffman, K., Lala, A., & Ramsbottom, O. (2018). Lithium and Cobalt. A Tale of Two Commodities.
Barik, S. P., Prabaharan, G., & Kumar, L. (2017). Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. Journal of Cleaner Production, 147, 37-43. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.01.095 Berckmans, G., Messagie, M., Smekens, J., Omar, N., Vanhaverbeke, L., & Van Mierlo, J. (2017). Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies, 10(9). Camargos, P. H., dos Santos, P. H. J., dos Santos, I. R., Ribeiro, G. S., & Caetano, R. E. (2022). Perspectives on Li-ion battery categories for electric vehicle applications: A review of state of the art [https://doi.org/10.1002/er.7993]. International Journal of Energy Research, 46(13), 19258-19268. https://doi.org/https://doi.org/10.1002/er.7993 Chen, W.-S., & Ho, H.-J. (2018). Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods. Metals, 8(5). Contestabile, M., Panero, S., & Scrosati, B. (2001). A laboratory-scale lithium-ion battery recycling process. Journal of Power Sources, 92(1), 65-69. https://doi.org/https://doi.org/10.1016/S0378-7753(00)00523-1 Cui, Y., Mahmoud, M. M., Rohde, M., Ziebert, C., & Seifert, H. J. (2016). Thermal and ionic conductivity studies of lithium aluminum germanium phosphate solid-state electrolyte. Solid State Ionics, 289, 125-132. https://doi.org/https://doi.org/10.1016/j.ssi.2016.03.007 Das, J., Kleiman, A., Rehman, A., Verma, R., & Young, M. (2024). The Cobalt Supply Chain and Environmental Life Cycle Impacts of Lithium-Ion Battery Energy Storage Systems. Sustainability 2024, 16, 1910. In. Djoudi, N., Le Page Mostefa, M., & Muhr, H. (2019). Precipitation of Cobalt Salts for Recovery in Leachates. Chemical Engineering & Technology, 42(7), 1492-1499. https://doi.org/https://doi.org/10.1002/ceat.201800696 Eilers-Rethwisch, M., Hildebrand, S., Evertz, M., Ibing, L., Dagger, T., Winter, M., & Schappacher, F. M. (2018). Comparative study of Sn-doped Li[Ni0.6Mn0.2Co0.2-xSnx]O2 cathode active materials (x = 0-0.5) for lithium ion batteries regarding electrochemical performance and structural stability. Journal of Power Sources, 397, 68-78. https://doi.org/https://doi.org/10.1016/j.jpowsour.2018.06.072 Ferreira, D. A., Prados, L. M. Z., Majuste, D., & Mansur, M. B. (2009). Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. Journal of Power Sources, 187(1), 238-246. https://doi.org/https://doi.org/10.1016/j.jpowsour.2008.10.077 Gaines, L., Zhang, J., He, X., Bouchard, J., & Melin, H. E. (2023). Tracking Flows of End-of-Life Battery Materials and Manufacturing Scrap. Batteries, 9(7). Gong, C., Xue, Z., Wen, S., Ye, Y., & Xie, X. (2016). Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. Journal of Power Sources, 318, 93-112. https://doi.org/https://doi.org/10.1016/j.jpowsour.2016.04.008 Gratz, E., Sa, Q., Apelian, D., & Wang, Y. (2014). A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources, 262, 255-262. https://doi.org/https://doi.org/10.1016/j.jpowsour.2014.03.126 Hanisch, C., Diekmann, J., Stieger, A., Haselrieder, W., & Kwade, A. (2015). Recycling of Lithium-Ion Batteries. In Handbook of Clean Energy Systems (pp. 1-24). https://doi.org/https://doi.org/10.1002/9781118991978.hces221 Hanisch, C., Loellhoeffel, T., Diekmann, J., Markley, K. J., Haselrieder, W., & Kwade, A. (2015). Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes. Journal of Cleaner Production, 108, 301-311. https://doi.org/https://doi.org/10.1016/j.jclepro.2015.08.026 Hannan, M. A., Hoque, M. M., Hussain, A., Yusof, Y., & Ker, P. J. (2018). State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access, 6, 19362-19378. https://doi.org/10.1109/ACCESS.2018.2817655 He, L.-P., Sun, S.-Y., Mu, Y.-Y., Song, X.-F., & Yu, J.-G. (2017). Recovery of Lithium, Nickel, Cobalt, and Manganese from Spent Lithium-Ion Batteries Using l-Tartaric Acid as a Leachant. ACS Sustainable Chemistry & Engineering, 5(1), 714-721. https://doi.org/10.1021/acssuschemeng.6b02056 He, L.-P., Sun, S.-Y., Song, X.-F., & Yu, J.-G. (2015). Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Management, 46, 523-528. He, L.-P., Sun, S.-Y., Song, X.-F., & Yu, J.-G. (2017). Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries. Waste Management, 64, 171-181. https://doi.org/https://doi.org/10.1016/j.wasman.2017.02.011 Höhne, N., Kuramochi, T., Warnecke, C., Röser, F., Fekete, H., Hagemann, M., Day, T., Tewari, R., Kurdziel, M., Sterl, S., & Gonzales, S. (2017). The Paris Agreement: resolving the inconsistency between global goals and national contributions. Climate Policy, 17(1), 16-32. https://doi.org/10.1080/14693062.2016.1218320 Huang, Q., Yang, J., Ng, C. B., Jia, C., & Wang, Q. (2016). A redox flow lithium battery based on the redox targeting reactions between LiFePO4 and iodide [10.1039/C5EE03764F]. Energy & Environmental Science, 9(3), 917-921. https://doi.org/10.1039/C5EE03764F Huang, X. (2011). Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry, 15(4), 649-662. https://doi.org/10.1007/s10008-010-1264-9 Kennedy, B., Patterson, D., & Camilleri, S. (2000). Use of lithium-ion batteries in electric vehicles. Journal of Power Sources, 90(2), 156-162. https://doi.org/https://doi.org/10.1016/S0378-7753(00)00402-X Li, L., Dunn, J. B., Zhang, X. X., Gaines, L., Chen, R. J., Wu, F., & Amine, K. (2013). Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. Journal of Power Sources, 233, 180-189. https://doi.org/https://doi.org/10.1016/j.jpowsour.2012.12.089 Li, L., Lu, J., Ren, Y., Zhang, X. X., Chen, R. J., Wu, F., & Amine, K. (2012). Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. Journal of Power Sources, 218, 21-27. Li, S., Xue, Y., Cui, X., Geng, S., & Huang, Y. (2016). Effect of sulfolane and lithium bis(oxalato)borate-based electrolytes on the performance of spinel LiMn2O4 cathodes at 55 °C. Ionics, 22(6), 797-801. https://doi.org/10.1007/s11581-015-1611-z Li, Z., Li, J., Zhao, Y., Yang, K., Gao, F., & Li, X. (2016). Influence of cooling mode on the electrochemical properties of Li4Ti5O12 anode materials for lithium-ion batteries. Ionics, 22(6), 789-795. https://doi.org/10.1007/s11581-015-1610-0 Liu, W., Wang, Y., Jia, X., & Xia, B. (2013). The Characterization of Lithium Titanate Microspheres Synthesized by a Hydrothermal Method. Journal of Chemistry, 2013, 497654. https://doi.org/10.1155/2013/497654 Manzetti, S., & Mariasiu, F. (2015). Electric vehicle battery technologies: From present state to future systems. Renewable and Sustainable Energy Reviews, 51, 1004-1012. https://doi.org/https://doi.org/10.1016/j.rser.2015.07.010 Mineral commodity summaries 2024. (2024). [Report](2024). (Mineral Commodity Summaries, Issue. U. S. G. Survey. https://pubs.usgs.gov/publication/mcs2024 Nan, J., Han, D., & Zuo, X. (2005). Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. Journal of Power Sources, 152, 278-284. Ordoñez, J., Gago, E. J., & Girard, A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195-205. https://doi.org/https://doi.org/10.1016/j.rser.2015.12.363 Rajammal, K., Sivakumar, D., Duraisamy, N., Ramesh, K., & Ramesh, S. (2016). Structural and electrochemical characterizations of LiMn1−xAl0.5xCu0.5xPO4 (x=0.0, 0.1, 0.2) cathode materials for lithium ion batteries. Materials Letters, 173, 131-135. https://doi.org/https://doi.org/10.1016/j.matlet.2016.03.046 Rouxel, J., Danot, M., & Bichon, M. (1971). Les composites intercalaires NaxTiS2. Etude gènérale des phases NaxTiS2 et KxTiS2. Bull. Soc. Chim, 11, 3930-3936. Santana, I. L., Moreira, T. F. M., Lelis, M. F. F., & Freitas, M. B. J. G. (2017). Photocatalytic properties of Co3O4/LiCoO2 recycled from spent lithium-ion batteries using citric acid as leaching agent. Materials Chemistry and Physics, 190, 38-44. https://doi.org/https://doi.org/10.1016/j.matchemphys.2017.01.003 Sun, M., Tang, H., & PAN, M. (2011). A review on the separators of power Li-ion batteries. Materials ReviewA, 25(5), 44-50. Takacova, Z., Orac, D., Klimko, J., & Miskufova, A. (2023). Current Trends in Spent Portable Lithium Battery Recycling. Materials, 16(12). Tarascon, J. M. (2016). The Li-Ion Battery: 25 Years of Exciting and Enriching Experiences. The Electrochemical Society Interface, 25(3), 79. https://doi.org/10.1149/2.F08163if Wang, M., Liu, K., Yu, J., Zhang, Q., Zhang, Y., Valix, M., & Tsang, D. C. W. (2023). Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal. Global Challenges, 7(3), 2200237. https://doi.org/https://doi.org/10.1002/gch2.202200237 Wang, T., Luo, H., Fan, J., Thapaliya, B. P., Bai, Y., Belharouak, I., & Dai, S. (2022). Flux upcycling of spent NMC 111 to nickel-rich NMC cathodes in reciprocal ternary molten salts. Iscience, 25(2). Weng, Y., Xu, S., Huang, G., & Jiang, C. (2013). Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1−xMgx]O2 prepared from spent lithium ion batteries. Journal of Hazardous Materials, 246-247, 163-172. https://doi.org/https://doi.org/10.1016/j.jhazmat.2012.12.028 Wu, H., & Cui, Y. (2012). Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 7(5), 414-429. https://doi.org/https://doi.org/10.1016/j.nantod.2012.08.004 Xiong, S., Ji, J., & Ma, X. (2020). Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Management, 102, 579-586. https://doi.org/https://doi.org/10.1016/j.wasman.2019.11.013 Yabuuchi, N., & Ohzuku, T. (2003). Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. Journal of Power Sources, 119-121, 171-174. https://doi.org/https://doi.org/10.1016/S0378-7753(03)00173-3 Yang, L., Xi, G., & Xi, Y. (2015). Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials. Ceramics international, 41(9), 11498-11503. Yang, Y., Huang, G., Xu, S., He, Y., & Liu, X. (2016). Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy, 165, 390-396. Zhang, T., He, Y., Wang, F., Ge, L., Zhu, X., & Li, H. (2014). Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques. Waste Management, 34(6), 1051-1058. Zhao, C., Yin, H., & Ma, C. (2016). Quantitative Evaluation of LiFePO$_4$ Battery Cycle Life Improvement Using Ultracapacitors. IEEE Transactions on Power Electronics, 31(6), 3989-3993. https://doi.org/10.1109/TPEL.2015.2503296 Zhou, X., He, W. z., Li, G. m., Zhang, X. j., Huang, J. w., & Zhu, S. g. (2010, 18-20 June 2010). Recycling of Electrode Materials from Spent Lithium-Ion Batteries. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Zou, H., Gratz, E., Apelian, D., & Wang, Y. (2013). A novel method to recycle mixed cathode materials for lithium ion batteries [10.1039/C3GC40182K]. Green Chemistry, 15(5), 1183-1191. https://doi.org/10.1039/C3GC40182K Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292-308. https://doi.org/https://doi.org/10.1016/j.rser.2018.03.002 IEA (2021), Net Zero by 2050, IEA, Paris https://www.iea.org/reports/net-zero-by-2050, License: CC BY 4.0 IEA (2024), Electricity 2024, IEA, Paris https://www.iea.org/reports/electricity-2024, Licence: CC BY 4.0 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97293 | - |
| dc.description.abstract | 隨著技術進步與對環境永續發展,鋰電池的應用日益廣泛,特別是在電動車和便攜式電子設備中。然而,鋰電池中含有大量貴重金屬,如鎳、鈷和錳,這些金屬開採及隨意棄置往往對環境造成重大影響。因此,研究有效的回收技術,從廢棄鋰電池中回收金屬,不僅對環境永續有重要意義,同時也具有循環經濟價值。
本研究主要探討不同前處理方法對於從18650 NMC型鋰電池中回收鎳、鈷和錳等金屬的效率影響。研究中比較三種不同的前處理技術:高溫熱裂解法、有機溶劑溶解法和氫氧化鈉溶解法,並且將三種前處理方法兩兩結合,進行兩階段前處理並分析。每種前處理的效果都通過後續的濕式冶金法來評估,以確定其對金屬萃取率的實際影響。 實驗結果顯示,高溫熱裂解法在所有前處理方法中對於鎳、鈷和錳的萃取效果最佳,鈷萃取率為69.43%;錳萃取率為98.27%;鎳萃取率為97.06%;鈀萃取率為97.45%。主要為高溫熱裂解法能夠有效去除電池中PVDF黏著劑及碳黑等雜質,從而使金屬顆粒暴露並易於後續處理。相比之下,有機溶劑溶解法在去除PDVF黏著劑,以及氫氧化鈉溶解法雖然在去除鋁箔方面表現良好,但對於金屬的萃取率較低。而兩階段前處理效果同樣不及高溫熱裂解法。 化學沉澱法對錳金屬形成氫氧化物沉澱有良好的效果,受到鈷、鎳共沉澱作用影響,無法有效將兩者完全分離。鈀金屬則無法使用化學沉澱法沉澱分離。 | zh_TW |
| dc.description.abstract | With technological advancements and the increasing emphasis on sustainable development, the application of lithium batteries had become increasingly widespread, especially in electric vehicles and portable electronic devices. However, lithium batteries contained a significant amount of valuable metals such as nickel, cobalt, and manganese, whose extraction and improper disposal often caused substantial environmental impact. Therefore, researching effective recycling technologies to recover metals from discarded lithium batteries was not only crucial for environmental sustainability but also had significant value for the circular economy.
This study primarily explored the efficiency of different pretreatment methods in recovering nickel, cobalt, and manganese from 18650 NMC-type lithium batteries. The research compared three different pretreatment techniques: traditional high-temperature pyrolysis, organic solvent dissolution, and sodium hydroxide dissolution, and combined these three pretreatment methods in pairs to perform two-stage pretreatment and analysis. The effectiveness of each pretreatment method was evaluated through subsequent hydrometallurgical processes to determine their actual impact on metal extraction rates. The experimental results showed that the traditional high-temperature pyrolysis method had the best recovery efficiency for nickel, cobalt, and manganese among all pretreatment methods, with cobalt recovery rate at 69.43%; manganese recovery rate at 98.27%; nickel recovery rate at 97.06%; and palladium recovery rate at 97.45%. This was mainly because the high-temperature pyrolysis method effectively removed PVDF binder and carbon black impurities in the battery, thereby exposing the metal particles and making them easier for subsequent processing. In contrast, although the organic solvent dissolution method effectively removed the PVDF binder, and the sodium hydroxide dissolution method performed well in removing aluminum foil, their metal extraction rates were relatively low. The two-stage pretreatment effects were also not as good as the traditional high-temperature pyrolysis method. The chemical precipitation method had a good effect on forming manganese hydroxide precipitate but was unable to effectively separate cobalt and nickel due to co-precipitation. Palladium could not be separated using the chemical precipitation method. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:20:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-04-02T16:20:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目次 v 圖次 vii 表次 ix 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 2 1.3 研究內容 2 第二章 文獻回顧 3 2.1 鋰電池的種類與發展 3 2.2 鋰電池 5 2.3 18650 NMC鋰電池回收 12 第三章 實驗材料與方法 15 3.1 實驗架構 15 3.2 實驗方法 16 3.3 實驗材料及藥品 19 3.4 實驗設備與耗材 20 3.5 實驗儀器 21 第四章 結果與討論 27 4.1 鋰電池的基本性質 27 4.1.1 18650 NMC鋰電池之金屬含量分析 29 4.1.2 18650 NMC鋰電池之熱重分析 31 4.2 前處理 32 4.2.1 高溫熱裂解法 32 4.2.2 氫氧化鈉溶解法 35 4.2.3 有機溶劑溶解法 38 4.2.4 各個前處理之比較 39 4.3 濕式冶金 41 4.3.1 高溫熱裂解 42 4.3.2 氫氧化鈉溶解法 42 4.3.3 有機溶劑溶解法 43 4.3.4 氫氧化鈉溶解法與高溫熱裂解法 45 4.3.5 有機溶劑溶解法與高溫熱裂解法 46 4.3.6 各個前處理濕式冶金之比較 47 4.4 金屬回收(化學沉澱) 48 4.4.1 鋁金屬的去除 49 4.4.2 錳金屬的第一階段回收 50 4.4.3 鎳金屬的回收 52 4.4.4 鈷金屬的回收 55 4.4.5 錳金屬的第二階段回收 57 4.4.6 小結 59 4.5 經濟分析 59 第五章 結論與建議 62 5.1 結論 62 5.2 建議 63 參考文獻 64 附錄 69 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 循環經濟 | zh_TW |
| dc.subject | 化學沉澱 | zh_TW |
| dc.subject | 前處理 | zh_TW |
| dc.subject | 金屬回收 | zh_TW |
| dc.subject | 濕式冶金 | zh_TW |
| dc.subject | 廢棄 NMC 鋰電池 | zh_TW |
| dc.subject | Discarded NMC lithium batteries | en |
| dc.subject | Hydrometallurgy | en |
| dc.subject | Metal recovery | en |
| dc.subject | Pretreatment | en |
| dc.subject | Chemical precipitation | en |
| dc.title | 比較不同前處理方式對鋰電池金屬回收之效果 | zh_TW |
| dc.title | Comparative Analysis of Different Pretreatment Methods on Metal Recovery from Lithium-ion Batteries | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡景堯;黃于峯 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Yao Hu;Yu-Fong Huang | en |
| dc.subject.keyword | 廢棄 NMC 鋰電池,循環經濟,濕式冶金,金屬回收,前處理,化學沉澱, | zh_TW |
| dc.subject.keyword | Discarded NMC lithium batteries,Hydrometallurgy,Metal recovery,Pretreatment,Chemical precipitation, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202404454 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-01-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2030-01-10 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-01-10 | 5.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
