Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97285
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林澤zh_TW
dc.contributor.advisorChe Linen
dc.contributor.author簡立誠zh_TW
dc.contributor.authorLi-Cheng Chienen
dc.date.accessioned2025-04-02T16:17:45Z-
dc.date.available2025-04-03-
dc.date.copyright2025-04-02-
dc.date.issued2025-
dc.date.submitted2025-03-25-
dc.identifier.citationReferences
Alaa Sagheer and Mostafa Kotb. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing, 2019.
George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff. A Transformer-based Framework for Multivariate Time Series Representation Learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Virtual Event Singapore, 2021.
Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural networks for multivariate time series with missing values. Scientific reports, 2018.
Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In The Eleventh International Conference on Learning Representations, 2023.
Rundong Zuo, Guozhong Li, Byron Choi, Sourav S. Bhowmick, Daphne Ngar-yin Mah, and Grace L. H. Wong. SVP-T: A Shape-Level Variable-Position Transformer for Multivariate Time Series Classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2023. Number: 9.
Azad Deihim, Eduardo Alonso, and Dimitra Apostolopoulou. Sttre: A spatio-temporal transformer with relative embeddings for multivariate time series forecasting. Neural Networks, 168:549–559, 2023.
S. Haneuse, D. Arterburn, and M. Daniels. Assessing missing data assumptions in ehr-based studies: A complex and underappreciated task. JAMA network open, 42:e210184, 2021.
Chenxi Sun, Shenda Hong, Moxian Song, and Hongyan Li. A review of deep learning methods for irregularly sampled medical time series data, 2020.
Steven Cheng-Xian Li and Benjamin M. Marlin. Learning from irregularly-sampled time series: A missing data perspective, 2020.
Sindhu Tipirneni and Chandan K. Reddy. Self-Supervised Transformer for Sparse and Irregularly Sampled Multivariate Clinical Time-Series, 2022. arXiv:2107.14293[cs].
Chun-Kai Huang, Yi-Hsien Hsieh, Ta-Jung Chien, Li-Cheng Chien, Shao-Hua Sun, Tung-Hung Su, Jia-Horng Kao, and Che Lin. Scalable numerical embeddings for multivariate time series: Enhancing healthcare data representation learning, 2024.
Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020.
Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length on the reasoning performance of large language models, 2024.
Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun. Transformers in Time Series: A Survey, 2023. arXiv:2202.07125 [cs, eess, stat].
Ranak Roy Chowdhury, Jiacheng Li, Xiyuan Zhang, Dezhi Hong, Rajesh K. Gupta, and Jingbo Shang. Primenet: Pre-training for irregular multivariate time series. Proceedings of the AAAI Conference on Artificial Intelligence, 37(6):7184–7192, Jun. 2023.
Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff. Transfer learning for clinical time series analysis using recurrent neural networks, 2018.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.
Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas, Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines, 2023.
Zhixuan Chu, Hongyan Hao, Xin Ouyang, Simeng Wang, Yan Wang, Yue Shen, Jinjie Gu, Qing Cui, Longfei Li, Siqiao Xue, James Y Zhang, and Sheng Li. Leveraging large language models for pre-trained recommender systems, 2023
Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting by reprogramming large language models. In International Conference on Learning Representations (ICLR), 2024.
Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot time series forecasters. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages 19622–19635. Curran Associates, Inc., 2023.
Yushan Jiang, Zijie Pan, Xikun Zhang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and Dongjin Song. Empowering time series analysis with large language models: A survey, 2024.
Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case, 2020. arXiv:2001.08317 [cs, stat].
Jake Grigsby, Zhe Wang, Nam Nguyen, and Yanjun Qi. Long-Range Transformers for Dynamic Spatiotemporal Forecasting, 2023. arXiv:2109.12218 [cs, stat].
Yanbo Xu, Shangqing Xu, Manav Ramprassad, Alexey Tumanov, and Chao Zhang. Transehr: Self-supervised transformer for clinical time series data. In Stefan Hegselmann, Antonio Parziale, Divya Shanmugam, Shengpu Tang, Mercy Nyamewaa Asiedu, Serina Chang, Tom Hartvigsen, and Harvineet Singh, editors, Proceedings of the 3rd Machine Learning for Health Symposium, volume 225 of Proceedings of Machine Learning Research, pages 623–635. PMLR, 10 Dec 2023.
Jiewen Deng, Renhe Jiang, Jiaqi Zhang, and Xuan Song. Multi-modality spatio-temporal forecasting via self-supervised learning. In Kate Larson, editor, Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24, pages 2018–2026. International Joint Conferences on Artificial Intelligence Organization, 8 2024. Main Track.
Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P. Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High definition video generation with diffusion models, 2022.
Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on multimodal large language models. National Science Review, November 2024.
Ching Chang, Wei-Yao Wang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Aligning pre-trained llms as data-efficient time-series forecasters, 2024.
Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized llms, 2023.
Pin-Yu Chen. Model reprogramming: Resource-efficient cross-domain machine learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 22584–22591, 2024.
Chao-Han Huck Yang, Yun-Yun Tsai, and Pin-Yu Chen. Voice2series: Reprogramming acoustic models for time series classification, 2022.
Ria Vinod, Pin-Yu Chen, and Payel Das. Reprogramming pretrained language models for protein sequence representation learning, 2023.
Zhenhao Xu, Zhaoyang Wang, Shucai Li, Xiao Zhang, and Peng Lin. Geopredict-llm: Intelligent tunnel advanced geological prediction by reprogramming large language models. Intelligent Geoengineering, 1(1):49–57, 2024.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
Yu-An Wang and Yun-Nung Chen. What do position embeddings learn? an empirical study of pre-trained language model positional encoding, 2020.
Chenxi Sun, Hongyan Li, Yaliang Li, and Shenda Hong. Test: Text prototype aligned embedding to activate llm’s ability for time series, 2024.
Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architecture, 2020.
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss for Dense Object Detection, 2018. arXiv:1708.02002 [cs].
Takaya Saito and Marc Rehmsmeier. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE, 2015. Publisher: Public Library of Science.
Frank E Harrell Jr, Kerry L Lee, and Daniel B Mark. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in medicine, 15(4):361–387, 1996.
V. Raykar, H. Steck, Balaji Krishnapuram, Cary Dehing-Oberije, and P. Lambin. On ranking in survival analysis: Bounds on the concordance index. pages 1209–1216, 2007.
A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 2000.
Max Horn, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. Set Functions for Time Series, 2020. arXiv:1909.12064 [cs, stat] version: 3.
A. E. W. Johnson, T. J. Pollard, L. Shen, L. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark. Johnson, a., pollard, t., shen, l. et al. mimic-iii, a freely accessible critical care database. sci data 3, 160035 (2016). https://doi.org/10.1038/sdata.2016.35, 2016. Scientific Data:3.160035.
Huan Song, Deepta Rajan, Jayaraman Thiagarajan, and Andreas Spanias. Attend and diagnose: Clinical time series analysis using attention models. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.
Satya Narayan Shukla and Benjamin M. Marlin. Multi-Time Attention Networks for Irregularly Sampled Time Series, 2021. arXiv:2101.10318 [cs].
Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.
Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.
Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016.
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023.
Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3):e0118432, 2015.
Maksims Kazijevs and Manar D Samad. Deep imputation of missing values in time series health data: A review with benchmarking. Journal of biomedical informatics, 144:104440, 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97285-
dc.description.abstract多變量時間序列(MTS)數據在精準醫療中發揮著關鍵作用,促進疾病風險預測和患者監測等核心任務。然而,傳統的嵌入方法在處理 MTS 數據時面臨許多挑戰,主要受限於高缺失率和複雜的變量間關係。大型語言模型(LLMs)在捕捉複雜模式方面展現出潛力,進而引發了對其在 MTS 分析中的廣泛探索。然而,MTS 數據的高缺失率挑戰了 LLMs 的時序列特性,使其相對於傳統方法的穩定優勢成為值得探討的問題。
我們提出 HSCANE-LLM,這是一種結合「分層可擴展數值嵌入(HSCANE)」和「重編程 LLMs」的混合框架。HSCANE 採用自注意力機制建模時間和空間依賴關係,並透過平衡輸入解析度和詞元效率來確保可擴展性。同時,藉由重編程技術整合預訓練 LLMs,使其能夠在無需微調的情況下識別複雜模式。可學習的輸入變換層將時間序列對齊至自然語言表示,降低計算資源需求和訓練時間,同時保留 LLMs 的預訓練知識。
在三個醫療 MTS 數據集上的實驗結果表明,HSCANE-LLM 在高缺失率情境中表現優異,超越了最新的嵌入式方法和簡單的重編程 LLMs,憑藉其混合結構有效應對數據稀疏性。然而,在較低缺失率的情況下,嵌入方法仍具有競爭力,突出了模型選擇需基於數據特性進行權衡。本研究針對缺失率進行了系統性分析,強調適應性模型選擇對於精準醫療中 MTS 分析的重要性。HSCANE-LLM 的成功不僅提升 LLMs 在 MTS 任務中的實際應用價值,更降低 LLMs 在醫療及更廣泛應用場景中的技術門檻。
zh_TW
dc.description.abstractMultivariate time series (MTS) data play a critical role in precision medicine, supporting key tasks such as disease risk prediction and patient monitoring. However, traditional embedding methods struggle with MTS data due to high missing rates and complex inter-variable relationships. Large language models (LLMs) have shown promise in capturing intricate patterns, sparking interest in their potential for MTS analysis. However, the high missing rates in MTS data challenge the sequential nature of LLMs, raising questions about their consistent superiority over traditional methods.
We propose HSCANE-LLM, a hybrid framework combining Hierarchical Scalable Numerical Embedding (HSCANE) with reprogrammed LLMs. HSCANE employs self-attention to model temporal and spatial dependencies while ensuring scalability by balancing input resolution and token efficiency. Meanwhile, pre-trained LLMs are integrated via reprogramming, allowing them to detect complex patterns without fine-tuning. Learnable input transformation layers align time series with natural language representations, reducing the need for computational resources and training time, while preserving the LLM's pre-trained knowledge.
Experiments on three medical MTS datasets reveal that HSCANE-LLM excels in high-missing-rate scenarios, outperforming both state-of-the-art embedding-based methods and naive reprogrammed LLMs, leveraging its hybrid structure to handle data sparsity. However, embedding methods remain competitive in cases with lower missing rates, highlighting trade-offs in model selection based on data characteristics. This study conducts a systematic analysis based on missing rates, emphasizing the importance of adaptive model selection for effective MTS analysis in precision medicine. The success of HSCANE-LLM not only enhances the practical applicability of LLMs for MTS tasks but also reduces the technical barriers to integrating LLMs into broader real-world applications in healthcare and beyond.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:17:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-04-02T16:17:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures x
List of Tables xi
1 Introduction 1
2 Related Work 5
2.1 Deep Learning Methods on MTS . . . . . . . . . . . . . . . . . . . 5
2.2 Temporal and Spatial Self-Attention . . . . . . . . . . . . . . . . . . 6
2.3 Cross-domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . 6
3 Methodology 8
3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Hierarchical Scalable Numerical Embeddings . . . . . . . . . . . . . 12
3.4.1 Initial Embedding . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 Positional Encoding . . . . . . . . . . . . . . . . . . . . . . 13
3.4.3 Heirarchical Self-Attention . . . . . . . . . . . . . . . . . . . 14
3.5 HSCANE-LLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.1 Embedding Reprogramming . . . . . . . . . . . . . . . . . . 16
3.5.2 Prefix Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.3 Output Projection . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Focal Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7.1 Confusion Matrix and Accuracy . . . . . . . . . . . . . . . . 23
3.7.2 Area under Receiver Operating Characteristic Curve . . . . . 26
3.7.3 Area under Precision-Recall Curve . . . . . . . . . . . . . . 27
3.7.4 Concordance Index . . . . . . . . . . . . . . . . . . . . . . . 28
4 Experiment 30
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.1 PhysioNet 2012 Dataset (P12) . . . . . . . . . . . . . . . . . 30
4.1.2 MIMIC-III Dataset (MI3) . . . . . . . . . . . . . . . . . . . 31
4.1.3 Hepatocellular Carcinoma Dataset from National Taiwan University (HCC) . . . 32
4.2 Baselines and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Results and Discussion 38
5.1 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.1 The Importance of Cross-modality Alignment . . . . . . . . . 45
5.2.2 Prompt Study . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Backbone Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Efficiency Comparison with Model Fine-Tuning . . . . . . . . . . . 52
6 Conclusion 55
References 57
-
dc.language.isoen-
dc.subject高缺失率zh_TW
dc.subject深度學習zh_TW
dc.subject多變量時序列數據zh_TW
dc.subject精準醫療zh_TW
dc.subject大型語言模型zh_TW
dc.subjectlarge language modelsen
dc.subjecthigh missing rateen
dc.subjectprecision medicineen
dc.subjectdeep learningen
dc.subjectmultivariate time-series dataen
dc.title大型語言模型 vs. 嵌入方法應用於醫療多變量時間序列:基於缺失率的系統性分析zh_TW
dc.titleLarge Language Models vs. Embedding Methods for Medical Multivariate Time Series: A Systematic Analysis on Missing Ratesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor楊欣洲zh_TW
dc.contributor.coadvisorHsin-Chou Yangen
dc.contributor.oralexamcommittee李宏毅;陳品諭zh_TW
dc.contributor.oralexamcommitteeHung-Yi Lee;Pin-Yu Chenen
dc.subject.keyword深度學習,多變量時序列數據,大型語言模型,高缺失率,精準醫療,zh_TW
dc.subject.keyworddeep learning,multivariate time-series data,large language models,high missing rate,precision medicine,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202500789-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-03-25-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資料科學學位學程-
dc.date.embargo-lift2027-03-25-
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2027-03-25
2.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved