Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97291
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor呂明璋zh_TW
dc.contributor.advisorMing-Chang Luen
dc.contributor.author吳睿紘zh_TW
dc.contributor.authorRuay-Hong Wuen
dc.date.accessioned2025-04-02T16:19:28Z-
dc.date.available2025-04-03-
dc.date.copyright2025-04-02-
dc.date.issued2025-
dc.date.submitted2025-03-10-
dc.identifier.citation1. Mehra, N., L. Mu, T. Ji, X. Yang, J. Kong, J. Gu, and J. Zhu, Thermal transport in polymeric materials and across composite interfaces. Applied Materials Today, 2018. 12: p. 92-130.
2. Wong, C., Polymers for electronic & photonic application. 2013: Elsevier.
3. LaDou, J., Printed circuit board industry. International journal of hygiene and environmental health, 2006. 209(3): p. 211-219.
4. Burg, D. and J.H. Ausubel, Moore’s Law revisited through Intel chip density. PloS one, 2021. 16(8): p. e0256245.
5. Salvi, S.S. and A. Jain, A review of recent research on heat transfer in three-dimensional integrated circuits (3-D ICs). IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021. 11(5): p. 802-821.
6. Lee, H., Y. Jeong, J. Shin, J. Baek, M. Kang, and K. Chun, Package embedded heat exchanger for stacked multi-chip module. Sensors and Actuators A: Physical, 2004. 114(2-3): p. 204-211.
7. Feng, J., M. Zhou, C. Chen, Q. Wang, and L. Cao, Thermal Interaction and Cooling of Electronic Device with Chiplet 2.5 D Integration. Applied Sciences, 2024. 14(18): p. 8114.
8. Hussain, A.R.J., A.A. Alahyari, S.A. Eastman, C. Thibaud-Erkey, S. Johnston, and M.J. Sobkowicz, Review of polymers for heat exchanger applications: Factors concerning thermal conductivity. Applied Thermal Engineering, 2017. 113: p. 1118-1127.
9. Siddiqui, S., S. Surananai, K. Sainath, M.Z. Khan, R.R.P. Kuppusamy, and Y.K. Suneetha, Emerging trends in the development and application of 3D printed nanocomposite polymers for sustainable environmental solutions. European Polymer Journal, 2023: p. 112298.
10. Ronca, S., T. Igarashi, G. Forte, and S. Rastogi, Metallic-like thermal conductivity in a lightweight insulator: solid-state processed ultra high molecular weight polyethylene tapes and films. Polymer, 2017. 123: p. 203-210.
11. Choy, C., Y. Wong, G. Yang, and T. Kanamoto, Elastic modulus and thermal conductivity of ultradrawn polyethylene. Journal of Polymer Science Part B: Polymer Physics, 1999. 37(23): p. 3359-3367.
12. Shen, S., A. Henry, J. Tong, R. Zheng, and G. Chen, Polyethylene nanofibres with very high thermal conductivities. Nature nanotechnology, 2010. 5(4): p. 251-255.
13. Huang, Z.-M., Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 2003. 63(15): p. 2223-2253.
14. Anstey, A., E. Chang, E.S. Kim, A. Rizvi, A.R. Kakroodi, C.B. Park, and P.C. Lee, Nanofibrillated polymer systems: Design, application, and current state of the art. Progress in Polymer Science, 2021. 113: p. 101346.
15. Subbiah, T., G.S. Bhat, R.W. Tock, S. Parameswaran, and S.S. Ramkumar, Electrospinning of nanofibers. Journal of applied polymer science, 2005. 96(2): p. 557-569.
16. Canetta, C., S. Guo, and A. Narayanaswamy, Measuring thermal conductivity of polystyrene nanowires using the dual-cantilever technique. Review of Scientific Instruments, 2014. 85(10).
17. Choy, C. and D. Greig, The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate. Journal of Physics C: Solid State Physics, 1975. 8(19): p. 3121.
18. Zhong, Z., M.C. Wingert, J. Strzalka, H.-H. Wang, T. Sun, J. Wang, R. Chen, and Z. Jiang, Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers. Nanoscale, 2014. 6(14): p. 8283-8291.
19. Singh, V., T.L. Bougher, A. Weathers, Y. Cai, K. Bi, M.T. Pettes, S.A. McMenamin, W. Lv, D.P. Resler, and T.R. Gattuso, High thermal conductivity of chain-oriented amorphous polythiophene. Nature nanotechnology, 2014. 9(5): p. 384-390.
20. Zhu, B., J. Liu, T. Wang, M. Han, S. Valloppilly, S. Xu, and X. Wang, Novel polyethylene fibers of very high thermal conductivity enabled by amorphous restructuring. ACS omega, 2017. 2(7): p. 3931-3944.
21. 陳泳至, 聚己內酯及聚己內酯與尼龍六混合奈米纖維之熱傳導率. 國立臺灣大學機械工程學系學位論文, 2022. 2022: p. 1-51.
22. Zhang, Y., X. Zhang, L. Yang, Q. Zhang, M.L. Fitzgerald, A. Ueda, Y. Chen, R. Mu, D. Li, and L.M. Bellan, Thermal transport in electrospun vinyl polymer nanofibers: effects of molecular weight and side groups. Soft matter, 2018. 14(47): p. 9534-9541.
23. Chien, H.-C., W.-T. Peng, T.-H. Chiu, P.-H. Wu, Y.-J. Liu, C.-W. Tu, C.-L. Wang, and M.-C. Lu, Heat transfer of semicrystalline nylon nanofibers. ACS nano, 2020. 14(3): p. 2939-2946.
24. Lu, C., S.W. Chiang, H. Du, J. Li, L. Gan, X. Zhang, X. Chu, Y. Yao, B. Li, and F. Kang, Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer, 2017. 115: p. 52-59.
25. Song, Z., S.W. Chiang, X. Chu, H. Du, J. Li, L. Gan, C. Xu, Y. Yao, Y. He, and B. Li, Effects of solvent on structures and properties of electrospun poly (ethylene oxide) nanofibers. Journal of Applied Polymer Science, 2018. 135(5): p. 45787.
26. Se, K., K. Adachi, and T. Kotaka, Dielectric relaxations in poly (ethylene oxide): dependence on molecular weight. Polymer Journal, 1981. 13(11): p. 1009-1017.
27. Shi, L., D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat transfer, 2003. 125(5): p. 881-888.
28. Wingert, M.C., Z.C. Chen, S. Kwon, J. Xiang, and R. Chen, Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge. Review of Scientific Instruments, 2012. 83(2).
29. Prasher, R., Predicting the thermal resistance of nanosized constrictions. Nano letters, 2005. 5(11): p. 2155-2159.
30. Xue, J., T. Wu, Y. Dai, and Y. Xia, Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews, 2019. 119(8): p. 5298-5415.
31. Kriegel, C., K. Kit, D. McClements, and J. Weiss, Influence of surfactant type and concentration on electrospinning of chitosan–poly (ethylene oxide) blend nanofibers. Food Biophysics, 2009. 4: p. 213-228.
32. Baheti, S. and M. Tunak. Characterization of fiber diameter using image analysis. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing.
33. Otsu, N., A threshold selection method from gray-level histograms. Automatica, 1975. 11(285-296): p. 23-27.
34. Pourdeyhimi, B. and R. Dent, Measuring fiber diameter distribution in nonwovens. Textile Research Journal, 1999. 69(4): p. 233-236.
35. Perepelitsa, D.V., Johnson noise and shot noise. Dept. of Physics, MIT, 2006.
36. Yang, S., Z. Liu, Y. Jiao, Y. Liu, and W. Luo, Study on the compatibility and crystalline morphology of NBR/PEO binary blends. Journal of Materials Science, 2013. 48: p. 6811-6817.
37. Wang, Y.J., Y. Pan, L. Wang, M.J. Pang, and L. Chen, Characterization of (PEO) LiClO4‐Li1. 3Al0. 3Ti1. 7 (PO4) 3 composite polymer electrolytes with different molecular weights of PEO. Journal of applied polymer science, 2006. 102(5): p. 4269-4275.
38. Bellan, L.M. and H.G. Craighead, Molecular orientation in individual electrospun nanofibers measured via polarized Raman spectroscopy. Polymer, 2008. 49(13-14): p. 3125-3129.
39. Ding, Y., J.F. Rabolt, Y. Chen, K.L. Olson, and G.L. Baker, Studies of chain conformation in triblock oligomers and microblock copolymers of ethylene and ethylene oxide. Macromolecules, 2002. 35(10): p. 3914-3920.
40. Laramée, A.W., C. Lanthier, and C. Pellerin, Electrospinning of highly crystalline polymers for strongly oriented fibers. ACS Applied Polymer Materials, 2020. 2(11): p. 5025-5032.
41. Kakade, M.V., S. Givens, K. Gardner, K.H. Lee, D.B. Chase, and J.F. Rabolt, Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. Journal of the American Chemical Society, 2007. 129(10): p. 2777-2782.
42. Enriquez, E.P. and S. Granick, Chain flattening and infrared dichroism of adsorbed poly (ethylene oxide). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996. 113(1-2): p. 11-17.
43. Lefèvre, T., M.-E. Rousseau, and M. Pézolet, Determination of molecular orientation in protein films and fibers by Raman microspectroscopy. Can. J. Anal. Sci. Spectrosc, 2004. 50: p. 41-48.
44. Lindberg, V., Uncertainties and error propagation. Manual on Uncertainties, Graphing and the Vernier Caliper, Part I. Rochester Institute of Technology, New York, USA.(http://www. rit. edu/uphysics/uncertinities/Uncertinitiespart2. html# addsub), 2000.
45. Cahill, D.G. and R.O. Pohl, Thermal conductivity of amorphous solids above the plateau. Physical review B, 1987. 35(8): p. 4067.
46. Tao, D., Y. Higaki, W. Ma, H. Wu, T. Shinohara, T. Yano, and A. Takahara, Chain orientation in poly (glycolic acid)/halloysite nanotube hybrid electrospun fibers. Polymer, 2015. 60: p. 284-291.
47. Burba, C.M., R. Frech, and B. Grady, Stretched PEO–LiCF3SO3 films: Polarized IR spectroscopy and X-ray diffraction. Electrochimica acta, 2007. 53(4): p. 1548-1555.
48. Wang, Y., M. Li, J. Rong, G. Nie, J. Qiao, H. Wang, D. Wu, Z. Su, Z. Niu, and Y. Huang, Enhanced orientation of PEO polymer chains induced by nanoclays in electrospun PEO/clay composite nanofibers. Colloid and Polymer Science, 2013. 291: p. 1541-1546.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97291-
dc.description.abstract高分子聚合物在材料分類中,通常屬於熱的不良導體,但因其本身具備可饒性、不導電、重量輕盈等特性,若能增強其熱傳性能,將會為電子散熱元件增添新的解熱方案。根據文獻指出,藉由調配不同濃度的半結晶高分子聚環氧乙烯(Polyethylene Oxide, PEO)溶液與使用靜電紡絲(Electrospinning)系統製備出PEO奈米纖維薄膜,再將不同濃度的PEO奈米纖維薄膜在常溫下進行熱傳導率量測,發現低濃度的PEO奈米纖維薄膜擁有最高的熱傳導率,原因在於低濃度的PEO奈米纖維薄膜檢測出最高的順向性(Orientation),間接說明在非結晶區域(Amorphous region)中,PEO奈米纖維排列方向趨於一致,更有效傳遞能量,使得熱傳率與順向性呈現相依關係,但此機制是藉由量測PEO奈米纖維薄膜之熱傳導率,所總結出順向性作為熱傳導率增強的因素,而對於單根PEO奈米纖維是否會因線徑、順向性等因素影響其熱傳導率,目前仍處於未知數,因此本研究將探討線徑和順向性對單根PEO奈米纖維的熱傳導率之關係,藉由靜電紡絲與調配不同濃度的PEO溶液,製備出不同線徑和不同順向性的PEO奈米纖維,後續透過微機電製程,製備懸浮微元件以量測PEO奈米纖維的熱傳導率。從環境溫度對熱傳導率的關係中,發現在常溫300K下,隨著線徑越小,其熱傳導率有所增加;接著探討順向性對熱傳導率之關係,在常溫300K下,隨著順向性增加,其熱傳導率也跟著增加。zh_TW
dc.description.abstractIn material classification, polymer materials are generally considered thermal insulators. However, due to their inherent properties of flexibility, electrical insulation, and light weight, enhancing their thermal conductivity could provide new solutions for thermal management in electronic cooling components. According to the literature of Lu et.al, polyethylene oxide (PEO) is one kind of semicrystalline polymers. PEO nanofiber films were fabricated by preparing PEO solutions with different concentrations of solute and using an electrospinning system. The thermal conductivity of these films was measured at room temperature, revealing that low-concentration PEO nanofiber membranes exhibited the highest thermal conductivity. This is attributed to the highest orientation observed in low-concentration PEO nanofiber membranes, which indirectly suggests that in the amorphous region, the alignment of PEO nanofibers becomes more uniform, enabling more efficient energy transfer. This indicates a correlation between thermal conductivity and orientation. However, this mechanism was deduced from measurements of the thermal conductivity of PEO nanofiber membranes, leaving the effects of factors such as fiber diameter and orientation on the thermal conductivity of individual PEO nanofibers unknown. Therefore, this study aims to explore the relationship between fiber diameter, orientation, and the thermal conductivity of single PEO nanofibers. By using electrospinning and preparing PEO solutions with varying concentrations of solute, PEO nanofibers with different diameters and orientations were fabricated. Subsequently, their thermal conductivity was measured using suspended microdevices fabricated via MEMS technology. Finally, The relationship between ambient temperature and thermal conductivity revealed that at room temperature (300 K), smaller fiber diameters corresponded to higher thermal conductivity, showing an inverse trend. Additionally, the relationship between orientation and thermal conductivity showed a positive correlation, with thermal conductivity increasing alongside improved orientation at 300 K.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:19:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-04-02T16:19:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 vii
表次 xiii
英文符號說明 xiv
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究目的與論文編排 5
第2章 熱傳導率量測原理與奈米纖維製備方法 10
2.1 量測原理 10
2.2 懸浮式微元件的製作方法 14
2.3 高分子聚合物奈米纖維的製備方式 15
2.4 熱傳導率量測系統架設與量測流程 17
2.5 實驗量測系統的靈敏度與量測誤差 18
第3章 實驗結果呈現與討論 49
3.1 結晶度 49
3.2 分子鏈順向性 50
3.3 PEO樣本參數的相互關係 53
3.4 熱傳導率量測系統驗證 54
3.5 環境溫度對熱傳導率的量測結果 54
3.6 常溫300K下,PEO樣本參數對熱傳導率的影響 56
3.7 退火時間對熱傳導率之量測結果 57
第4章 結論與未來工作事項 117
4.1 結論 117
4.2 未來工作事項 119
參考文獻 120
-
dc.language.isozh_TW-
dc.subject靜電紡絲zh_TW
dc.subject奈米纖維zh_TW
dc.subject順向性zh_TW
dc.subject熱傳導率zh_TW
dc.subject聚環氧乙烯zh_TW
dc.subject線徑zh_TW
dc.subjectThermal conductivityen
dc.subjectPolyethylene oxideen
dc.subjectElectrospinningen
dc.subjectNanofibersen
dc.subjectDiameteren
dc.subjectOrientationen
dc.title聚合物纖維線徑與順向性對單根聚環氧乙烯奈米纖維之熱傳導率影響zh_TW
dc.titleEffects of Fiber Diameter and Chain Orientation on the Thermal Conductivity of Single Polyethylene Oxide Nanofiberen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王建隆;莊偉綜zh_TW
dc.contributor.oralexamcommitteeChien-Lung Wang;Wei-Tsung Chuangen
dc.subject.keyword聚環氧乙烯,靜電紡絲,奈米纖維,線徑,順向性,熱傳導率,zh_TW
dc.subject.keywordPolyethylene oxide,Electrospinning,Nanofibers,Diameter,Orientation,Thermal conductivity,en
dc.relation.page125-
dc.identifier.doi10.6342/NTU202500762-
dc.rights.note未授權-
dc.date.accepted2025-03-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
9.61 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved