Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97290Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 廖英志 | zh_TW |
| dc.contributor.advisor | Ying-Chih Liao | en |
| dc.contributor.author | 葉佾叡 | zh_TW |
| dc.contributor.author | Yi-Jui Yeh | en |
| dc.date.accessioned | 2025-04-02T16:19:11Z | - |
| dc.date.available | 2025-04-03 | - |
| dc.date.copyright | 2025-04-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-21 | - |
| dc.identifier.citation | [1] A.W. Mohammad, Y. Teow, W. Ang, Y. Chung, D. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination 356 (2015) 226-254.
[2] R.W. Baker, Membrane technology and applications, John Wiley & Sons2012. [3] M.A. Abdel-Fatah, Nanofiltration systems and applications in wastewater treatment, Ain Shams Engineering Journal 9(4) (2018) 3077-3092. [4] G. Sołowski, M.S. Shalaby, H. Abdallah, A.M. Shaban, A. Cenian, Production of hydrogen from biomass and its separation using membrane technology, Renewable and Sustainable Energy Reviews 82 (2018) 3152-3167. [5] N. Akther, S. Phuntsho, Y. Chen, N. Ghaffour, H.K. Shon, Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes, Journal of Membrane Science 584 (2019) 20-45. [6] M. Vojdani, R. Giti, Polyamide as a denture base material: A literature review, Journal of Dentistry 16(1 Suppl) (2015) 1. [7] Y. Kinoshita, An investigation of the structures of polyamide series, Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 33(1) (1959) 1-20. [8] R. Dai, J. Li, Z. Wang, Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review, Advances in Colloid and Interface Science 282 (2020) 102204. [9] S. Bano, A. Mahmood, S.-J. Kim, K.-H. Lee, Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties, Journal of Materials Chemistry A 3(5) (2015) 2065-2071. [10] X. Song, L. Wang, C.Y. Tang, Z. Wang, C. Gao, Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process, Desalination 369 (2015) 1-9. [11] X. Wei, S. Cao, J. Hu, Y. Chen, R. Yang, J. Huang, Z. Wang, Q. Zhou, J. Chen, Graphene oxide/multi‐walled carbon nanotubes nanocompsite polyamide nanofiltration membrane for dyeing‐printing wastewater treatment, Polymers for Advanced Technologies 32(2) (2021) 690-702. [12] A. Heidari-Maleni, T.M. Gundoshmian, A. Jahanbakhshi, B. Ghobadian, Performance improvement and exhaust emissions reduction in diesel engine through the use of graphene quantum dot (GQD) nanoparticles and ethanol-biodiesel blends, Fuel 267 (2020) 117116. [13] K. Ghanbari, M. Roushani, A. Azadbakht, Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen, Analytical biochemistry 534 (2017) 64-69. [14] S. Krishna, I. Sreedhar, C.M. Patel, Molecular dynamics simulation of polyamide-based materials–A review, Computational Materials Science 200 (2021) 110853. [15] R.A. Latour, Perspectives on the simulation of protein–surface interactions using empirical force field methods, Colloids and Surfaces B: Biointerfaces 124 (2014) 25-37. [16] O. Büyüköztürk, M.J. Buehler, D. Lau, C. Tuakta, Structural solution using molecular dynamics: Fundamentals and a case study of epoxy-silica interface, International Journal of Solids and Structures 48(14-15) (2011) 2131-2140. [17] L.M. Robeson, The upper bound revisited, Journal of membrane science 320(1-2) (2008) 390-400. [18] A. Cai, X. Wang, Y. Qi, Z. Ma, Hierarchical ZnO/S, N: GQD composites: biotemplated synthesis and enhanced visible-light-driven photocatalytic activity, Applied Surface Science 391 (2017) 484-490. [19] Z. Wang, Z. Wang, S. Lin, H. Jin, S. Gao, Y. Zhu, J. Jin, Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination, Nature Communications 9(1) (2018) 2004. https://doi.org/10.1038/s41467-018-04467-3. [20] A. Akbari, P. Sheath, S.T. Martin, D.B. Shinde, M. Shaibani, P.C. Banerjee, R. Tkacz, D. Bhattacharyya, M. Majumder, Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide, Nature Communications 7(1) (2016) 10891. https://doi.org/10.1038/ncomms10891. [21] Z. Wang, X. Dong, S. Zhou, Z. Xie, Z. Zalevsky, Ultra-narrow-bandwidth graphene quantum dots for superresolved spectral and spatial sensing, NPG Asia Materials 13(1) (2021) 5. https://doi.org/10.1038/s41427-020-00269-6. [22] J. Radjenović, M. Petrović, F. Ventura, D. Barceló, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment, Water research 42(14) (2008) 3601-3610. [23] P. Sarkar, S. Modak, S. Karan, Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration, Advanced Functional Materials 31(3) (2021) 2007054. [24] Y. Liang, Y. Zhu, C. Liu, K.-R. Lee, W.-S. Hung, Z. Wang, Y. Li, M. Elimelech, J. Jin, S. Lin, Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation, Nature Communications 11(1) (2020) 2015. https://doi.org/10.1038/s41467-020-15771-2. [25] B. He, H. Peng, Y. Chen, Q. Zhao, High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid, Journal of Membrane Science 608 (2020) 118202. [26] Z. Wang, C. Ma, C. Xu, S.A. Sinquefield, M.L. Shofner, S. Nair, Graphene oxide nanofiltration membranes for desalination under realistic conditions, Nature Sustainability 4(5) (2021) 402-408. [27] T. Huang, B.A. Moosa, P. Hoang, J. Liu, S. Chisca, G. Zhang, M. AlYami, N.M. Khashab, S.P. Nunes, Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration, Nature Communications 11(1) (2020) 5882. https://doi.org/10.1038/s41467-020-19404-6. [28] N.G. Domenech, F. Purcell-Milton, Y.K. Gun’ko, Recent progress and future prospects in development of advanced materials for nanofiltration, Materials Today Communications 23 (2020) 100888. [29] K.H. Thebo, X. Qian, Q. Zhang, L. Chen, H.-M. Cheng, W. Ren, Highly stable graphene-oxide-based membranes with superior permeability, Nature Communications 9(1) (2018) 1486. https://doi.org/10.1038/s41467-018-03919-0. [30] Q. Yang, Y. Su, C. Chi, C.T. Cherian, K. Huang, V.G. Kravets, F.C. Wang, J.C. Zhang, A. Pratt, A.N. Grigorenko, F. Guinea, A.K. Geim, R.R. Nair, Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation, Nature Materials 16(12) (2017) 1198-1202. https://doi.org/10.1038/nmat5025. [31] R.H. Tunuguntla, A. Escalada, V. A Frolov, A. Noy, Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins, Nature Protocols 11(10) (2016) 2029-2047. https://doi.org/10.1038/nprot.2016.119. [32] M. Barrejón, M. Prato, Carbon Nanotube Membranes in Water Treatment Applications, Advanced Materials Interfaces (2022) 2101260. [33] R. Bi, Q. Zhang, R. Zhang, Y. Su, Z. Jiang, Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property, Journal of Membrane Science 553 (2018) 17-24. [34] S.-M. Xue, Z.-L. Xu, Y.-J. Tang, C.-H. Ji, Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs), ACS applied materials & interfaces 8(29) (2016) 19135-19144. [35] M.E. Ali, L. Wang, X. Wang, X. Feng, Thin film composite membranes embedded with graphene oxide for water desalination, Desalination 386 (2016) 67-76. [36] P. Tian, L. Tang, K. Teng, S. Lau, Graphene quantum dots from chemistry to applications, Materials today chemistry 10 (2018) 221-258. [37] M.-J. Choi, F.P. García de Arquer, A.H. Proppe, A. Seifitokaldani, J. Choi, J. Kim, S.-W. Baek, M. Liu, B. Sun, M. Biondi, B. Scheffel, G. Walters, D.-H. Nam, J.W. Jo, O. Ouellette, O. Voznyy, S. Hoogland, S.O. Kelley, Y.S. Jung, E.H. Sargent, Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics, Nature Communications 11(1) (2020) 103. https://doi.org/10.1038/s41467-019-13437-2. [38] Y. Li, S. Li, K. Zhang, Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes, Journal of membrane science 537 (2017) 42-53. [39] X. Li, M. Rui, J. Song, Z. Shen, H. Zeng, Carbon and graphene quantum dots for optoelectronic and energy devices: a review, Advanced Functional Materials 25(31) (2015) 4929-4947. [40] S. Chung, R.A. Revia, M. Zhang, Graphene quantum dots and their applications in bioimaging, biosensing, and therapy, Advanced Materials 33(22) (2021) 1904362. [41] G.A. Hutton, B.C. Martindale, E. Reisner, Carbon dots as photosensitisers for solar-driven catalysis, Chemical Society Reviews 46(20) (2017) 6111-6123. [42] O. Bubnova, A decade of R2R graphene manufacturing, Nature Nanotechnology 16(10) (2021) 1050-1050. https://doi.org/10.1038/s41565-021-00990-5. [43] S.H. Choi, S.J. Yun, Y.S. Won, C.S. Oh, S.M. Kim, K.K. Kim, Y.H. Lee, Large-scale synthesis of graphene and other 2D materials towards industrialization, Nature Communications 13(1) (2022) 1484. https://doi.org/10.1038/s41467-022-29182-y. [44] Y. Liu, C. Zhao, A. Sabirsh, L. Ye, X. Wu, H. Lu, J. Liu, A Novel Graphene Quantum Dot‐Based mRNA Delivery Platform, ChemistryOpen 10(7) (2021) 666-671. [45] W.H. Chiang, D. Mariotti, R.M. Sankaran, J.G. Eden, K. Ostrikov, Microplasmas for advanced materials and devices, Advanced Materials 32(18) (2020) 1905508. [46] D. Kurniawan, R.-C. Jhang, K.K. Ostrikov, W.-H. Chiang, Microplasma-tunable graphene quantum dots for ultrasensitive and selective detection of cancer and neurotransmitter biomarkers, ACS Applied Materials & Interfaces 13(29) (2021) 34572-34583. [47] D. Kurniawan, W.-H. Chiang, Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors, Carbon 167 (2020) 675-684. [48] G.-Y. Chai, W.B. Krantz, Formation and characterization of polyamide membranes via interfacial polymerization, Journal of Membrane Science 93(2) (1994) 175-192. [49] V. Freger, Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization, Langmuir 19(11) (2003) 4791-4797. [50] M.F. Jimenez-Solomon, Q. Song, K.E. Jelfs, M. Munoz-Ibanez, A.G. Livingston, Polymer nanofilms with enhanced microporosity by interfacial polymerization, Nature materials 15(7) (2016) 760-767. [51] C. Zhang, K. Wei, W. Zhang, Y. Bai, Y. Sun, J. Gu, Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration, ACS applied materials & interfaces 9(12) (2017) 11082-11094. [52] B. Yuan, S. Zhao, P. Hu, J. Cui, Q.J. Niu, Asymmetric polyamide nanofilms with highly ordered nanovoids for water purification, Nature Communications 11(1) (2020) 6102. https://doi.org/10.1038/s41467-020-19809-3. [53] D. Kurniawan, B.A. Anjali, O. Setiawan, K.K. Ostrikov, Y.G. Chung, W.-H. Chiang, Microplasma Band Structure Engineering in Graphene Quantum Dots for Sensitive and Wide-Range pH Sensing, ACS Applied Materials & Interfaces 14(1) (2021) 1670-1683. [54] D. Kurniawan, R.-J. Weng, O. Setiawan, K.K. Ostrikov, W.-H. Chiang, Microplasma nanoengineering of emission-tuneable colloidal nitrogen-doped graphene quantum dots as smart environmental-responsive nanosensors and nanothermometers, Carbon 185 (2021) 501-513. [55] T.-F. Yeh, W.-L. Huang, C.-J. Chung, I.-T. Chiang, L.-C. Chen, H.-Y. Chang, W.-C. Su, C. Cheng, S.-J. Chen, H. Teng, Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence, The journal of physical chemistry letters 7(11) (2016) 2087-2092. [56] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y.K. Gun'Ko, High-yield production of graphene by liquid-phase exfoliation of graphite, Nature nanotechnology 3(9) (2008) 563-568. [57] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Advanced materials 22(35) (2010) 3906-3924. [58] R. Bi, R. Zhang, J. Shen, Y.-n. Liu, M. He, X. You, Y. Su, Z. Jiang, Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation, Journal of membrane science 572 (2019) 504-511. [59] P.N. Stockmann, D. Van Opdenbosch, A. Poethig, D.L. Pastoetter, M. Hoehenberger, S. Lessig, J. Raab, M. Woelbing, C. Falcke, M. Winnacker, C. Zollfrank, H. Strittmatter, V. Sieber, Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis, Nature Communications 11(1) (2020) 509. https://doi.org/10.1038/s41467-020-14361-6. [60] D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, C.-S. Ha, Advanced polyimide materials: Syntheses, physical properties and applications, Progress in Polymer Science 37(7) (2012) 907-974. [61] I. Gouzman, E. Grossman, R. Verker, N. Atar, A. Bolker, N. Eliaz, Advances in polyimide‐based materials for space applications, Advanced Materials 31(18) (2019) 1807738. [62] S. Han, Z. Wang, S. Cong, J. Zhu, X. Zhang, Y. Zhang, Root-like polyamide membranes with fast water transport for high-performance nanofiltration, Journal of Materials Chemistry A 8(47) (2020) 25028-25034. [63] Y. Li, X. You, Y. Li, J. Yuan, J. Shen, R. Zhang, H. Wu, Y. Su, Z. Jiang, Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration, Journal of Materials Chemistry A 8(45) (2020) 23930-23938. [64] J.C. Worch, A.C. Weems, J. Yu, M.C. Arno, T.R. Wilks, R.T. Huckstepp, R.K. O’Reilly, M.L. Becker, A.P. Dove, Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory, Nature communications 11(1) (2020) 1-11. [65] L. Song, T. Zhu, L. Yuan, J. Zhou, Y. Zhang, Z. Wang, C. Tang, Ultra-strong long-chain polyamide elastomers with programmable supramolecular interactions and oriented crystalline microstructures, Nature communications 10(1) (2019) 1-8. [66] L. Shen, R. Cheng, M. Yi, W.-S. Hung, S. Japip, L. Tian, X. Zhang, S. Jiang, S. Li, Y. Wang, Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving, Nature Communications 13(1) (2022) 1-11. [67] A.F. Carvalho, B. Kulyk, A.J. Fernandes, E. Fortunato, F.M. Costa, A review on the applications of graphene in mechanical transduction, Advanced Materials 34(8) (2022) 2101326. [68] P. Cataldi, A. Athanassiou, I.S. Bayer, Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications, Applied Sciences 8(9) (2018) 1438. [69] J.C. Worch, A.C. Weems, J. Yu, M.C. Arno, T.R. Wilks, R.T.R. Huckstepp, R.K. O’Reilly, M.L. Becker, A.P. Dove, Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory, Nature Communications 11(1) (2020) 3250. https://doi.org/10.1038/s41467-020-16945-8. [70] F. Foglia, B. Frick, M. Nania, A.G. Livingston, J.T. Cabral, Multimodal confined water dynamics in reverse osmosis polyamide membranes, Nature Communications 13(1) (2022) 2809. https://doi.org/10.1038/s41467-022-30555-6. [71] S. Karan, Z. Jiang, A.G. Livingston, Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science 348(6241) (2015) 1347-1351. [72] V. Ruiz, L. Yate, I. García, G. Cabanero, H.-J. Grande, Tuning the antioxidant activity of graphene quantum dots: Protective nanomaterials against dye decoloration, Carbon 116 (2017) 366-374. [73] V. Ruiz, A. Pérez-Marquez, J. Maudes, H.-J. Grande, N. Murillo, Enhanced photostability and sensing performance of graphene quantum dots encapsulated in electrospun polyacrylonitrile nanofibrous filtering membranes, Sensors and Actuators B: Chemical 262 (2018) 902-912. [74] C. Fan, Q. Peng, H. Wu, B. Shi, X. Wang, C. Ye, Y. Kong, Z. Yin, Y. Liu, Z. Jiang, A quantum dot intercalated robust covalent organic framework membrane for ultrafast proton conduction, Journal of Materials Chemistry A 10(12) (2022) 6616-6622. [75] A. Pandya, K. Shah, H. Prajapati, G.S. Vishwakarma, GQD embedded bacterial cellulose nanopaper based multi-layered filtration membranes assembly for industrial dye and heavy metal removal in wastewater, Cellulose 28(16) (2021) 10385-10398. [76] W. Zhang, H. Xu, F. Xie, X. Ma, B. Niu, M. Chen, H. Zhang, Y. Zhang, D. Long, General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane, Nature Communications 13(1) (2022) 471. https://doi.org/10.1038/s41467-022-28180-4. [77] L. Wang, N. Wang, J. Li, J. Li, W. Bian, S. Ji, Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance, Separation and Purification Technology 160 (2016) 123-131. [78] W.-H. Zhang, M.-J. Yin, Q. Zhao, C.-G. Jin, N. Wang, S. Ji, C.L. Ritt, M. Elimelech, Q.-F. An, Graphene oxide membranes with stable porous structure for ultrafast water transport, Nature Nanotechnology 16(3) (2021) 337-343. [79] L. Chen, W. Wang, Q. Fang, K. Zuo, G. Hou, Q. Ai, Q. Li, L. Ci, J. Lou, High performance hierarchically nanostructured graphene oxide/covalent organic framework hybrid membranes for stable organic solvent nanofiltration, Applied Materials Today 20 (2020) 100791. [80] N. Mehrabi, H. Lin, N. Aich, Deep eutectic solvent functionalized graphene oxide nanofiltration membranes with superior water permeance and dye desalination performance, Chemical Engineering Journal 412 (2021) 128577. [81] A. Suriani, A. Mohamed, M. Othman, R. Rohani, I. Yusoff, M. Mamat, N. Hashim, M. Azlan, M. Ahmad, P. Marwoto, Incorporation of electrochemically exfoliated graphene oxide and TiO2 into polyvinylidene fluoride-based nanofiltration membrane for dye rejection, Water, Air, & Soil Pollution 230(8) (2019) 1-13. [82] M. Amini, M. Arami, N.M. Mahmoodi, A. Akbari, Dye removal from colored textile wastewater using acrylic grafted nanomembrane, Desalination 267(1) (2011) 107-113. [83] P.S. Zhong, N. Widjojo, T.-S. Chung, M. Weber, C. Maletzko, Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater, Journal of Membrane Science 417 (2012) 52-60. [84] Y. Liu, J. Wang, Y. Wang, H. Zhu, X. Xu, T. Liu, Y. Hu, High-flux robust PSf-b-PEG nanofiltration membrane for the precise separation of dyes and salts, Chemical Engineering Journal 405 (2021) 127051. [85] N. Wang, X. Li, L. Wang, L. Zhang, G. Zhang, S. Ji, Nanoconfined zeolitic imidazolate framework membranes with composite layers of nearly zero thickness, ACS Applied Materials & Interfaces 8(34) (2016) 21979-21983. [86] H. Fan, J. Gu, H. Meng, A. Knebel, J. Caro, High‐flux membranes based on the covalent organic framework COF‐LZU1 for selective dye separation by nanofiltration, Angewandte Chemie International Edition 57(15) (2018) 4083-4087. [87] Y. Qu, Q.G. Zhang, F. Soyekwo, R.S. Gao, R.X. Lv, C.X. Lin, M.M. Chen, A.M. Zhu, Q.L. Liu, Nickel hydroxide nanosheet membranes with fast water and organics transport for molecular separation, Nanoscale 8(43) (2016) 18428-18435. [88] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Advanced Functional Materials 23(29) (2013) 3693-3700. [89] H. Huang, Y. Mao, Y. Ying, Y. Liu, L. Sun, X. Peng, Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes, Chemical Communications 49(53) (2013) 5963-5965. [90] C. Xu, A. Cui, Y. Xu, X. Fu, Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification, Carbon 62 (2013) 465-471. [91] Y. Ying, L. Sun, Q. Wang, Z. Fan, X. Peng, In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation, RSC Advances 4(41) (2014) 21425-21428. [92] Y. Zhang, Y. Su, J. Peng, X. Zhao, J. Liu, J. Zhao, Z. Jiang, Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride, Journal of Membrane Science 429 (2013) 235-242. [93] L. Wang, M. Fang, J. Liu, J. He, J. Li, J. Lei, Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications, ACS applied materials & interfaces 7(43) (2015) 24082-24093. [94] Q. Zhang, L. Fan, Z. Yang, R. Zhang, Y.-n. Liu, M. He, Y. Su, Z. Jiang, Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles, Applied Surface Science 410 (2017) 494-504. [95] M. Wu, T. Ma, Y. Su, H. Wu, X. You, Z. Jiang, R. Kasher, Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property, Journal of Membrane Science 544 (2017) 79-87. [96] L. Fan, Q. Zhang, Z. Yang, R. Zhang, Y.-n. Liu, M. He, Z. Jiang, Y. Su, Improving permeation and antifouling performance of polyamide nanofiltration membranes through the incorporation of arginine, ACS applied materials & interfaces 9(15) (2017) 13577-13586. [97] R.Y. Rubinstein, D.P. Kroese, Simulation and the Monte Carlo method, John Wiley & Sons2016. [98] W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of chemical physics 76(1) (1982) 637-649. [99] L. Tang, Simulating a whole cell, Nature Methods 19(3) (2022) 271-271. https://doi.org/10.1038/s41592-022-01429-y. [100] D.C. Hoekstra, K. Nickmans, J. Lub, M.G. Debije, A.P. Schenning, Air-curable, high-resolution patternable oxetane-based liquid crystalline photonic films via flexographic printing, ACS applied materials & interfaces 11(7) (2019) 7423-7430. [101] D. Kim, J.M. Yoo, H. Hwang, J. Lee, S.H. Lee, S.P. Yun, M.J. Park, M. Lee, S. Choi, S.H. Kwon, S. Lee, S.-H. Kwon, S. Kim, Y.J. Park, M. Kinoshita, Y.-H. Lee, S. Shin, S.R. Paik, S.J. Lee, S. Lee, B.H. Hong, H.S. Ko, Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease, Nature Nanotechnology 13(9) (2018) 812-818. https://doi.org/10.1038/s41565-018-0179-y. [102] R.T. Carson, R.C. Mitchell, The value of clean water: the public's willingness to pay for boatable, fishable, and swimmable quality water, Water resources research 29(7) (1993) 2445-2454. [103] V. Likodimos, D.D. Dionysiou, P. Falaras, Clean water: water detoxification using innovative photocatalysts, Reviews in Environmental Science and Bio/Technology 9 (2010) 87-94. [104] P. Hough, M. Robertson, Mitigation under Section 404 of the Clean Water Act: where it comes from, what it means, Wetlands Ecology and Management 17 (2009) 15-33. [105] S. Luo, Q. Liu, B. Zhang, J.R. Wiegand, B.D. Freeman, R. Guo, Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation, Journal of Membrane Science 480 (2015) 20-30. [106] B. Zhu, R. Shao, N. Li, C. Min, S. Liu, Z. Xu, X. Qian, L. Wang, Progress of cyclodextrin based membranes in water treatment: special 3D bowl-like structure to achieve excellent separation, Chemical Engineering Journal (2022) 137013. [107] T. Hillie, M. Hlophe, Nanotechnology and the challenge of clean water, Nature nanotechnology 2(11) (2007) 663-664. [108] V. Likodimos, D.D. Dionysiou, P. Falaras, Clean water: water detoxification using innovative photocatalysts, Reviews in Environmental Science and Bio/Technology 9(2) (2010) 87-94. [109] P. Hough, M. Robertson, Mitigation under Section 404 of the Clean Water Act: where it comes from, what it means, Wetlands Ecology and Management 17(1) (2009) 15-33. [110] W.R. Bowen, H. Mukhtar, Characterisation and prediction of separation performance of nanofiltration membranes, Journal of membrane science 112(2) (1996) 263-274. [111] R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, Journal of membrane science 83(1) (1993) 81-150. [112] S. Kim, K.H. Chu, Y.A. Al-Hamadani, C.M. Park, M. Jang, D.-H. Kim, M. Yu, J. Heo, Y. Yoon, Removal of contaminants of emerging concern by membranes in water and wastewater: A review, Chemical Engineering Journal 335 (2018) 896-914. [113] J. Luo, Y. Wan, Mix-charged nanofiltration membrane: Engineering charge spatial distribution for highly selective separation, Chemical Engineering Journal 464 (2023) 142689. [114] X.-J. Li, W.-R. Cui, W. Jiang, R.-H. Yan, R.-P. Liang, J.-D. Qiu, Bi-functional natural polymers for highly efficient adsorption and reduction of gold, Chemical Engineering Journal 422 (2021) 130577. [115] D.L. Zhao, S. Japip, Y. Zhang, M. Weber, C. Maletzko, T.-S. Chung, Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review, Water research 173 (2020) 115557. [116] B. Li, S. Japip, T.-S. Chung, Molecularly tunable thin-film nanocomposite membranes with enhanced molecular sieving for organic solvent forward osmosis, Nature communications 11(1) (2020) 1-10. [117] H. Dong, L. Wu, L. Zhang, H. Chen, C. Gao, Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes, Journal of membrane science 494 (2015) 92-103. [118] M. Bacon, S.J. Bradley, T. Nann, Graphene quantum dots, Particle & Particle Systems Characterization 31(4) (2014) 415-428. [119] A. Jafari, M.R.S. Kebria, A. Rahimpour, G. Bakeri, Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air Gap membrane distillation, Chemical Engineering and Processing-Process Intensification 126 (2018) 222-231. [120] D.L. Zhao, T.-S. Chung, Applications of carbon quantum dots (CQDs) in membrane technologies: A review, Water research 147 (2018) 43-49. [121] S. Guo, Y. Wan, X. Chen, J. Luo, Loose nanofiltration membrane custom-tailored for resource recovery, Chemical Engineering Journal 409 (2021) 127376. [122] J. Zheng, R. Zhao, A.A. Uliana, Y. Liu, D. de Donnea, X. Zhang, D. Xu, Q. Gao, P. Jin, Y. Liu, Separation of textile wastewater using a highly permeable resveratrol-based loose nanofiltration membrane with excellent anti-fouling performance, Chemical Engineering Journal 434 (2022) 134705. [123] D. Kurniawan, R.-J. Weng, Y.-Y. Chen, M.R. Rahardja, Z.C. Nanaricka, W.-H. Chiang, Recent Advances in the Graphene Quantum Dot-Based Biological and Environmental Sensors, Sensors and Actuators Reports (2022) 100130. [124] D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots, Advanced materials 22(6) (2010) 734-738. [125] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature materials 6(3) (2007) 183-191. [126] N. Baig, I. Kammakakam, W. Falath, Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges, Materials Advances 2(6) (2021) 1821-1871. [127] B. Van der Bruggen, Chemical modification of polyethersulfone nanofiltration membranes: a review, Journal of applied polymer science 114(1) (2009) 630-642. [128] Y.-J. Yeh, W. Lin, W.-H. Chiang, K.-L. Tung, Plasma-enabled graphene quantum dot-based nanofiltration membranes for water purification and dye monitoring, Journal of Membrane Science 670 (2023) 121334. [129] F. Topuz, T. Holtzl, G. Szekely, Scavenging organic micropollutants from water with nanofibrous hypercrosslinked cyclodextrin membranes derived from green resources, Chemical Engineering Journal 419 (2021) 129443. [130] S. Hussain, S. Bahadar, G. Wang, L. Zhu, Z. Ye, X. Peng, Photothermal-driven interfacial-polymerized ultrathin polyamide selective layer for nanofiltration, Chemical Engineering Journal 440 (2022) 136012. [131] D. Guo, Y. Xiao, T. Li, Q. Zhou, L. Shen, R. Li, Y. Xu, H. Lin, Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly, Journal of colloid and interface science 560 (2020) 273-283. [132] X. Qiu, Z. Li, X. Li, Z. Zhang, Flame retardant coatings prepared using layer by layer assembly: A review, Chemical Engineering Journal 334 (2018) 108-122. [133] P. Samaddar, A. Deep, K.-H. Kim, An engineering insight into block copolymer self-assembly: Contemporary application from biomedical research to nanotechnology, Chemical Engineering Journal 342 (2018) 71-89. [134] M. Amirilargani, M. Sadrzadeh, E. Sudhölter, L. De Smet, Surface modification methods of organic solvent nanofiltration membranes, Chemical Engineering Journal 289 (2016) 562-582. [135] C. Liu, H. Cheng, S. Zhai, R. Zeng, D. Zhang, A. Wang, Three-dimensional macroporous structure and surface carbon-coating modification of stainless-steel anode boost bioelectrocatalytic performance, Chemical Engineering Journal (2023) 143682. [136] J. Li, H. Zhang, Y. Cui, H. Da, Y. Cai, S. Zhang, Ultra-stable high voltage lithium metal batteries enabled by solid garnet electrolyte surface-engineered with a grafted aromatics layer, Chemical Engineering Journal 450 (2022) 138457. [137] A. Almasian, M. Jalali, G.C. Fard, L. Maleknia, Surfactant grafted PDA-PAN nanofiber: Optimization of synthesis, characterization and oil absorption property, Chemical Engineering Journal 326 (2017) 1232-1241. [138] Y. Liang, Y. Zhu, C. Liu, K.-R. Lee, W.-S. Hung, Z. Wang, Y. Li, M. Elimelech, J. Jin, S. Lin, Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation, Nature communications 11(1) (2020) 1-9. [139] B.-M. Jun, H.K. Lee, Y.-N. Kwon, Acid-catalyzed hydrolysis of semi-aromatic polyamide NF membrane and its application to water softening and antibiotics enrichment, Chemical Engineering Journal 332 (2018) 419-430. [140] W.-Z. Huang, F. Lin, S.L. Lee, F.-T. Tao, K.-L. Tung, Fabrication of microporous polyamide selective layer on macroporous ceramic hollow fibers via direct interfacial polymerization for nanofiltration applications, Journal of Membrane Science (2022) 120710. [141] T. Yang, T.-S. Chung, Novel Thin-Film nanocomposite hollow fiber membranes in modules with reduced reverse solute flux for pressure retarded osmosis, Chemical Engineering Journal 450 (2022) 138338. [142] V. Sharma, G. Borkute, S.P. Gumfekar, Biomimetic nanofiltration membranes: Critical review of materials, structures, and applications to water purification, Chemical Engineering Journal (2021) 133823. [143] C. Cheng, S.A. Iyengar, R. Karnik, Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes, Nature Nanotechnology 16(9) (2021) 989-995. [144] L. Zhang, R. Zhang, M. Ji, Y. Lu, Y. Zhu, J. Jin, Polyamide nanofiltration membrane with high mono/divalent salt selectivity via pre-diffusion interfacial polymerization, Journal of Membrane Science 636 (2021) 119478. [145] L. Shen, Q. Shi, S. Zhang, J. Gao, D.C. Cheng, M. Yi, R. Song, L. Wang, J. Jiang, R. Karnik, Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration, Science advances 7(37) (2021) eabg6263. [146] Z. Zhang, X. Xiao, Y. Zhou, L. Huang, Y. Wang, Q. Rong, Z. Han, H. Qu, Z. Zhu, S. Xu, Bioinspired graphene oxide membranes with pH-responsive nanochannels for high-performance nanofiltration, ACS nano 15(8) (2021) 13178-13187. [147] T. Sewerin, M.G. Elshof, S. Matencio, M. Boerrigter, J. Yu, J. de Grooth, Advances and applications of hollow fiber nanofiltration membranes: A review, Membranes 11(11) (2021) 890. [148] Y. Jiang, S. Li, J. Su, X. Lv, S. Liu, B. Su, Two dimensional COFs as ultra-thin interlayer to build TFN hollow fiber nanofiltration membrane for desalination and heavy metal wastewater treatment, Journal of Membrane Science 635 (2021) 119523. [149] C. Wang, Y. Chen, X. Hu, P. Guo, Engineering novel high-flux thin-film composite (TFC) hollow fiber nanofiltration membranes via a facile and scalable coating procedure, Desalination 526 (2022) 115531. [150] N.L. Le, S.P. Nunes, Ethylene glycol as bore fluid for hollow fiber membrane preparation, Journal of Membrane Science 533 (2017) 171-178. [151] Y.-X. Li, Y. Cao, M. Wang, Z.-L. Xu, H.-Z. Zhang, X.-W. Liu, Z. Li, Novel high-flux polyamide/TiO2 composite nanofiltration membranes on ceramic hollow fibre substrates, Journal of Membrane Science 565 (2018) 322-330. [152] Z. Zhou, D. Lu, X. Li, L.M. Rehman, A. Roy, Z. Lai, Fabrication of highly permeable polyamide membranes with large “leaf-like” surface nanostructures on inorganic supports for organic solvent nanofiltration, Journal of Membrane Science 601 (2020) 117932. [153] J.Y. Chong, R. Wang, From micro to nano: polyamide thin film on microfiltration ceramic tubular membranes for nanofiltration, Journal of Membrane Science 587 (2019) 117161. [154] I. Iatsunskyi, M. Kempiński, M. Jancelewicz, K. Załęski, S. Jurga, V. Smyntyna, Structural and XPS characterization of ALD Al2O3 coated porous silicon, Vacuum 113 (2015) 52-58. [155] Z. Yang, H. Guo, C.Y. Tang, The upper bound of thin-film composite (TFC) polyamide membranes for desalination, Journal of Membrane Science 590 (2019) 117297. [156] L. Zhu, X. Mei, Z. Peng, J. Liu, J. Yang, Y. Li, A rotating paper-based microfluidic sensor array combining Michael acceptors and carbon quantum dots for discrimination of biothiols, Chemical Engineering Journal 454 (2023) 140065. [157] S.A. Dsouza, M.M. Pereira, V. Polisetti, D. Mondal, S.K. Nataraj, Introducing deep eutectic solvents as flux boosting and surface cleaning agents for thin film composite polyamide membranes, Green chemistry 22(8) (2020) 2381-2387. [158] Y. Li, X. You, R. Li, Y. Li, C. Yang, M. Long, R. Zhang, Y. Su, Z. Jiang, Loosening ultrathin polyamide nanofilms through alkali hydrolysis for high-permselective nanofiltration, Journal of Membrane Science 637 (2021) 119623. [159] V.T. Do, C.Y. Tang, M. Reinhard, J.O. Leckie, Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite, Environmental science & technology 46(2) (2012) 852-859. [160] Q. Shen, S.-J. Xu, Z.-Q. Dong, H.-Z. Zhang, Z.-L. Xu, C.Y. Tang, Polyethyleneimine modified carbohydrate doped thin film composite nanofiltration membrane for purification of drinking water, Journal of Membrane Science 610 (2020) 118220. [161] C. Guo, X. Qian, F. Tian, N. Li, W. Wang, Z. Xu, S. Zhang, Amino-rich carbon quantum dots ultrathin nanofiltration membranes by double “one-step” methods: Breaking through trade-off among separation, permeation and stability, Chemical Engineering Journal 404 (2021) 127144. [162] P. Xu, W. Wang, X. Qian, H. Wang, C. Guo, N. Li, Z. Xu, K. Teng, Z. Wang, Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio, Desalination 449 (2019) 57-68. [163] Q. Shen, Y. Lin, P. Zhang, J. Segawa, Y. Jia, T. Istirokhatun, X. Cao, K. Guan, H. Matsuyama, Development of ultrathin polyamide nanofilm with enhanced inner-pore interconnectivity via graphene quantum dots-assembly intercalation for high-performance organic solvent nanofiltration, Journal of Membrane Science 635 (2021) 119498. [164] J. Chen, G. Xiao, G. Duan, Y. Wu, X. Zhao, X. Gong, Structural design of carbon dots/porous materials composites and their applications, Chemical Engineering Journal 421 (2021) 127743. [165] J.L. Fajardo-Diaz, A. Morelos-Gomez, R. Cruz-Silva, K. Ishii, T. Yasuike, T. Kawakatsu, A. Yamanaka, S. Tejima, K. Izu, S. Saito, Low-pressure reverse osmosis membrane made of cellulose nanofiber and carbon nanotube polyamide nano-nanocomposite for high purity water production, Chemical Engineering Journal 448 (2022) 137359. [166] J. Guo, Y. Zhang, F. Yang, B.B. Mamba, J. Ma, L. Shao, S. Liu, Ultra‐Permeable Dual‐Mechanism‐Driven Graphene Oxide Framework Membranes for Precision Ion Separations, Angewandte Chemie International Edition 62(23) (2023) e202302931. [167] J. Ma, G. Qin, W. Wei, T. Xiao, L. Jiang, S. Liu, Electro-confinement membrane desalination by nanoporous carbon membrane, Desalination 476 (2020) 114232. [168] Z. Gao, S. Liu, Z. Wang, S. Yu, Composite NF membranes with anti-bacterial activity prepared by electrostatic self-assembly for dye recycle, Journal of the Taiwan Institute of Chemical Engineers 106 (2020) 34-50. [169] S. Yu, Z. Chen, Q. Cheng, Z. Lü, M. Liu, C. Gao, Application of thin-film composite hollow fiber membrane to submerged nanofiltration of anionic dye aqueous solutions, Separation and purification technology 88 (2012) 121-129. [170] Y.C. Xu, Z.X. Wang, X.Q. Cheng, Y.C. Xiao, L. Shao, Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment, Chemical Engineering Journal 303 (2016) 555-564. [171] L. Bian, C. Shen, C. Song, S. Zhang, Z. Cui, F. Yan, B. He, J. Li, Compactness-tailored hollow fiber loose nanofiltration separation layers based on “chemical crosslinking and metal ion coordination” for selective dye separation, Journal of Membrane Science 620 (2021) 118948. [172] Y. Zheng, G. Yao, Q. Cheng, S. Yu, M. Liu, C. Gao, Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration, Desalination 328 (2013) 42-50. [173] X. Wei, S. Wang, Y. Shi, H. Xiang, J. Chen, B. Zhu, Characterization of a positively charged composite nanofiltration hollow fiber membrane prepared by a simplified process, Desalination 350 (2014) 44-52. [174] J. Gao, Z. Thong, K.Y. Wang, T.-S. Chung, Fabrication of loose inner-selective polyethersulfone (PES) hollow fibers by one-step spinning process for nanofiltration (NF) of textile dyes, Journal of Membrane Science 541 (2017) 413-424. [175] X. Wei, S. Wang, Y. Shi, H. Xiang, J. Chen, Application of positively charged composite hollow-fiber nanofiltration membranes for dye purification, Industrial & Engineering Chemistry Research 53(36) (2014) 14036-14045. [176] J. Liu, G. Han, D. Zhao, K. Lu, J. Gao, T.-S. Chung, Self-standing and flexible covalent organic framework (COF) membranes for molecular separation, Science advances 6(41) (2020) eabb1110. [177] D.-D. Shao, L. Wang, X.-Y. Yan, X.-L. Cao, T. Shi, S.-P. Sun, Amine–carbon quantum dots (CQDs–NH2) tailored polymeric loose nanofiltration membrane for precise molecular separation, Chemical Engineering Research and Design 171 (2021) 237-246. [178] N. Kyriakou, L. Winnubst, M. Drobek, S. De Beer, A. Nijmeijer, M.-A. Pizzoccaro-Zilamy, Controlled Nanoconfinement of Polyimide Networks in Mesoporous γ-Alumina Membranes for the Molecular Separation of Organic Dyes, ACS Applied Nano Materials 4(12) (2021) 14035-14046. [179] Y. Yang, Z. Tian, J. Zhang, Z. Cui, H. Wang, N. Han, X. Ma, J. Li, Fabrication of hollow fiber loose nanofiltration separation layers based on nucleophilic addition and Schiff base reactions and the investigation on separation performance of low molecular weight dye/salt systems, Journal of Membrane Science 640 (2021) 119761. [180] T. Wang, H. Wu, S. Zhao, W. Zhang, M. Tahir, Z. Wang, J. Wang, Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation, Chemical Engineering Journal 384 (2020) 123347. [181] L. Huang, Z. Li, Y. Luo, N. Zhang, W. Qi, E. Jiang, J. Bao, X. Zhang, W. Zheng, B. An, Low-pressure loose GO composite membrane intercalated by CNT for effective dye/salt separation, Separation and Purification Technology 256 (2021) 117839. [182] Y.-Y. Su, X. Yan, Y. Chen, X.-J. Guo, X.-F. Chen, W.-Z. Lang, Facile fabrication of COF-LZU1/PES composite membrane via interfacial polymerization on microfiltration substrate for dye/salt separation, Journal of Membrane Science 618 (2021) 118706. [183] Y. Zhang, H. Ye, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, In situ assembly of a covalent organic framework composite membrane for dye separation, Journal of Membrane Science 628 (2021) 119216. [184] M. Hu, S. Yang, X. Liu, R. Tao, Z. Cui, C. Matindi, W. Shi, R. Chu, X. Ma, K. Fang, Selective separation of dye and salt by PES/SPSf tight ultrafiltration membrane: Roles of size sieving and charge effect, Separation and Purification Technology 266 (2021) 118587. [185] Z. Wang, Z. Si, D. Cai, G.L.S. Li, P. Qin, Synthesis of stable COF-300 nanofiltration membrane via in-situ growth with ultrahigh flux for selective dye separation, Journal of Membrane Science 615 (2020) 118466. [186] J. Liu, S. Wang, T. Huang, P. Manchanda, E. Abou-Hamad, S.P. Nunes, Smart covalent organic networks (CONs) with “on-off-on” light-switchable pores for molecular separation, Science advances 6(34) (2020) eabb3188. [187] Y. Zhang, J. Guo, G. Han, Y. Bai, Q. Ge, J. Ma, C.H. Lau, L. Shao, Molecularly soldered covalent organic frameworks for ultrafast precision sieving, Science Advances 7(13) (2021) eabe8706. [188] R.F. Service, Carbon capture marches toward practical use, American Association for the Advancement of Science, 2021. [189] L. Rosa, J.A. Reimer, M.S. Went, P. D’Odorico, Hydrological limits to carbon capture and storage, Nature Sustainability 3(8) (2020) 658-666. [190] S. Mallapaty, How China could be carbon neutral by mid-century, Nature 586(7830) (2020) 482-484. [191] G. Dong, J. Hou, J. Wang, Y. Zhang, V. Chen, J. Liu, Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes, Journal of Membrane Science 520 (2016) 860-868. [192] S. Liu, L. Rao, P. Yang, X. Wang, L. Wang, R. Ma, L. Yue, X. Hu, Superior CO2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin, Journal of Environmental Sciences 93 (2020) 109-116. [193] T.C. Merkel, H. Lin, X. Wei, R. Baker, Power plant post-combustion carbon dioxide capture: An opportunity for membranes, Journal of membrane science 359(1-2) (2010) 126-139. [194] A.S. Embaye, L. Martínez-Izquierdo, M. Malankowska, C. Téllez, J. Coronas, Poly (ether-block-amide) copolymer membranes in CO2 separation applications, Energy & Fuels 35(21) (2021) 17085-17102. [195] Z. Zhang, Y. Zheng, L. Qian, D. Luo, H. Dou, G. Wen, A. Yu, Z. Chen, Emerging trends in sustainable CO2 management materials, Advanced Materials (2022) 2201547. [196] M. Sandru, E.M. Sandru, W.F. Ingram, J. Deng, P.M. Stenstad, L. Deng, R.J. Spontak, An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes, Science 376(6588) (2022) 90-94. [197] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature 532(7600) (2016) 435-437. [198] A. Ahmad, Z. Jawad, S. Low, S. Zein, A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation, Journal of Membrane Science 451 (2014) 55-66. [199] J. Yuan, X. Liu, O. Akbulut, J. Hu, S.L. Suib, J. Kong, F. Stellacci, Superwetting nanowire membranes for selective absorption, Nature nanotechnology 3(6) (2008) 332-336. [200] J. Shen, G. Liu, K. Huang, W. Jin, K.R. Lee, N. Xu, Membranes with fast and selective gas‐transport channels of laminar graphene oxide for efficient CO2 capture, Angewandte Chemie 127(2) (2015) 588-592. [201] I. Persson, J. Halim, H. Lind, T.W. Hansen, J.B. Wagner, L.Å. Näslund, V. Darakchieva, J. Palisaitis, J. Rosen, P.O. Persson, 2D transition metal carbides (MXenes) for carbon capture, Advanced Materials 31(2) (2019) 1805472. [202] Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent advances on graphene quantum dots: from chemistry and physics to applications, Advanced materials 31(21) (2019) 1808283. [203] T. Sreeprasad, A.A. Rodriguez, J. Colston, A. Graham, E. Shishkin, V. Pallem, V. Berry, Electron-tunneling modulation in percolating network of graphene quantum dots: fabrication, phenomenological understanding, and humidity/pressure sensing applications, Nano letters 13(4) (2013) 1757-1763. [204] C.X. Guo, Y. Dong, H.B. Yang, C.M. Li, Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F‐doped SnO2 glass for enhanced photoelectrochemical water splitting, Advanced Energy Materials 3(8) (2013) 997-1003. [205] S. Javanbakht, H. Namazi, Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system, Materials Science and Engineering: C 87 (2018) 50-59. [206] S. Coe-Sullivan, Quantum dot developments, Nature Photonics 3(6) (2009) 315-316. [207] D. Kurniawan, M.R. Rahardja, P.V. Fedotov, E.D. Obraztsova, K.K. Ostrikov, W.-H. Chiang, Plasma-bioresource-derived multifunctional porous GQD/AuNP nanocomposites for water monitoring and purification, Chemical Engineering Journal 451 (2023) 139083. [208] M. Kaur, M. Kaur, V.K. Sharma, Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment, Advances in colloid and interface science 259 (2018) 44-64. [209] X. Wang, G. Sun, N. Li, P. Chen, Quantum dots derived from two-dimensional materials and their applications for catalysis and energy, Chemical Society Reviews 45(8) (2016) 2239-2262. [210] M.O. Valappil, V.K. Pillai, S. Alwarappan, Spotlighting graphene quantum dots and beyond: Synthesis, properties and sensing applications, Applied Materials Today 9 (2017) 350-371. [211] S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights, Angewandte Chemie International Edition 49(38) (2010) 6726-6744. [212] N. Liu, J. Cheng, L. Hu, W. Hou, X. Yang, M. Luo, H. Zhang, B. Ye, J. Zhou, Boosting CO2 transport of poly (ethylene oxide) membranes by hollow Rubik-like “expressway” channels with anion pillared hybrid ultramicroporous materials, Chemical Engineering Journal 427 (2022) 130845. [213] A. Katare, S. Sharma, H. Horo, S. Bhowmick, L.M. Kundu, B. Mandal, An investigation on the effects of both amine grafting and blending with biodegradable chitosan membrane for CO2 capture from CO2/N2 gas mixtures, Chemical Engineering Journal 466 (2023) 143215. [214] X. Xu, J. Wang, A. Zhou, S. Dong, K. Shi, B. Li, J. Han, D. O’Hare, High-efficiency CO2 separation using hybrid LDH-polymer membranes, Nature Communications 12(1) (2021) 3069. [215] L. Yang, Q. Su, B. Si, Y. Zhang, Y. Zhang, H. Yang, X. Zhou, Enhancing bioenergy production with carbon capture of microalgae by ultraviolet spectrum conversion via graphene oxide quantum dots, Chemical Engineering Journal 429 (2022) 132230. [216] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angewandte Chemie International Edition 49(35) (2010) 6058-6082. [217] D. Husken, T. Visser, M. Wessling, R.J. Gaymans, CO2 permeation properties of poly (ethylene oxide)-based segmented block copolymers, Journal of membrane science 346(1) (2010) 194-201. [218] Y.C. Tseng, S.P. Rwei, Synthesis and characterization of the feed ratio of polyethylene oxide (0∼ 10 wt% PEO) in the nylon‐6/PEO copolymer system, Journal of Applied Polymer Science 123(2) (2012) 796-806. [219] S.P. Nalawade, F. Picchioni, J.H. Marsman, L. Janssen, The FT-IR studies of the interactions of CO2 and polymers having different chain groups, The Journal of supercritical fluids 36(3) (2006) 236-244. [220] S. Meshkat, S. Kaliaguine, D. Rodrigue, Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation, Separation and Purification Technology 235 (2020) 116150. [221] V. Nafisi, M.-B. Hägg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, Journal of Membrane Science 459 (2014) 244-255. [222] R.P. Quirk, R.T. Mathers, T. Cregger, M.D. Foster, Anionic synthesis of block copolymer brushes grafted from a 1, 1-diphenylethylene monolayer, Macromolecules 35(27) (2002) 9964-9974. [223] Y. Li, D.-S. Hwang, N.H. Lee, S.-J. Kim, Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chemical Physics Letters 404(1-3) (2005) 25-29. [224] S. Li, Z. Wang, X. Yu, J. Wang, S. Wang, High‐performance membranes with multi‐permselectivity for CO2 separation, Advanced Materials 24(24) (2012) 3196-3200. [225] J. Shen, M. Zhang, G. Liu, K. Guan, W. Jin, Size effects of graphene oxide on mixed matrix membranes for CO2 separation, AIChE Journal 62(8) (2016) 2843-2852. [226] Y. Li, T.-S. Chung, Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal, International Journal of Hydrogen Energy 35(19) (2010) 10560-10568. [227] Y. Zhang, Y. Shen, J. Hou, Y. Zhang, W. Fam, J. Liu, T.D. Bennett, V. Chen, Ultraselective Pebax membranes enabled by templated microphase separation, ACS applied materials & interfaces 10(23) (2018) 20006-20013. [228] K. Duan, J. Wang, Y. Zhang, J. Liu, Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation, Journal of Membrane Science 572 (2019) 588-595. [229] G. Huang, A.P. Isfahani, A. Muchtar, K. Sakurai, B.B. Shrestha, D. Qin, D. Yamaguchi, E. Sivaniah, B. Ghalei, Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture, Journal of membrane science 565 (2018) 370-379. [230] J. Zhang, Q. Xin, X. Li, M. Yun, R. Xu, S. Wang, Y. Li, L. Lin, X. Ding, H. Ye, Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation, Journal of Membrane Science 570 (2019) 343-354. [231] J.E. Shin, S.K. Lee, Y.H. Cho, H.B. Park, Effect of PEG-MEA and graphene oxide additives on the performance of Pebax® 1657 mixed matrix membranes for CO2 separation, Journal of Membrane Science 572 (2019) 300-308. [232] R.L. Thankamony, X. Li, S.K. Das, M.M. Ostwal, Z. Lai, Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations, Journal of Membrane Science 591 (2019) 117348. [233] H. Zhu, J. Yuan, J. Zhao, G. Liu, W. Jin, Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes, Separation and Purification Technology 214 (2019) 78-86. [234] Y. Shen, H. Wang, X. Zhang, Y. Zhang, MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method, ACS Applied Materials & Interfaces 8(35) (2016) 23371-23378. [235] G. Liu, L. Cheng, G. Chen, F. Liang, G. Liu, W. Jin, Pebax‐Based Membrane Filled with Two‐Dimensional Mxene Nanosheets for Efficient CO2 Capture, Chemistry–An Asian Journal 15(15) (2020) 2364-2370. [236] S.A. Mohammed, A. Nasir, F. Aziz, G. Kumar, W. Sallehhudin, J. Jaafar, W. Lau, N. Yusof, W. Salleh, A. Ismail, CO2/N2 selectivity enhancement of PEBAX MH 1657/Aminated partially reduced graphene oxide mixed matrix composite membrane, Separation and Purification Technology 223 (2019) 142-153. [237] A. Nadeali, M. Zamani Pedram, M. Omidkhah, M. Yarmohammadi, Promising Performance for Efficient CO2 Separation with the p-tert-Butylcalix [4] arene/Pebax-1657 Mixed Matrix Membrane, ACS Sustainable Chemistry & Engineering 7(23) (2019) 19015-19026. [238] M.S. Maleh, A. Raisi, CO 2-philic moderate selective layer mixed matrix membranes containing surface functionalized NaX towards highly-efficient CO 2 capture, RSC advances 9(27) (2019) 15542-15553. [239] Y. Wu, D. Zhao, J. Ren, Y. Qiu, M. Deng, A novel Pebax-C60 (OH) 24/PAN thin film composite membrane for carbon dioxide capture, Separation and Purification Technology 215 (2019) 480-489. [240] T.-C. Huang, Y.-C. Liu, G.-S. Lin, C.-H. Lin, W.-R. Liu, K.-L. Tung, Fabrication of pebax-1657-based mixed-matrix membranes incorporating N-doped few-layer graphene for carbon dioxide capture enhancement, Journal of Membrane Science 602 (2020) 117946. [241] L. Yang, S. Zhang, H. Wu, C. Ye, X. Liang, S. Wang, X. Wu, Y. Wu, Y. Ren, Y. Liu, Porous organosilicon nanotubes in pebax-based mixed-matrix membranes for biogas purification, Journal of membrane science 573 (2019) 301-308. [242] Y. Dai, X. Ruan, Z. Yan, K. Yang, M. Yu, H. Li, W. Zhao, G. He, Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture, Separation and Purification Technology 166 (2016) 171-180. [243] X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes, ACS applied materials & interfaces 7(9) (2015) 5528-5537. [244] X. Zhang, T. Zhang, Y. Wang, J. Li, C. Liu, N. Li, J. Liao, Mixed-matrix membranes based on Zn/Ni-ZIF-8-PEBA for high performance CO2 separation, Journal of Membrane Science 560 (2018) 38-46. [245] J. Shen, G. Liu, K. Huang, Q. Li, K. Guan, Y. Li, W. Jin, UiO-66-polyether block amide mixed matrix membranes for CO2 separation, Journal of Membrane Science 513 (2016) 155-165. [246] B. Zhu, J. Liu, S. Wang, J. Wang, M. Liu, Z. Yan, F. Shi, J. Li, Y. Li, Mixed matrix membranes containing well-designed composite microcapsules for CO2 separation, Journal of Membrane Science 572 (2019) 650-657. [247] B. Comesaña-Gándara, J. Chen, C.G. Bezzu, M. Carta, I. Rose, M.-C. Ferrari, E. Esposito, A. Fuoco, J.C. Jansen, N.B. McKeown, Redefining the Robeson upper bounds for CO 2/CH 4 and CO 2/N 2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity, Energy & Environmental Science 12(9) (2019) 2733-2740. [248] K.-S. Chang, Z.-C. Wu, S. Kim, K.-L. Tung, Y.M. Lee, Y.-F. Lin, J.-Y. Lai, Molecular modeling of poly (benzoxazole-co-imide) membranes: A structure characterization and performance investigation, Journal of Membrane Science 454 (2014) 1-11. [249] S.M. Mousavi, S.A. Hashemi, M. Yari Kalashgrani, D. Kurniawan, A. Gholami, V. Rahmanian, N. Omidifar, W.-H. Chiang, Recent Advances in Inflammatory Diagnosis with Graphene Quantum Dots Enhanced SERS Detection, Biosensors 12(7) (2022) 461. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97290 | - |
| dc.description.abstract | 石墨烯量子點(Graphene Quantum Dots, GQDs)以其奈米尺度的尺寸、可調控的表面化學性質以及量子侷限效應,在多尺度分子分離的膜技術中帶來進步。雖然共價有機框架(COFs)、金屬有機框架(MOFs)和碳奈米管(CNTs)等材料在分離應用中顯示出潛力,但其實際應用面臨許多限制,例如合成過程複雜、生產成本高、機械結構脆弱以及易受污染影響。相比之下,基於石墨烯量子點的材料提供了一個可持續且多功能的替代方案,利用其簡單的電漿合成方法、科學的結構特性探討,以及在各種尺度上精細調控分子交互的能力。
在這項研究中,我們開發了結合氮摻雜石墨烯量子點(GQDs)的電漿工程膜,將其作為多功能的奈米填料。這些GQDs是通過綠色、大氣壓電漿技術合成,能夠精準控制孔結構、表面功能性以及分子間的交互作用。在奈米濾膜應用中,GQD膜表現達到了超高的水通量(289 L·m⁻²·h⁻¹·bar⁻¹)以及99.96%的染料阻絕率,這歸因於其優異的表面親水性和互聯的奈米通道。同時,GQD-無機複合材料在次奈米尺度的應用中展現出色的性能,對分子量相差200 Da的分子分離因子達到92.68。在氣體分離方面,GQD-Pebax混合基質膜實現了卓越的CO₂滲透率(415 Barrer)和CO₂/N₂選擇性(125),這得益於其形成了有利於CO₂擴散的埃米尺度通道。 透過解決多尺度分子分離的挑戰,薄膜技術為水純化、碳捕集和工業廢棄物處理等多樣化應用提供了量身定制的解決方案。小尺度分離(如氣體淨化和藥品精煉)依賴於分子專一性和精確的孔控設計,而大尺度分離(如大分子過濾和污染物去除)則受益於增強的機械穩定性和表面化學交互作用。這種多尺度框架不僅提高了分離效率,還擴展了膜的功能多樣性,為清潔能源、環境保護以及生物醫學技術之應用。 | zh_TW |
| dc.description.abstract | Graphene Quantum Dots (GQDs), with their nanoscale dimensions, tunable surface chemistry, and exceptional quantum effects, represent a transformative advancement in membrane technologies for multi-scale molecular separation. While existing materials, such as covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and carbon nanotubes (CNTs), have demonstrated potential in separation applications, their practical implementation is hindered by several limitations, including complex synthesis procedures, high production costs, mechanical fragility, and susceptibility to fouling. In contrast, GQD-based matrices present a sustainable and versatile alternative, capitalizing on their facile plasma-based synthesis, robust structural attributes, and capacity to fine-tune molecular interactions across various scales.
In this study, we developed plasma-engineered membranes incorporating nitrogen-doped GQDs as multifunctional nanofillers. Synthesized using a green, atmospheric-pressure microplasma process, GQDs offer precise control over pore architectures, surface functionality, and molecular interactions. At the nanofiltration scale, GQD membranes demonstrated exceptional performance, achieving ultrahigh water permeability (289 L·m⁻²·h⁻¹·bar⁻¹) and superior dye rejection (99.96%), attributed to enhanced hydrophilicity and interconnected nanochannels. Meanwhile, GQD-inorganic nanocomposites exhibited a remarkable separation factor of 92.68 for molecules differing by 200 Da in molecular weight, operating effectively at the sub-nanometer scale. For gas separation, GQD-Pebax mixed matrix membranes achieved exceptional CO₂ permeability (415 Barrer) and CO₂/N₂ selectivity (125), enabled by the creation of angstrom-level pathways favoring CO₂ diffusion. By addressing molecular separations across multiple scales, these membranes offer tailored solutions for diverse challenges in water purification, carbon capture, and industrial waste treatment. Small-scale separations, essential for applications such as gas purification and pharmaceutical refinement, rely on molecular specificity and precise pore control. Conversely, larger-scale separations, such as macromolecule filtration and pollutant removal, benefit from enhanced mechanical stability and surface chemical interactions. This multi-scale framework not only improves separation efficiency but also extends the functional versatility of membranes, paving the way for transformative applications in clean energy, environmental protection, and biomedical technologies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:19:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-04-02T16:19:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III BIOGRAPHY V CONTENTS IX LIST OF FIG.S XIII LIST OF TABLES XXII OUTLINE XXIII CHAPTER 1 INTRODUCTION 1 1.1. WATER PURIFICATION VIA THIN FILM NANOCOMPOSITE (TFN) MEMBRANE 1 1.1.1 Membrane separation technology 1 1.1.2 Types of membranes 3 1.1.3.1 Thin film nanocomposite (TFN) membrane 5 1.1.3.2 Interfacial Polymerization (IP) 9 1.1.4 Review of graphene quantum dot (GQD) 13 1.1.5 Molecular simulation 17 1.2.1 Carbon dioxide capture technologies 22 1.2.2 Gas separation mechanism 23 1.2.3 Membrane materials 25 1.2.4. Adopted material 27 1.2.4.1 Graphene quantum dot 27 1.2.4.2 Polyether Block Amide (Pebax) 29 CHAPTER 2 EXPERIMENTAL MATERIALS AND EQUIPMENT 31 2.1 MATERIALS AND CHEMICALS 31 2.2 INSTRUMENTATIONS 32 2.2.1 Ultraviolet-Visible Spectroscopy (UV-Vis) 32 2.2.2 Photoluminescence (PL) Spectroscopy 32 2.2.3 Raman Spectroscopy 32 2.2.4 X-ray Photoelectron Spectroscopy (XPS) 33 2.2.5 Transmission Electron Microscopy (TEM) 33 2.2.6 Scanning Electron Microscopy (SEM) 34 2.2.7 Differential Scanning Calorimetry (DSC) 34 2.2.8 Zeta Potential Measurements 34 2.2.9 Fourier-Transform Infrared Spectroscopy (FT-IR) 35 2.2.10 Contact Angle Meter 35 2.2.11 Nanofiltration System in Flat Membrane 36 2.2.12 Nanofiltration System in Hollow Fiber Membrane 37 CHAPTER 3 PLASMA-ENABLED GRAPHENE QUANTUM DOT-BASED NANOFILTRATION MEMBRANES FOR WATER PURIFICATION AND DYE MONITORING 38 3.1 INTRODUCTION 38 3.2. EXPERIMENTAL SECTION 41 3.2.1 Preparation of GQD-based membranes 41 3.2.2 Materials characterization 42 3.2.3 Membrane performance evaluation 42 3.2.4 Theoretical calculation 43 3.3. RESULTS AND DISCUSSION 44 3.3.1 GQD NF membrane fabrication and characterization 44 3.3.2 Nanofiltration of GQD membranes 52 3.3.3 Theoretical calculation study of GQD membranes 57 3.3.4 PL-based dye monitoring study of GQD membranes 61 3.4 CONCLUSION 63 CHAPTER 4 ENGINEERING LOCAL ENVIRONMENT OF GQD-INORGANIC NANOCOMPOSITES FOR HIGH MOLECULAR SEPARATIONS 64 4.1 INTRODUCTION 64 4.2 EXPERIMENTAL SECTION 69 4.2.1 Synthesis of GQD-inorganic membranes 69 4.2.2 Characterization 70 4.2.3 NF separation measurement 71 4.3 RESULTS AND DISCUSSIONS 74 4.3.1 Synthesis and characterization of AHF substrate 74 4.3.3 Separation performance study of GQD membranes 83 4.4 CONCLUSIONS 91 CHAPTER 5 PLASMA-ENGINEERED GRAPHENE QUANTUM DOT-BASED NANOCOMPOSITES AS SMART CO2-PHILIC MEMBRANES WITH EXTREMELY HIGH SEPARATION PERFORMANCE 92 5.1 INTRODUCTION 92 5.2. EXPERIMENTAL SECTION 95 5.2.1 GQD@Pebax membrane fabrication. 95 5.2.2 Carbon capture measurement. 95 5.2.3 Theoretical calculation. 96 5.3 RESULTS AND DISCUSSION 97 5.3.1 GQD@Pebax membrane fabrication and characterization 97 5.3.2 Gas separation study of GQD@Pebax membranes 103 5.3.3 Theoretical calculation study of GQD@Pebax nanocomposite membranes 109 5.3.4 In situ PL spectroscopy study of GQD@Pebax membranes 113 5.4 CONCLUSION 115 CHAPTER 6 SUMMARY AND PERSPECTIVES 116 6.1 SUMMARY 116 6.2 PERSPECTIVES 118 REFERENCE 120 | - |
| dc.language.iso | en | - |
| dc.subject | 碳捕集 | zh_TW |
| dc.subject | 分子分離 | zh_TW |
| dc.subject | 石墨烯量子點 | zh_TW |
| dc.subject | 電漿奈米工程 | zh_TW |
| dc.subject | 奈米濾膜 | zh_TW |
| dc.subject | molecular separation | en |
| dc.subject | carbon capture | en |
| dc.subject | nanofiltration membranes | en |
| dc.subject | plasma nanotechnology | en |
| dc.subject | graphene quantum dots | en |
| dc.title | 石墨烯量子點混合基質薄膜進行多尺度分子分離 | zh_TW |
| dc.title | Graphene Quantum Dot-based Matrix Membrane for Multi-Scale Molecular Separation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 童國倫;江偉宏 | zh_TW |
| dc.contributor.coadvisor | Kuo-Lun Tung;Wei-Hung Chiang | en |
| dc.contributor.oralexamcommittee | 吳紀聖;張鑑祥;杜育銘;曹恆光;葉禮賢 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Sheng Wu;Chien-Hsiang Chang;Yu-Ming Tu;Heng-Kwong Tsao;Li-Hsien Yeh | en |
| dc.subject.keyword | 分子分離,石墨烯量子點,碳捕集,奈米濾膜,電漿奈米工程, | zh_TW |
| dc.subject.keyword | molecular separation,graphene quantum dots,carbon capture,nanofiltration membranes,plasma nanotechnology, | en |
| dc.relation.page | 144 | - |
| dc.identifier.doi | 10.6342/NTU202500737 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-02-21 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 6.96 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
