請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97260完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林國峰 | zh_TW |
| dc.contributor.advisor | Gwo-Fong Lin | en |
| dc.contributor.author | 李紹煌 | zh_TW |
| dc.contributor.author | Shao-Huang Lee | en |
| dc.date.accessioned | 2025-03-06T16:09:20Z | - |
| dc.date.available | 2025-03-07 | - |
| dc.date.copyright | 2025-03-06 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-12 | - |
| dc.identifier.citation | 1.Fang, X., & Kuo, Y. H. (2013). Improving ensemble-based quantitative precipitation forecast for topography-enhanced typhoon heavy rainfall over Taiwan with modified probability-matching technique. Monthly Weather Review, 141, 3908–3932.
2.Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130–141. 3.Lorenz, E. N. (1965). A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321–333. 4.Tracton, S., & Kalnay, E. (1993). Ensemble forecasting at NMC: Operational implementation. Weather Forecasting, 8, 379–398. 5.Buizza, R., & Palmer, T. N. (1998). Impact of ensemble size on ensemble prediction. Monthly Weather Review, 126, 2503–2518. 6.Wilby, R., Dawson, C., & Barrow, E. (2002). Sdsm — A decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 145–157. 7.Devak, M., Dhanya, C., & Gosain, A. (2015). Dynamic coupling of support vector machine and K-nearest neighbour for downscaling daily rainfall. Journal of Hydrology, 525, 286–301. 8.Chen, S., Yu, P., & Tang, Y. (2010). Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385(1-4), 13–22. 9.Chen, P., Tung, C., Tsao, J., & Chen, C. (2021). Assessing future rainfall intensity–duration–frequency characteristics across Taiwan using the k-nearest neighbor method. Water, 13(11), 1521. 10.Wilks, D. S. (1992). Adapting stochastic weather generation algorithms for climate change studies. Climatic Change, 22(1), 67–84. 11.Eum, H., Simonovic, S. P., & Kim, Y. (2010). Climate change impact assessment using k-nearest neighbor weather generator: Case study of the Nakdong River Basin in Korea. Journal of Hydrologic Engineering, 15(10), 772–785. 12.Deb, C., Zhang, F., Yang, J., Lee, S. E., & Shah, K. W. (2017). A review on time series forecasting techniques for building energy consumption. Renewable and Sustainable Energy Reviews, 74, 902–924. 13.Kalra, A., & Ahmad, S. (2011). Evaluating changes and estimating seasonal precipitation for the Colorado River Basin using a stochastic nonparametric disaggregation technique. Water Resources Research, 47(5). 14.Lin, G. F., Jhong, B. C., & Chang, C. C. (2013). Development of an effective data-driven model for hourly typhoon rainfall forecasting. Journal of Hydrology, 495, 52–63. 15.Liu, Y., Zhang, T., Kang, A., Li, J., & Lei, X. (2021). Research on runoff simulations using deep-learning methods. Sustainability, 13(3), 1336. 16.Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water, 10(11), 1543. 17.Wu, X., Dunne, R., Yu, Z., & Shi, W. (2017). STREMS: A smart real-time solution toward enhancing EMS prehospital quality. In 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) (pp. 365–372). IEEE. 18.Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer. 19.Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press. 20.Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid search, random search, genetic algorithm: A big comparison for NAS. arXiv preprint arXiv:1912.06059. 21.Lin, G., Chang, M., & Wang, C. (2017). A novel spatiotemporal statistical downscaling method for hourly rainfall. Water Resources Management, 31(11), 3465–3489. 22.Popescu, M. C., Balas, V. E., Perescu-Popescu, L., & Mastorakis, N. (2009). Multilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8(7), 579–588. 23.Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation. Nature, 323(6088), 533–536. 24.Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554. 25.Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211. 26.Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. 27.Cho, K., Merrienboer, B. V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 28.Zhang, J., Howard, K., Langston, C., et al. (2011). National mosaic and multi-sensor QPE (NMQ) system. Bulletin of the American Meteorological Society, 92, 1321–1338. 29.陳冠儒、張惠玲、吳佳榮、汪琮、洪景山、楊舒芝 (2018). 臺灣地區WRF颱風系集降雨機率預報之評估、校正與經濟價值分析-第三部分:經濟價值分析. 30.鄭承翰、鄭安孺、方裕仁 (2016). 氣象單位降雨預報資料整合與供應. 31.黃椿喜、呂國臣、洪景山 (2012). 系集預報系統在氣象署鄉鎮精緻化預報之應用. 32.曹嘉宏、洪景山 (2011). 系集模式颱風定量降水:個案研究. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97260 | - |
| dc.description.abstract | 氣候變遷導致極端氣候頻率增加,使得水庫入流量的準確預報成為水資源管理的核心挑戰。本研究針對短期與長期流量預報模式進行深入研究,提出創新的預測框架,以提升水庫操作及用水策略的科學依據。
在短期預報部分,本研究針對傳統簡單平均法(Ensemble Mean, EM)的局限性,提出交替預報模式(Switch Prediction Method, SPM),整合中央氣象署的系集降雨產品,包括WEPSPro_PM、CWBWRF_W0、ETQPF、QPF與STMAS_WRF,並與支援向量機(Support Vector Machine, SVM)和多步階預報(Multi-step Forecasting, MSF) 結合,實現未來72小時逐時入流量的準確預測。研究以石門水庫為案例,對2004年至2019年間的18場颱風進行測試,結果顯示,SPM在整合降雨資料及水庫入流量預測的表現均優於EM,不僅能減少誤差,亦能提供兼具定率性與機率性的預報結果,為水庫洩洪與蓄洪決策提供強有力的技術支持。 在長期預報部分,本研究整合中央氣象署第一代海氣耦合模式 (TCWB1T1),並應用K-最近鄰居法 (K-Nearest Neighbor, KNN) 將大尺度雨量及溫度資料降至集水區尺度,進一步結合六種機器學習與深度學習法,包括支援向量機、多層感知器、深度神經網路、遞迴神經網路、長短期記憶及門控遞迴單元,對臺灣中南部六大集水區未來180日入流量進行預測。結果顯示,各研究區域於枯水期與豐水期的預報模式以深度學習法為主,尤其以深度神經網路(DNN)的表現最佳,能有效掌握流量趨勢,並提供穩定準確的預報結果。 本研究所提出的短期與長期流量預報模式,分別針對突發性氣候事件與長期水文變化設計,既能快速反應颱風等極端事件,又能為乾旱期的用水策略提供科學依據。透過提升預報準確度及降低不確定性,本研究成果將對水庫管理及水資源調配提供強有力的支持。 | zh_TW |
| dc.description.abstract | Climate change has led to an increase in the frequency of extreme weather events, which makes accurate reservoir inflow forecasting a critical challenge in water resources management. This study focuses on both short-term and long-term inflow forecasting models, and innovative frameworks to enhance scientific support for reservoir operations and water usage strategies are proposed.
For the short-term forecasting, this study addresses the limitations of traditional ensemble mean (EM) methods by introducing the Switch Prediction Method (SPM). The SPM integrates ensemble rainfall products from the Central Weather Bureau, including WEPSPro_PM, CWBWRF_W0, ETQPF, QPF, and STMAS_WRF. Combined with Support Vector Machine (SVM) and Multi-step Forecasting (MSF), the proposed framework accurately predicts reservoir inflows for the next 72 hours on an hourly basis. Using Shimen Reservoir as a case study, 18 typhoon events from 2004 to 2019 are analyzed. The results demonstrate that the SPM outperforms the EM in both rainfall data integration and reservoir inflow prediction; the SPM effectively reduces errors while providing both deterministic and probabilistic forecasts. This approach offers robust technical support for decision-making in reservoir flood and storage management. For the long-term forecasting, this study leverages the first-generation coupled ocean-atmosphere model (TCWB1T1) developed by the Central Weather Bureau and applies the K-Nearest Neighbor (KNN) method to downscale large-scale rainfall and temperature data to the watershed scale. Additionally, six machine learning and deep learning methods are employed, including Support Vector Machine, Multi-layer Perceptron, Deep Neural Network (DNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), to predict inflows for the next 180 days across six major watersheds in southern Taiwan. Results indicate that deep learning methods, particularly DNN, outperform machine learning methods in capturing inflow trends during both dry and wet seasons. The deep learning methods provide stable and accurate long-term forecasts. The proposed short-term and long-term inflow forecasting models are tailored to address both sudden climatic events and long-term hydrological changes. These models offer rapid responses to extreme events such as typhoons while providing scientific foundations for water usage strategies during droughts. By improving forecast accuracy and reducing uncertainty, the findings of this study provide strong support for reservoir managements and water resources allocation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-03-06T16:09:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-03-06T16:09:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 目次 v 圖次 vii 表次 x 1.前言 1 1.1.研究背景與動機 1 1.2.研究目的 4 1.3.論文架構 5 2.研究方法 6 2.1.短期入流量預測模式 6 2.1.1. 交替預報法 6 2.1.2. 支援向量機 9 2.1.3. 多步階預報 11 2.1.4. 網格搜尋法 13 2.2.長期入流量預測模式 14 2.2.1. K-最近鄰居法 14 2.2.2. 機器學習法 17 2.2.3. 深度學習法 18 2.3.研究流程 23 2.3.1. 短期入流量預測模式流程 23 2.3.2. 長期入流量預測模式流程 24 2.4.評鑑指標 26 3.研究區域與資料 29 3.1.石門水庫區域 29 3.1.1. 研究區域背景概述 29 3.1.2. 研究資料 30 3.2.中南部六座水庫 33 3.2.1. 研究區域背景概述及觀測資料 33 3.2.2. 第一代海氣耦合模式 46 4.結果與討論 48 4.1.短期入流量預測成果 48 4.1.1. 系集降雨整合模式 48 4.1.2. 降雨逕流模式成果 58 4.2.長期入流量預測成果 75 4.2.1. 雨量降尺度 76 4.2.2. 溫度降尺度 109 4.2.3. 長期流量預報模式 118 5.結論與建議 147 5.1.結論 147 5.2.建議 149 6.參考文獻 151 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 交替預報模式 | zh_TW |
| dc.subject | 中央氣象署第一代海氣耦合模式 | zh_TW |
| dc.subject | 深度神經網路 | zh_TW |
| dc.subject | 支援向量機 | zh_TW |
| dc.subject | K-最近鄰居法 | zh_TW |
| dc.subject | 短期流量預報 | zh_TW |
| dc.subject | 長期流量預報 | zh_TW |
| dc.subject | long-term inflow forecasting | en |
| dc.subject | K-Nearest Neighbor; Support Vector Machine | en |
| dc.subject | Deep Neural Network | en |
| dc.subject | Central Weather Bureau first-generation coupled ocean-atmosphere model | en |
| dc.subject | Short-term inflow forecasting | en |
| dc.subject | Switch Prediction Method | en |
| dc.title | 發展防災與抗旱導向的人工智慧水庫入流量預報 | zh_TW |
| dc.title | Development of Multi-AI-Based Streamflow Forecasting Models for Disaster Prevention and Drought Mitigation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 游景雲 | zh_TW |
| dc.contributor.coadvisor | Jiing-Yun You | en |
| dc.contributor.oralexamcommittee | 林文欽;李方中;賴進松 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Chin LIN;Fang-Chung Lee;Jihn-Sung Lai | en |
| dc.subject.keyword | 短期流量預報,長期流量預報,交替預報模式,K-最近鄰居法,支援向量機,深度神經網路,中央氣象署第一代海氣耦合模式, | zh_TW |
| dc.subject.keyword | Short-term inflow forecasting,long-term inflow forecasting,Switch Prediction Method,K-Nearest Neighbor; Support Vector Machine,Deep Neural Network,Central Weather Bureau first-generation coupled ocean-atmosphere model, | en |
| dc.relation.page | 153 | - |
| dc.identifier.doi | 10.6342/NTU202500562 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-02-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 21.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
