請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97283完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信樹 | zh_TW |
| dc.contributor.advisor | Hsin-Shu Chen | en |
| dc.contributor.author | 蔡孟智 | zh_TW |
| dc.contributor.author | Meng-Chih Tsai | en |
| dc.date.accessioned | 2025-04-02T16:17:12Z | - |
| dc.date.available | 2025-04-03 | - |
| dc.date.copyright | 2025-04-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-03-17 | - |
| dc.identifier.citation | [ 1 ] Z. Qu, G. Zhang, H. Cao and J. Xie, "LEO satellite constellation for Internet of Things", IEEE Access, vol. 5, pp. 18391-18401, 2017.
[ 2 ] Y. Hu and V. O. K. Li, "Satellite-based Internet: A tutorial, " IEEE Commun. Mag., vol. 39, no. 3, pp. 154–162, Mar. 2001. [ 3 ] "Differences between LEO and GEO Satellites" (2022) Retrieved From https://www.diteltech.com/info-detail/differences-between-leo-and-geo-satellites [ 4 ] "LEO vs. MEO vs. GEO Satellites: What's the Difference? " (2018) Retrieved From https://www.symmetryelectronics.com/blog/leo-vs-meo-vs-geo-satellites-what-s-the-difference-symmetry-blog/ [ 5 ] Raoul Velazco, Dale McMorrow, Jaime Estela, “Radiation Effects on Integrated Circuits and Systems for Space Applications,” Springer Nature Switzerland, 2019. [ 6 ] Jeffrey Prinzie, Michiel Steyaert, Paul Leroux, “Radiation Hardened CMOS Integrated Circuits for Time-Based Signal Processing,” Springer Nature Switzerland, 2018. [ 7 ] Robert Baumann, Kirby Kruckmeyer, “Radiation Handbook for Electronics,” Texas Instruments Incorporated, 2019. [ 8 ] Arisa Kimura, “Simulation of a ring oscillator operation during γray irradiation using the TID response model of MOSFETs and its experimental verification” Japanese Journal of Applied Physics, 2023. [ 9 ] Marc Poizat, “TIND Total Non Ionizing Dose or DD Displacement Damage” Radiation Environment and its Effects in EEE Components and Hardness Assurance for Space Applications, CERN-ESA-SSC workshop, 2017. [ 10 ]National Institute of Standards and Technology (NIST) PSTAR: Stopping Power and Range Tables for Proton. https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html [ 11 ] J. R. Srour and J. W. Palko, "Displacement damage effects in irradiated semiconductor devices", IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 1740-1766, Jun. 2013. [ 12 ] Marc Poizat, “TID Total Ionizing Dose” Radiation Environment and its Effects in EEE Components and Hardness Assurance for Space Applications, CERN-ESA-SSC workshop, 2017. [ 13 ] J. R. Schwank et al., "Radiation effects in MOS oxides", IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 1833-1853, Aug. 2008. [ 14 ] C.-M. Zhang, F. Jazaeri, G. Borghello, F. Faccio, S. Mattiazzo, A. Baschirotto, et al., "Characterization and modeling of gigarad-TID-induced drain leakage current of 28-nm bulk MOSFETs", IEEE Trans. Nucl. Sci., vol. 66, no. 1, pp. 38-47, Jan. 2019. [ 15 ] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,” IEEE Trans. Device Materials and Reliability 5(3), Sept. 2005, pp. 305-316. [ 16 ] “TPS50601-SP Single-Event Effects Summary,”Texas Instruments Radiation Report SLAK017A, Dec. 2017, pp. 1-30. [ 17 ] P. E. Dodd and F. W. Sexton, “Critical charge concepts for CMOS SRAMs,” IEEE Trans. Nucl. Sci. 42(6), Dec. 1996, pp. 1764-1771. [ 18 ] S. Satoh, Y. Tosaka and S. A. Wender, “Geometric effect of multiple-bit soft errors induced by cosmic ray neutrons on DRAMs,” IEEE Electron Device Letters 21(6), June 2000, pp. 310-312. [ 19 ] R. Koga, S. H. Penzin, K. B. Crawford and W. R. Crain,“Single event functional interrupt (SEFI) sensitivity in microcircuits,”in Proceedings of the Fourth European Conference on Radiation and Its Effects on Components and Systems (RADECS), Sept. 1998, pp. 311-318. [ 20 ] G.H. Johnson, J.H. Hohl, R.D. Schrimpf and K.F. Galloway, “Simulating Single-Event Burnout of N-Channel Power MOSFETs,” IEEE Trans. Electron Devices 40, 1993,pp. 1001-1008. [ 21 ] J.R. Brews et al., “A Conceptual Model of Single-Event Gate Rupture in Power MOSFETs,” IEEE Trans. Nucl. Sci. 40(6), Dec. 1993, pp. 1959-1966. [ 22 ] G. Bruguier and J-M. Palau, “Single Particle-Induced Latchup,”IEEE Trans. Nucl. Sci. 43(2), April 1996, pp. 522-532. [ 23 ] N. A. Dodds et al., “Selection of Well Contact Densities for Latchup-Immune Minimal-Area ICs,” IEEE Trans. Nuclear Sci. 57(6), Dec. 2010, pp. 3575-3581. [ 24 ] Lochner, S.; Deppe, H. Radiation studies on the UMC 180 nm CMOS process at GSI. In Proceedings of the 2009 European Conference on Radiation and Its Effects on Components and Systems, Bruges, Belgium, 14–18 September 2009; pp. 614–616. [ 25 ]Space product assurance, Techniques for radiation effects mitigation in ASICs and FPGAs handbook, ECSS-Q-HB-60-02A, 1, September, 2016. [ 26 ]P. Roche G. Gasiot, "Impacts of front-end and middle-end process modifications on terrestrial soft error rate”, Device and Materials Reliability, IEEE Transactions on, vol. 5, no. 3, p. 382, Sep. 2005. [ 27 ] E. Simoen, A. Mercha, C. Claeys, N. Lukyanchikova, "Low-frequency noise in silicon-on-insulator devices and technologies”, Solid State Electronics, vol. 51, pp. 16-37, 2007. [ 28 ] T. D. Loveless, L. W. Massengill, W. T. Holman, B. L. Bhuva, "Modeling and Mitigating Single-Event Transients in Voltage control Oscillators”, Nuclear Science, IEEE Transactions on, vol. 54, no. 6, pp. 2561-2567, Dec. 2007. [ 29 ] G. L. Hash, M. R. Shaneyfelt, F. W. Sexton and P. S. Winokur, "Radiation Hardness Assurance of COTS Technologies", IEEE Radiation Effects Data Workshop Record IEEE Catalog Number 97TH8293, no. 35, 1997. [ 30 ] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA, USA: Kluwer, 2001. [ 31 ] B. Sahu and G. A. Rincon-Mora, "A low voltage dynamic noninverting synchronous buck-boost converter for portable applications", IEEE Trans. Power Electron., vol. 19, no. 2, pp. 443-452, Mar. 2004. [ 32 ] Tony Chan Carusone, David A. Johns, Kenneth W. Martin, “Analog Integrated Circuit Design, 2nd edition” John Wiley & Sons [ 33 ] Phillip E. Allen, CMOS Analog Circuit Design, 3rd ed. Oxford University Press, 2011. [ 34 ] J. J. Chen, P. N. Shen, Y. S. Hwang, "A high-efficiency positive Buck-Boost Converter with mode-select circuit and feed-forward techniques," IEEE Trans. on Power Electron., vol. 28, no. 9, pp. 4240-4246, Sep. 2013 [ 35 ] K. Woo, J. Oh and B. Yang, "DC – DC Buck Converter Using Analog Coarse-Fine Self-Tracking Zero-Current Detection Scheme", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 66, no. 11, pp. 1850-1854, Nov. 2019. [ 36 ] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA, USA: Kluwer, 2001. [ 37 ] T. D. Loveless, L. W. Massengill, W. T. Holman, B. L. Bhuva, "Modeling and Mitigating Single-Event Transients in Voltage control Oscillators”, Nuclear Science, IEEE Transactions on, vol. 54, no. 6, pp. 2561-2567, Dec. 2007. [ 38 ] M. C. Casey, B. L. Bhuva, J. D. Black, L. W. Massengill, O. A. Amusan and A. F. Witulski, "Single-event tolerant latch using cascode-voltage switch logic gates", IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3386-3391, Dec. 2006. [ 39 ] J. Wang, P. Li, X. Wei, R. Zheng and Y. Hu, "A single event transient immune oscillator for DC-DC converter controllers", 2017 IEEE International Conference on Signal Processing Communications and Computing (ICSPCC), pp. 1-5, 2017. [ 40 ] M. D. Berg, K. A. LaBel, H. Kim, M. Friendlich, A. Phan, C. Perez, "A Comprehensive Methodology for Complex Field Programmable Gate Array Single Event Effects Test and Evaluation”, Nuclear Science, IEEE Transactions on , vol. 56, no. 2, pp. 366-374, 2009. [ 41 ] X. Zhao, L. Wang and S. Yue, "Single event transients of scan flip-flop and an SET-immune redundant delay filter (RDF)", Proc. RADECS, pp. 1-5, Sep. 2013. [ 42 ]W. D. Newhauser and R. Zhang. The physics of proton therapy. Physics in medicine and biology, 60(8):R155, Mar. 2015. [ 43 ] National Institute of Standards and Technology (NIST) PSTAR: Stopping Power and Range Tables for Proton. https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html [ 44 ] D. M. Hiemstra and E. W. Blackmore, “LET spectra of proton energy levels from 50 to 500 MeV and their effectiveness for single event effects characterization of microelectronics,” IEEE Trans. Nucl. Sci., vol. 50, no. 6, pp. 2245–2250, Dec. 2003. [ 45 ] Experimental Nuclear Reaction Data : https://www-nds.iaea.org/exfor/ [ 46 ] J. Barak, "Analytical microdosimetry model for proton-induced SEU in modern devices", IEEE Trans. Nucl. Sci., vol. 48, no. 6, pp. 1937-1945, Dec. 2001 [ 47 ] Y.-L Chen, “Design and Implementation of a Single Event Effects Hardening Comparator and Digital Circuit”, National Taiwan University Master Thesis, May, 2022 [ 48 ] F. Miller, N. Buard, T. Carriere, R. Dufayel, R. Gaillard, P. Poirot, J.-M. Palau, B. Sagnes, and P. Fouillat, “Effects of beam spot size on the correlation between laser and heavy-ion testing [ 49 ] Buchner, Stephen P., et al. "Pulsed-laser testing for single-event effects investigations." IEEE Transactions on Nuclear Science 60.3 (2013): 1852-1875. [ 50 ]S.-B Yu, “Establishment of an analysis method for short-pulse laser-induced single-event transient phenomena in comparator circuits”, National Taiwan University Master Thesis, Jul, 2023 [ 51 ] N Liu, Z Guo, H Lu et al., "Single Event Effects Radiation Hardened by Design for DC-DC Converter Based on Automatic Detection and Dynamic Compensation[C]", 2022 IEEE 5th International Conference on Electronics Technology (ICET), pp. 426-430, 2022. [ 52 ] ZhuoJun Chen, PengFei Shuai, "Single-Event Transient Effect and Hardness Design of DSD Power Converter", 2023 5th International Conference on Radiation Effects of Electronic Devices (ICREED), pp.1-4, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97283 | - |
| dc.description.abstract | 隨著火箭發射成本降低,衛星通訊成為未來通訊發展的關鍵。衛星系統中,壓降轉換器可能受輻射引起的單事件效應(SEE)影響,導致輸出電壓擾動甚至造成系統損壞。
本研究以雙指數電流模型模擬SEE,並且以LET=15 (MeV*cm^2)/mg作為標準測試傳統電壓控制壓降轉換器。模擬顯示,運算放大器為傳統電壓控制壓降轉換器中最敏感之電路,將運算放大器組成緩衝器模擬SEE發生時,緩衝器在輸出電壓0.9V下輸出電壓擾動最大達到85mV。當運算放大器發生SEE時,傳統電壓控制壓降轉換器最大輸出擾動達到10mV。根據模擬使用類比冗餘、CVSL、延遲冗餘濾波器及DICE栓鎖器改善設計。模擬結果顯示單事件容忍緩衝器擾動自85mV降至26mV,單事件容忍電壓控制轉換器輸出電壓擾動自10mV降至3.3mV,有效減緩單事件對電壓控制壓降轉換器造成之影響。 本論文設計之傳統與單事件容忍電壓控制壓降轉換器皆使用台積電180奈米 CMOS製程製作,在質子測試中,使用動能230MeV、通量〖10〗^8 #/(s*cm^2 ) 姪子束照射三分鐘,傳統與單事件容忍緩衝器皆未觀察到SEE;雷射測試中,我們使用800nm波長雷射,其重複率為75MHz並且最大功率為30mW(單發雷射400pJ)。傳統緩衝器輸出恆定誤差隨雷射功率增加,單事件容忍緩衝器則無恆定誤差,抗輻射設計有效抵抗單事件效應干擾。與緩衝器相似,在模擬中傳統電壓控制壓降轉換器隨雷射能量增加輸出恆定誤差增加,並且在雷射注入電流超過5μA後無法穩定輸出電壓,而單事件容忍電壓控制壓降轉換器在任何注入電流下均保持輸出電壓穩定且無恆定誤差,證明設計有效抵抗單事件效應。 | zh_TW |
| dc.description.abstract | As the cost of rocket launches decreases, satellite communications have become the key to future communications. In satellite systems, buck converters may be affected by single-event effects (SEE) caused by radiation. SEE can cause output voltage disturbances or even system damage.
This thesis uses a double-exponential current model to simulate SEEs, using LET=15 (MeV*cm^2)/mg as the standard for testing conventional voltage control buck converter. Simulations show that OP-AMP is the most sensitive circuit in voltage control buck converter. When OP-AMP is formed into a unit gain buffer(UGB) and tested under SEE, the UGB output voltage disturbance reaches 85 mV with 0.9V output voltage. For conventional voltage control buck converters, radiation hits OP-AMP, which can lead to 10mV voltage disturbance at the buck converter output. To mitigate these effects, analogue average, cascode voltage switch logic(CVSL), redundant delay filter, and DICE latch are used and tested. Simulation results show that the SE-tolerant UGB reduces disturbances from 85 mV to 26 mV, and the SE-tolerant voltage control buck converter reduces output disturbances from 10 mV to just 3.3 mV. Simulation shows SE-tolerant designs effectively minimize SEE-induced impacts. Conventional and SE-tolerant voltage control buck converters were fabricated using 180 nm CMOS process. In proton testing, we use proton beam with 230MeV kinetic energy and flux is 〖10〗^8 #/(s*cm^2 ).Neither the conventional nor SEE-tolerant buffers observed any SEE. In laser testing, we use an 800 nm laser with a 75 MHz repetition rate and max power of 30 mW (400pJ per shot). The conventional UGB showed a steady-state error that increased with laser power. In contrast, the SE-tolerant buffer showed no error, confirming the effectiveness of the SE-tolerant design. Similarly, simulations showed that the conventional voltage control buck converter's steady-state error increased with higher laser energy and became unstable beyond 5 μA of injected current. In contrast, the SE-tolerant voltage control buck converter’s output maintained stable and no error under all tested current injection conditions. Test and simulation results validate that SE-tolerant designs can against SEEs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:17:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-04-02T16:17:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 II
誌謝 III 摘要 IV ABSTRACT VI CONTENTS VIII LIST OF FIGURES XII LIST OF TABLES XVIII CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 4 CHAPTER 2 FUNDAMENTAL OF RADIATION EFFECTS 5 2.1 INTRODUCTION 5 2.2 DISPLACEMENT DAMAGE 11 2.3 TOTAL IONIZING DOSE EFFECTS 15 2.4 SINGLE-EVENT EFFECTS 18 2.5 RADIATION EFFECTS MITIGATION METHODS 22 2.6 SUMMARY 28 CHAPTER 3 A CONVENTIONAL VOLTAGE CONTROL BUCK CONVERTER 30 3.1 BUCK CONVERTER ARCHITECTURE 30 3.2 CIRCUIT IMPLEMENTATION 35 3.2.1 Power Stage 36 3.2.2 Two-Stage OP-AMP and Type III Compensation Network 38 3.2.3 Comparator 43 3.2.4 Non-Overlapping Circuit 45 3.2.5 Zero Current Detector (ZCD) 47 3.2.6 Soft Start-Up 49 3.2.7 Ramp Generator 51 3.3 SIMULATION RESULT 53 3.3.1 Performance Simulation 53 3.3.2 SEE Response of Conventional Voltage Control Buck Converter 57 3.4 SUMMARY 58 CHAPTER 4 A SINGLE EVENT TOLERANT VOLTAGE CONTROL BUCK CONVERTER 59 4.1 SE-TOLERANT METHODS TO RESIST SEE IN SUB-BLOCK 59 4.2 CIRCUIT IMPLEMENTATION 61 4.2.1 Analogue Redundancy OP-AMP 62 4.2.2 Cascode-Voltage Switch Logic Gate 64 4.2.3 Redundant Delay Filter And Dual Interlocked Latch (DICE) 66 4.3 SIMULATION RESULT 71 4.3.1 Performance Simulation 71 4.3.2 SEE Response of SE-tolerant Voltage Control Buck Converter 73 4.4 SUMMARY 74 CHAPTER 5 TESTING ENVIRONMENT AND EXPERIMENT RESULT 76 5.1 VOLTAGE CONTROL BUCK CONVERTER EXPERIMENTAL RESULTS 76 5.1.1 Conventional Voltage Control Buck Converter 77 5.1.2 SE-tolerant Voltage Control Buck Converter 81 5.2 PROTON BEAM TEST 85 5.2.1 Linear Energy Transfer (LET) of Proton 85 5.2.2 Unit Gain Buffer Test Result 91 5.3 LASER BEAM TEST 96 5.3.1 Linear Energy Transfer (LET) of Photon 97 5.3.2 Unit Gain Buffer Simulation and Test Result 100 5.3.3 Buck Converter Simulation Result 107 5.4 SUMMARY 114 CHAPTER 6 CONCLUSION AND FUTURE WORK 117 6.1 CONCLUSION 117 6.2 FUTURE WORK 118 APPENDIX 120 APPENDIX A STOPPING POWER AND RANGE TABLES FROM NIST 120 APPENDIX B IMPORTANT DATA FROM THE WEBSITE 121 REFERENCE 123 | - |
| dc.language.iso | en | - |
| dc.subject | 電壓控制壓降轉換器 | zh_TW |
| dc.subject | 質子測試 | zh_TW |
| dc.subject | 雷射測試 | zh_TW |
| dc.subject | 類比冗餘 | zh_TW |
| dc.subject | 單事件效應 | zh_TW |
| dc.subject | Laser Testing | en |
| dc.subject | SE-tolerant Chip | en |
| dc.subject | Voltage Control Buck converter | en |
| dc.subject | Analogue redundancy | en |
| dc.subject | Proton testing | en |
| dc.title | 實作與驗證單事件效應容忍壓降轉換器 | zh_TW |
| dc.title | Implementation and Verification of Single Event Tolerant Buck Converter | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李佳翰;蔡坤諭 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Han Li;Kuen-Yu Tsai | en |
| dc.subject.keyword | 單事件效應,電壓控制壓降轉換器,類比冗餘,質子測試,雷射測試, | zh_TW |
| dc.subject.keyword | SE-tolerant Chip,Voltage Control Buck converter,Analogue redundancy,Proton testing,Laser Testing, | en |
| dc.relation.page | 130 | - |
| dc.identifier.doi | 10.6342/NTU202500767 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-03-17 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
