請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97229
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周信宏 | zh_TW |
dc.contributor.advisor | Hsin-Hung David Chou | en |
dc.contributor.author | 劉哲睿 | zh_TW |
dc.contributor.author | Che-Jui Liu | en |
dc.date.accessioned | 2025-02-27T16:46:39Z | - |
dc.date.available | 2025-02-28 | - |
dc.date.copyright | 2025-02-27 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-16 | - |
dc.identifier.citation | 1. Valdez CE, Smith QA, Nechay MR, Alexandrova AN: Mysteries of metals in metalloenzymes. Accounts of Chemical Research 2014, 47(10):3110-3117.
2. Foster AW, Osman D, Robinson NJ: Metal preferences and metallation. Journal of Biological Chemistry 2014, 289(41):28095-28103. 3. Ibáñez MM, Checa SK, Soncini FC: A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family. Journal of Bacteriology 2015, 197(9):1606. 4. Brown NL, Stoyanov JV, Kidd SP, Hobman JL: The MerR family of transcriptional regulators. FEMS Microbiology Reviews 2003, 27(2-3):145-163. 5. Liu XC, Hu QY, Yang JM, Huang SQ, Wei TB, Chen WZ, He YF, Wang D, Liu ZJ, Wang K, Gan JH, Chen H: Selective cadmium regulation mediated by a cooperative binding mechanism in CadR. Proceedings of the National Academy of Sciences 2019, 116(41):20398. 6. Philips SJ, Canalizo-Hernandez M, Yildirim L, Schatz GC, Mondragón A, O'Halloran TV: Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 2015, 349(6250):877-881. 7. Jian X, Wasinger EC, Lockard JV, Chen LX, He C: Highly sensitive and selective gold(I) recognition by a metalloregulator in Ralstonia metallidurans. Journal of the American Chemical Society 2009, 131(31):10869-10871. 8. Stoyanov JV, Brown NL: The Escherichia coli copper-responsive copA promoter is activated by gold. Journal of Biological Chemistry 2003, 278(3):1407-1410. 9. Checa SK, Espariz M, Audero ME, Botta PE, Spinelli SV, Soncini FC: Bacterial sensing of and resistance to gold salts. Molecular Microbiology 2007, 63(5):1307-1318. 10. Mazmanian K, Sargsyan K, Lim C: How the local environment of functional sites regulates protein function. Journal of the American Chemical Society 2020, 142(22):9861-9871. 11. Changela A, Chen K, Xue Y, Holschen J, Outten CE, Halloran TV, Mondragón A: Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 2003, 301(5638):1383. 12. Hsieh WY, Chou HD: Massive parallel assays elucidate principles governing the selectivity and reactivity of the CueR metallosensor. Master Thesis, NTU 2021. 13. Kinney JB, McCandlish DM: Massively parallel assays and quantitative sequence-function relationships. Annual Review of Genomics and Human Genetics 2019, 20:99-127. 14. Starr TN, Picton LK, Thornton JW: Alternative evolutionary histories in the sequence space of an ancient protein. Nature 2017, 549(7672):409-413. 15. Kuo ST, Jahn RL, Cheng YJ, Chen YL, Lee YJ, Hollfelder F, Wen JD, Chou HD: Global fitness landscapes of the Shine-Dalgarno sequence. Genome Res 2020, 30(5):711-723. 16. Aakre CD, Herrou J, Phung TN, Perchuk BS, Crosson S, Laub MT: Evolving new protein-protein interaction specificity through promiscuous intermediates. Cell 2015, 163(3):594-606. 17. Giachino A, Waldron KJ: Copper tolerance in bacteria requires the activation of multiple accessory pathways. Molecular Microbiology 2020, 114(3):377-390. 18. Saulou-Bérion C, Gonzalez I, Enjalbert B, Audinot JN, Fourquaux I, Jamme F, Cocaign-Bousquet M, Mercier-Bonin M, Girbal L: Escherichia coli under ionic silver stress: An integrative approach to explore transcriptional, physiological and biochemical responses. PLoS One 2015, 10(12):e0145748. 19. Fang C, Philips SJ, Wu X, Chen K, Shi J, Shen L, Xu J, Feng Y, O'Halloran TV, Zhang Y: CueR activates transcription through a DNA distortion mechanism. Nature Chemical Biology 2021, 17(1):57-64. 20. Kao YL: Characterization of the metal specificity of the CueR metal-binding domain by saturation mutagenesis. Master Thesis, NTU 2018:1-62. 21. He MY, Lin YJ, Kao YL, Kuo P, Grauffel C, Lim C, Cheng YS, Chou HD: Sensitive and specific cadmium biosensor developed by reconfiguring metal transport and leveraging natural gene repositories. ACS Sensors 2021, 6(3):995-1002. 22. Chen T-Y, Santiago AG, Jung W, Krzemiński Ł, Yang F, Martell DJ, Helmann JD, Chen P: Concentration- and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells. Nature Communications 2015, 6:7445. 23. Xiao Z, Brose J, Schimo S, Ackland SM, La Fontaine S, Wedd AG: Unification of the Copper(I) Binding Affinities of the Metallo-chaperones Atx1, Atox1, and Related Proteins. Journal of Biological Chemistry 2011, 286(13):11047-11055. 24. Chen JZ, Fowler DM, Tokuriki N: Comprehensive exploration of the translocation, stability, and substrate recognition requirements in VIM-2 lactamase. eLife 2020, 9:e56707. 25. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. 1976, Acta Crystallographica Section A, 32(5), 751–767. 26. Jumper, J., Evans, R., Pritzel, A., et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596(7873), 583–589. 27. DeLano, W.L. The PyMOL Molecular Graphics System. 2002, Schrödinger LLC. 28. MacArthur MW, Thornton JM: Influence of Proline Residues on Protein Conformation. Journal of Molecular Biology 1991, 218(3):397-412. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97229 | - |
dc.description.abstract | 金屬離子在細胞內的濃度需嚴密管控,而MerR蛋白家族是細菌用來監控毒性金屬離子的轉錄因子。然而部分成員對金屬離子不具選擇性。其中,CueR是調控細胞中一價銅離子濃度的蛋白,其含有的金屬結合域與金屬離子結合會改變蛋白的構型,進而促進下游基因表達。
前人用高通量實驗產生CueR金屬結合域113、116、117和118位點的所有胺基酸組合,並在細胞中量測每個變異株受金、銀、銅離子誘導造成的基因表達,結果顯示脯胺酸 (Proline) 的出現,對基因表達量影響最顯著,然而過去常認為高通量實驗的準確性有待商榷。因此為了探討高通量實驗之準確性,我將這些變異株在細胞中進行金屬誘導表達的測試,發現脯胺酸 (Proline) 在113、118位點增加誘導基因表達量,在116、117位點則降低表達,而在蛋白與銅離子反應的體外實驗也得到相符的結果,代表金屬結合域序列的改變確實影響蛋白對金屬離子的反應,也呈現出高通量實驗之準確性,期望本研究對未來欲進行高通量實驗以及育研究金屬結合蛋白者,能夠提供積極的資訊。 | zh_TW |
dc.description.abstract | The intracellular concentration of metal ions must be tightly regulated, and the MerR protein family serves as transcription factors for bacteria to monitor toxic metal ions. However, some members of this family lack selectivity for specific metal ions. Among them, CueR is a protein that regulates the concentration of monovalent copper ions in cells. Its metal-binding domain undergoes conformational changes upon binding with metal ions, thereby promoting the expression of downstream genes.
Previous studies employed high-throughput experiments to generate all amino acid combinations at positions 113, 116, 117, and 118 of the CueR metal-binding domain. They measured gene expression levels induced by gold, silver, and copper ions for each variant in cells. The results indicated that the presence of proline (P) had the most significant impact on gene expression levels. However, the accuracy of high-throughput experiments has often been questioned. To evaluate the accuracy of high-throughput experiments the same time, I tested the metal-induced expression of these variants in cells. It was found that proline at CueR positions 113 and 118 increased the induction of gene expression, while at positions 116 and 117, it reduced expression. Consistent results were obtained in in vitro experiments measuring the affinity of the protein for copper ions, demonstrating that changes in the sequence of the metal-binding domain indeed affect the protein's affinity for metal ions. These findings also validate the accuracy of high-throughput experiments. It is hoped that this study will provide valuable insights for future researchers intending to conduct high-throughput experiments and study metal-binding proteins. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:46:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-27T16:46:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 Ⅲ
Abstract Ⅳ 目次 Ⅴ 圖次 Ⅶ 表次 Ⅶ 第一章、緒論 1 1.1 金屬離子於細胞中的調控 1 1.2 CueR蛋白對銅離子的調控 1 1.3 胺基酸序列庫和高通量實驗設計 3 1.4 高通量實驗不同金屬離子誘導結果分析 5 1.5 高通量實驗金屬結合域四個位點胺基酸序列結果分析 7 1.6 研究動機與實驗規劃 9 第二章、實驗材料與方法 11 2.1 培養基成分 11 2.2 建構CueR變異株 11 2.3 生長及螢光表達量測 15 2.4 CueR蛋白表達及純化 15 2.4.1 緩衝溶液成分 15 2.4.2 蛋白純化 16 2.5 競爭力實驗量測 17 第三章、實驗結果 20 3.1 大範圍金屬濃度的體內量測 20 3.2 體內CueR變異株與三種金屬離子之反應 20 3.3 高通量實驗與體內個別量測結果之對比 23 3.4 體外競爭力實驗 24 3.5 含脯胺酸 (Proline) CueR變異蛋白與銅離子在體外實驗中反應 25 3.6 體內個別量測與體外競爭力實驗結果比較 25 第四章、討論與未來展望 27 4.1 討論 27 4.2 結論 31 4.3 未來展望 31 參考文獻、 33 | - |
dc.language.iso | zh_TW | - |
dc.title | 驗證高通量實驗對CueR蛋白金屬選擇特性之假說 | zh_TW |
dc.title | Validation of the CueR protein metal selectivity hypothesis inferred from high-throughput experimental results | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 鄭貽生;吳亘承 | zh_TW |
dc.contributor.oralexamcommittee | Yi-Sheng Cheng;Hsuan-Chen Wu | en |
dc.subject.keyword | 金屬蛋白,CueR,MerR蛋白家族,金屬離子選擇性,金屬離子反應性,基因合成,鰲合物, | zh_TW |
dc.subject.keyword | Metalloprotein,CueR,MerR Protein Family,Metal Ion Selectivity,Metal Ion Reactivity,Gene Synthesis,Chelation Complex, | en |
dc.relation.page | 36 | - |
dc.identifier.doi | 10.6342/NTU202500251 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-02-17 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生命科學系 | - |
dc.date.embargo-lift | 2030-01-21 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 2.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。