請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97286完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪茂蔚 | zh_TW |
| dc.contributor.advisor | Mao-Wei Hung | en |
| dc.contributor.author | 邱翊展 | zh_TW |
| dc.contributor.author | I-Chan Chiu | en |
| dc.date.accessioned | 2025-04-02T16:18:02Z | - |
| dc.date.available | 2025-04-03 | - |
| dc.date.copyright | 2025-04-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-27 | - |
| dc.identifier.citation | Azimi, M., & Agrawal, A. (2021). Is positive sentiment in corporate annual reports informative? Evidence from deep learning. The Review of Asset Pricing Studies, 11(4), 762–805.
Barber, B. M., & Odean, T. (2008). All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors. The Review of Financial Studies, 21(2), 785–818. Beaver, W. H. (1968). The Information Content of Annual Earnings Announcements. Journal of Accounting Research, 6, 67–92. Bingler, J., Kraus, M., Leippold, M., & Webersinke, N. (2023). How Cheap Talk in Climate Disclosures relates to Climate Initiatives, Corporate Emissions, and Reputation Risk (SSRN Scholarly Paper 4000708). Bochkay, K., Brown, S. V., Leone, A. J., & Tucker, J. W. (2023). Textual analysis in accounting: What’s next? Contemporary Accounting Research, 40(2), 765–805. Bochkay, K., Hales, J., & Chava, S. (2020). Hyperbole or reality? Investor response to extreme language in earnings conference calls. The Accounting Review, 95(2), 31–60. Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8. Boudoukh, J., Feldman, R., Kogan, S., & Richardson, M. (2013). Which News Moves Stock Prices? A Textual Analysis (Working Paper 18725). National Bureau of Economic Research. Brown, S. V., Hinson, L. A., & Tucker, J. W. (2023). Financial Statement Adequacy and Firms’ MD&A Disclosures (SSRN Scholarly Paper 3891572). Chang, E. C., Lin, T.-C., Luo, Y., & Ren, J. (2019). Ex-Day Returns of Stock Distributions: An Anchoring Explanation. Management Science, 65(3), 1076–1095. Chen, H., De, P., Hu, Y. (Jeffrey), & Hwang, B.-H. (2014). Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media. The Review of Financial Studies, 27(5), 1367–1403. Chiu, I. C., & Hung, M. W. (2025). Finance-specific large language models: Advancing sentiment analysis and return prediction with LLaMA 2. Pacific-Basin Finance Journal, 90, 102632. Cole, C. J., & Jones, C. L. (2004). The Usefulness of MD&A Disclosures in the Retail Industry. Journal of Accounting, Auditing & Finance, 19(4), 361–388. Coqueret, G. (2020). Stock-specific sentiment and return predictability. Quantitative Finance, 20(9), 1531–1551. Da, Z., Engelberg, J., & Gao, P. (2011). In Search of Attention. The Journal of Finance, 66(5), 1461–1499. Day, M.-Y., & Lee, C.-C. (2016). Deep learning for financial sentiment analysis on finance news providers. 1127–1134. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv Preprint arXiv:1810.04805. Kenton, J. D. M. W. C., & Toutanova, L. K. (2019, June). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of naacL-HLT (Vol. 1, p. 2). Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1–22. Fama, E. F., & MacBeth, J. D. (1973). Risk, Return, and Equilibrium: Empirical Tests. Journal of Political Economy, 81(3), 607–636. Fang, L., & Peress, J. (2009). Media Coverage and the Cross-section of Stock Returns. The Journal of Finance, 64(5), 2023–2052. Frankel, R., Jennings, J., & Lee, J. (2022). Disclosure sentiment: Machine learning vs. Dictionary methods. Management Science, 68(7), 5514–5532. Fu, H.-P., & Hua, W. (2023). On the relationship between sentiment gap and A-share premium in China. Finance Research Letters, 58, 104336. Fu, J., Wu, X., Liu, Y., & Chen, R. (2021). Firm-specific investor sentiment and stock price crash risk. Finance Research Letters, 38, 101442. Ghoshal, S., & Roberts, S. (2020). Thresholded ConvNet ensembles: Neural networks for technical forecasting. Neural Computing and Applications, 32(18), 15249–15262. Guo, M., Ainslie, J., Uthus, D., Ontanon, S., Ni, J., Sung, Y. H., & Yang, Y. (2021). LongT5: Efficient text-to-text transformer for long sequences. arXiv preprint arXiv:2112.07916. Heston, S. L., & Sinha, N. R. (2017). News vs. Sentiment: Predicting Stock Returns from News Stories. Financial Analysts Journal, 73(3), 67–83. Hiew, J. Z. G., Huang, X., Mou, H., Li, D., Wu, Q., & Xu, Y. (2019). BERT-based financial sentiment index and LSTM-based stock return predictability. arXiv preprint arXiv:1906.09024. Huang, A. H., Wang, H., & Yang, Y. (2023). FinBERT: A Large Language Model for Extracting Information from Financial Text*. Contemporary Accounting Research, 40(2), 806–841. Kelley, E. K., & Tetlock, P. C. (2013). How Wise Are Crowds? Insights from Retail Orders and Stock Returns. The Journal of Finance, 68(3), 1229–1265. Kim, J. S., Kim, D.-H., & Seo, S. W. (2017). Investor Sentiment and Return Predictability of the Option to Stock Volume Ratio. Financial Management, 46(3), 767–796. Kryściński, W., Rajani, N., Agarwal, D., Xiong, C., & Radev, D. (2021). Booksum: A collection of datasets for long-form narrative summarization. arXiv preprint arXiv:2105.08209. Li, F. (2010). Textual Analysis of Corporate Disclosures: A Survey of the Literature. Journal of Accounting Literature, 29, 143–165. Lonare, G., Patil, B., & Raut, N. (2021). edgar: An R package for the U.S. SEC EDGAR retrieval and parsing of corporate filings. SoftwareX, 16, 100865. Lopez-Lira, A., & Tang, Y. (2023). Can chatgpt forecast stock price movements? return predictability and large language models. arXiv preprint arXiv:2304.07619. Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10‐Ks. The Journal of Finance, 66(1), 35–65. Loughran, T., & McDonald, B. (2016). Textual analysis in accounting and finance: A survey. Journal of Accounting Research, 54(4), 1187–1230. Lutz, C. (2016). THE ASYMMETRIC EFFECTS OF INVESTOR SENTIMENT. Macroeconomic Dynamics, 20(6), 1477–1503. Malo, P., Sinha, A., Korhonen, P., Wallenius, J., & Takala, P. (2014). Good debt or bad debt: Detecting semantic orientations in economic texts. Journal of the Association for Information Science and Technology, 65(4), 782–796. Mishev, K., Gjorgjevikj, A., Vodenska, I., Chitkushev, L. T., & Trajanov, D. (2020). Evaluation of sentiment analysis in finance: From lexicons to transformers. IEEE Access, 8, 131662–131682. Muslu, V., Radhakrishnan, S., Subramanyam, K. R., & Lim, D. (2015). Forward-Looking MD&A Disclosures and the Information Environment. Management Science, 61(5), 931–948. Qian, B., & Tan, Y. (2024). Firm-specific investor sentiment and stock price informativeness. Finance Research Letters, 66, 105680. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 21(1), 5485–5551. Ren, R., Wu, D. D., & Liu, T. (2018). Forecasting stock market movement direction using sentiment analysis and support vector machine. IEEE Systems Journal, 13(1), 760-770. Renault, T. (2017). Intraday online investor sentiment and return patterns in the U.S. stock market. Journal of Banking & Finance, 84, 25–40. Romanko, O., Narayan, A., & Kwon, R. H. (2023). ChatGPT-Based Investment Portfolio Selection. Operations Research Forum, 4(4), 91. Ryu, D., Ryu, D., & Yang, H. (2023). Investor sentiment and futures market mispricing. Finance Research Letters, 58, 104559. Schmeling, M. (2009). Investor sentiment and stock returns: Some international evidence. Journal of Empirical Finance, 16(3), 394–408. Smailović, J., Grčar, M., Lavrač, N., & Žnidaršič, M. (2014). Stream-based active learning for sentiment analysis in the financial domain. Information Sciences, 285, 181–203. Souma, W., Vodenska, I., & Aoyama, H. (2019). Enhanced news sentiment analysis using deep learning methods. Journal of Computational Social Science, 2(1), 33–46. Stambaugh, R. F., Yu, J., & Yuan, Y. (2012). The short of it: Investor sentiment and anomalies. Journal of Financial Economics, 104(2), 288–302. Szemraj, P. (2022). Long-t5-tglobal-base-16384-book-summary (Revision 4b12bce). Hugging Face. Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., ... & Hashimoto, T. B. (2023). Alpaca: A strong, replicable instruction-following model. Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca. html, 3(6), 7. Tavcar, L. R. (1998). Make the MD&A more readable. The CPA Journal, 68(1), 10. Tetlock, P. C. (2007). Giving Content to Investor Sentiment: The Role of Media in the Stock Market. The Journal of Finance, 62(3), 1139–1168. Tetlock, P. C. (2010). Does Public Financial News Resolve Asymmetric Information? The Review of Financial Studies, 23(9), 3520–3557. Tetlock, P. C., Saar-Tsechansky, M., & Macskassy, S. (2008). More Than Words: Quantifying Language to Measure Firms’ Fundamentals. The Journal of Finance, 63(3), 1437–1467. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... & Lample, G. (2023). Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., ... & Scialom, T. (2023). Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288. Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., & Hajishirzi, H. (2023). Self-Instruct: Aligning Language Models with Self-Generated Instructions (arXiv:2212.10560). Xu, Y., Liang, C., Li, Y., & Huynh, T. L. D. (2022). News sentiment and stock return: Evidence from managers’ news coverages. Finance Research Letters, 48, 102959. Yang, Y., Tang, Y., & Tam, K. Y. (2023). Investlm: A large language model for investment using financial domain instruction tuning. arXiv preprint arXiv:2309.13064. Yu, J., & Yuan, Y. (2011). Investor sentiment and the mean–variance relation. Journal of Financial Economics, 100(2), 367–381. Zhang, J. L., Härdle, W. K., Chen, C. Y., & Bommes, E. (2016). Distillation of News Flow into Analysis of Stock Reactions. Journal of Business & Economic Statistics, 34(4), 547–563. Zhang, Z., Zohren, S., & Roberts, S. (2020). Deep Learning for Portfolio Optimization. The Journal of Financial Data Science, 2(4), 8–20. Zhu, F., Liu, Z., Feng, F., Wang, C., Li, M., & Chua, T. S. (2024). Tat-llm: A specialized language model for discrete reasoning over tabular and textual data. arXiv preprint arXiv:2401.13223. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97286 | - |
| dc.description.abstract | 本論文旨在探討「創新文本情感分析方法應用於報酬率預測」之可行性與成效,並著重於先進的自然語言處理技術與具關聯權重的事件指標在財務領域中的應用。全論文包含兩篇主要研究。第一篇研究利用LLaMA-2訓練財務特化之 大型語言模型,結合AI驅動文本摘要策略,針對 10-K 財務報表中的管理披露進行情感分析。實證結果顯示,經過AI摘要的文本能保留重要且具價格影響力的資訊,並在經財務特化訓練後之大語言模型預測後,可大幅提升買進持有報酬(BHR)與累積異常報酬(CAR)的預測準確度。在第二篇文章中,研究聚焦於RavenPack 提供的公司新聞文本情感資料,並創建了多項結合關聯度指標的情感度量,進一步檢驗其與股票報酬率之間的關係。結果顯示,關聯度較高的負面新聞往往帶來更強的異常報酬,說明投資人對悲觀情緒的過度反應在後期可能出現修正。上述兩篇研究綜合展現了大型語言模型、財務文本摘要技術與新聞關聯權重結合的價值,不僅深化了我們對市場動態與情感交互影響的理解,也為投資策略提供了操作上的參考方向。未來可將此框架應用於更多元的金融與經濟場域,進一步發揮 AI 駕馭大規模文本資料的潛力。 | zh_TW |
| dc.description.abstract | This dissertation investigates innovative textual sentiment analysis techniques for return prediction, highlighting the role of advanced natural language processing and relevance-weighted event metrics in financial contexts. The dissertation is composed of two distinct papers, each addressing a crucial aspect of sentiment-based analysis. In Paper 1, a fine-tuned LlaMA-2-based finance-specific large language model (LLM) model is coupled with an AI-driven summarization strategy, enabling the extraction of accurate sentiment signals from lengthy MD&A management disclosures of 10-K filings. Empirical results demonstrate that summarizing documents preserves critical price information and enables the sentiment predictability of finance-specific LLM, significantly improving buy-and-hold return (BHR) and cumulative abnormal return (CAR) predictions. In Paper 2, firm-specific news sentiment is examined using RavenPack data, with newly constructed sentiment indicators integrating relevance metrics. The analysis reveals that negative sentiment linked to higher event relevance often yields stronger abnormal returns, underscoring an investor overreaction mechanism. Together, these papers highlight the value of combining large language models, domain-specific summarization, and relevance weighting to capture subtle investor sentiment. The findings not only enhance our understanding of the interplay between textual data and market dynamics but also offer practical insights for portfolio managers seeking to leverage sentiment signals in trading strategies. Moreover, the frameworks proposed here provide a foundation for future research on AI-driven textual analysis in diverse financial and economic settings. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:18:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-04-02T16:18:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement i
Abstract (Chinese) iii Abstract iv Table of Contents v List of Figures vii List of Tables viii Chapter 1. Introduction 1 1.1 Background 1 1.2 Motivation and Research Questions 3 1.3 Research Objectives and Contributions 4 1.4 Organization of the Dissertation 5 Chapter 2. Finance-Specific Large Language Models: Advancing Sentiment Analysis and Return Prediction with LlaMA 2 6 2.1 Introduction 6 2.2 Methodology 11 2.2.1 Finance-specific LlaMA-2 Sentiment Model 12 2.2.2 AI-driven Summarization Process 18 2.3 Data 24 2.4 Empirical Findings 25 2.4.1 Results of Buy-and-Hold Strategies 25 2.4.2 Results of Cumulative Abnormal Returns (CARs) 27 2.4.3 Results during the Financial Turbulence Times 28 2.5 Conclusion 30 Chapter 3. Firm-Specific News Sentiment and Stock Returns: The Impact of Relevance and Time Frames 43 3.1 Introduction 43 3.2 Data and Indicators 45 3.3 Empirical Results 49 3.3.1 Abnormal Returns 50 3.3.2 Fama–Macbeth Regression 52 3.3.3 Double–sort Analysis 53 3.4 Conclusion 56 Chapter 4. Conclusion and Future Directions 65 4.1 Summary of Key Findings 65 4.2 Implications for Practice and Academia 65 4.3 Limitations and Directions for Future Research 67 4.4 Concluding Remarks 68 Reference 69 Appendices 74 | - |
| dc.language.iso | en | - |
| dc.subject | AI驅動文本摘要 | zh_TW |
| dc.subject | 管理披露 | zh_TW |
| dc.subject | 大語言模型 | zh_TW |
| dc.subject | RavenPack | zh_TW |
| dc.subject | 關聯度 | zh_TW |
| dc.subject | 報酬率預測 | zh_TW |
| dc.subject | 文本情感分析 | zh_TW |
| dc.subject | Return Prediction | en |
| dc.subject | Textual Sentiment Analysis | en |
| dc.subject | Large Language Models | en |
| dc.subject | AI-driven Summarization | en |
| dc.subject | Management Disclosure | en |
| dc.subject | RavenPack | en |
| dc.subject | Relevance | en |
| dc.title | 創新文本情感分析方法在報酬率預測中的應用 | zh_TW |
| dc.title | Innovative Textual Sentiment Analysis Methodology on Return Prediction | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 何耕宇 | zh_TW |
| dc.contributor.coadvisor | Keng-Yu Ho | en |
| dc.contributor.oralexamcommittee | 董澍琦;余士迪;陳嬿如;顏廣杰;蕭湛東;連振廷 | zh_TW |
| dc.contributor.oralexamcommittee | Shuh-Chyi Doong;Shih-Ti Yu;Yenn-Ru Chen;Kuang-Chieh Yen;Lawrence Hsiao;Chris Lien | en |
| dc.subject.keyword | 文本情感分析,大語言模型,AI驅動文本摘要,管理披露,RavenPack,關聯度,報酬率預測, | zh_TW |
| dc.subject.keyword | Textual Sentiment Analysis,Large Language Models,AI-driven Summarization,Management Disclosure,RavenPack,Relevance,Return Prediction, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202500753 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-03-03 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 財務金融學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
