Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97224
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林辰栖zh_TW
dc.contributor.advisorChen-Si Linen
dc.contributor.author黃玉淳zh_TW
dc.contributor.authorYu-Chun Huangen
dc.date.accessioned2025-02-27T16:45:13Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-13-
dc.identifier.citation1. An, S., Zheng, M., Park, I. G., Park, S. G., Noh, M.,and Sung, J. H. (2024). Humanized CXCL12 antibody delays onset and modulates immune response in alopecia areata mice: insights from single-cell RNA sequencing. Front Immunol, 15, 1444777.
2. Ashworth, M. D., Ross, J. W., Stein, D. R., White, F. J., Desilva, U. W.,and Geisert, R. D. (2010). Endometrial caspase 1 and interleukin-18 expression during the estrous cycle and peri-implantation period of porcine pregnancy and response to early exogenous estrogen administration. Reprod Biol Endocrinol, 8, 33.
3. Assogba, L., Ahamada-Himidi, A., Habich, N. M., Aoun, D., Boukli, L., Massicot, F., Mounier, C. M., Huet, J., Lamouri, A., Ombetta, J. E., Godfroid, J. J., Dong, C. Z.,and Heymans, F. (2005). Inhibition of secretory phospholipase A2. 1-design, synthesis and structure-activity relationship studies starting from 4-tetradecyloxybenzamidine to obtain specific inhibitors of group II sPLA2s. Eur J Med Chem, 40(9), 850-861.
4. Barallobre-Barreiro, J., de Ilárduya, O. M., Moscoso, I., Calviño-Santos, R., Aldama, G., Centeno, A., López-Pelaez, E.,and Doménech, N. (2011). Gene expression profiles following intracoronary injection of mesenchymal stromal cells using a porcine model of chronic myocardial infarction. Cytotherapy, 13(4), 407-418.
5. Bauhofer, O., Summerfield, A., Sakoda, Y., Tratschin, J. D., Hofmann, M. A.,and Ruggli, N. (2007). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol, 81(7), 3087-3096.
6. Beer, C., Andersen, D. S., Rojek, A.,and Pedersen, L. (2005). Caveola-dependent endocytic entry of amphotropic murine leukemia virus. Journal of virology, 79(16), 10776-10787.
7. Belák, K., Koenen, F., Vanderhallen, H., Mittelholzer, C., Feliziani, F., De Mia, G. M.,and Belák, S. (2008). Comparative studies on the pathogenicity and tissue distribution of three virulence variants of classical swine fever virus, two field isolates and one vaccine strain, with special regard to immunohistochemical investigations. Acta Vet Scand, 50(1), 34.
8. Bensaude, E., Turner, J. L. E., Wakeley, P. R., Sweetman, D. A., Pardieu, C., Drew, T. W., Wileman, T.,and Powell, P. P. (2004). Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol, 85(Pt 4), 1029-1037.
9. Birch, R. R. (1922). Chapter I: History and Economic Importance, in: Hog Cholera Its Nature and Control.
10. Blome, S., Staubach, C., Henke, J., Carlson, J.,and Beer, M. (2017). Classical Swine Fever-An Updated Review. Viruses, 9(4).
11. Borca, M. V., Vuono, E. A., Ramirez-Medina, E., Azzinaro, P., Berggren, K. A., Singer, M., Rai, A., Pruitt, S., Silva, E. B., Velazquez-Salinas, L., Carrillo, C.,and Gladue, D. P. (2019). Structural Glycoprotein E2 of Classical Swine Fever Virus Interacts with Host Protein Dynactin Subunit 6 (DCTN6) during the Virus Infectious Cycle. J Virol, 94(1).
12. Bousarghin, L., Touzé, A., Sizaret, P. Y.,and Coursaget, P. (2003). Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells [Article]. Journal of Virology, 77(6), 3846-3850.
13. Cao, Z., Zheng, M., Lv, H., Guo, K.,and Zhang, Y. (2018). Tissue expression of Toll-like receptors 2, 3, 4 and 7 in swine in response to the Shimen strain of classical swine fever virus. Mol Med Rep, 17(5), 7122-7130.
14. Carlsen, H. S., Baekkevold, E. S., Morton, H. C., Haraldsen, G.,and Brandtzaeg, P. (2004). Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood, 104(10), 3021-3027.
15. Carrasco, C. P., Rigden, R. C., Vincent, I. E., Balmelli, C., Ceppi, M., Bauhofer, O., Tâche, V., Hjertner, B., McNeilly, F., van Gennip, H. G., McCullough, K. C.,and Summerfield, A. (2004). Interaction of classical swine fever virus with dendritic cells. J Gen Virol, 85(Pt 6), 1633-1641.
16. Cha, S. H., Choi, E. J., Park, J. H., Yoon, S. R., Kwon, J. H., Yoon, K. J.,and Song, J. Y. (2007). Phylogenetic characterization of classical swine fever viruses isolated in Korea between 1988 and 2003. Virus Res, 126(1-2), 256-261.
17. Chang, C. Y., Huang, C. C., Lin, Y. J., Deng, M. C., Chen, H. C., Tsai, C. H., Chang, W. M.,and Wang, F. I. (2010). Antigenic domains analysis of classical swine fever virus E2 glycoprotein by mutagenesis and conformation-dependent monoclonal antibodies. Virus Res, 149(2), 183-189.
18. Cheville, N. F.,and Mengeling, W. L. (1969). The pathogenesis of chronic hog cholera (swine fever). Histologic, immunofluorescent, and electron microscopic studies. Lab Invest, 20(3), 261-274.
19. Choi, C.,and Chae, C. (2003a). Glomerulonephritis associated with classical swine fever virus in pigs. Vet Rec, 153(1), 20-22.
20. Choi, C.,and Chae, C. (2003b). Localization of classical swine fever virus from chronically infected pigs by in situ hybridization and immunohistochemistry. Vet Pathol, 40(1), 107-113.
21. Choi, C., Hwang, K. K.,and Chae, C. (2004). Classical swine fever virus induces tumor necrosis factor-alpha and lymphocyte apoptosis. Arch Virol, 149(5), 875-889.
22. Cole, C. G., Henley, R. R., Dale, C. N., Mott, L. O., Torrey, J. P.,and Zinober, N. R. (1962). Part I. Early history and research work.
23. Coronado, L., Bohórquez, J. A., Muñoz-González, S., Perez, L. J., Rosell, R., Fonseca, O., Delgado, L., Perera, C. L., Frías, M. T.,and Ganges, L. (2019). Investigation of chronic and persistent classical swine fever infections under field conditions and their impact on vaccine efficacy. BMC Vet Res, 15(1), 247.
24. Dannevig, I., Solevåg, A. L., Sonerud, T., Saugstad, O. D.,and Nakstad, B. (2013). Brain inflammation induced by severe asphyxia in newborn pigs and the impact of alternative resuscitation strategies on the newborn central nervous system. Pediatr Res, 73(2), 163-170.
25. David, D., Edri, N., Yakobson, B. A., Bombarov, V., King, R., Davidson, I., Pozzi, P., Hadani, Y., Bellaiche, M., Schmeiser, S.,and Perl, S. (2011). Emergence of classical swine fever virus in Israel in 2009. Vet J, 190(2), e146-e149.
26. De Arce, H., Frias, M., Baireras, M., Ganges, L., Núnez, J.,and Sobrino, F. (1998). Analysis of genomic differences between Cuban classical swine fever virus isolates. OIE Symposium on Classical Swine Fever Birmingham,
27. de Arce, H. D., Ganges, L., Barrera, M., Naranjo, D., Sobrino, F., Frías, M. T.,and Núñez, J. I. (2005). Origin and evolution of viruses causing classical swine fever in Cuba. Virus Res, 112(1-2), 123-131.
28. Deng, M. C., Huang, C. C., Huang, T. S., Chang, C. Y., Lin, Y. J., Chien, M. S.,and Jong, M. H. (2005). Phylogenetic analysis of classical swine fever virus isolated from Taiwan. Vet Microbiol, 106(3-4), 187-193.
29. Dewulf, J., Koenen, F., Ribbens, S., Haegeman, A., Laevens, H.,and De Kruif, A. (2005). Evaluation of the epidemiological importance of classical swine fever infected, E2 sub-unit marker vaccinated animals with RT-nPCR positive blood samples. J Vet Med B Infect Dis Vet Public Health, 52(9), 367-371.
30. Edwards, S. (2000). Survival and inactivation of classical swine fever virus. Vet Microbiol, 73(2-3), 175-181.
31. Everett, H., Salguero, F. J., Graham, S. P., Haines, F., Johns, H., Clifford, D., Nunez, A., La Rocca, S. A., Parchariyanon, S., Steinbach, F., Drew, T.,and Crooke, H. (2010). Characterisation of experimental infections of domestic pigs with genotype 2.1 and 3.3 isolates of classical swine fever virus. Vet Microbiol, 142(1-2), 26-33.
32. Floegel-Niesmann, G., Bunzenthal, C., Fischer, S.,and Moennig, V. (2003). Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. J Vet Med B Infect Dis Vet Public Health, 50(5), 214-220.
33. Floegel, G., Wehrend, A., Depner, K. R., Fritzemeier, J., Waberski, D.,and Moennig, V. (2000). Detection of classical swine fever virus in semen of infected boars. Vet Microbiol, 77(1-2), 109-116.
34. Foell, D., Wittkowski, H., Vogl, T.,and Roth, J. (2007). S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol, 81(1), 28-37.
35. Galli, A.,and Bukh, J. (2014). Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus. Trends Microbiol, 22(6), 354-364.
36. Ganges, L., Barrera, M., Núñez, J. I., Blanco, I., Frias, M. T., Rodríguez, F.,and Sobrino, F. (2005). A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine, 23(28), 3741-3752.
37. Ganges, L., Crooke, H. R., Bohorquez, J. A., Postel, A., Sakoda, Y., Becher, P.,and Ruggli, N. (2020). Classical swine fever virus: the past, present and future. Virus Res, 289, 198151.
38. Ganges, L., Núñez, J. I., Sobrino, F., Borrego, B., Fernández-Borges, N., Frías-Lepoureau, M. T.,and Rodríguez, F. (2008). Recent advances in the development of recombinant vaccines against classical swine fever virus: cellular responses also play a role in protection. Vet J, 177(2), 169-177.
39. Ge, S. X., Jung, D.,and Yao, R. (2019). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628-2629.
40. Ghebrehiwet, B., Zaniewski, M., Fernandez, A., DiGiovanni, M., Reyes, T. N., Ji, P., Savitt, A. G., Williams, J. L., Seeliger, M. A.,and Peerschke, E. I. B. (2024). The C1q and gC1qR axis as a novel checkpoint inhibitor in cancer. Front Immunol, 15, 1351656.
41. Gomez-Villamandos, J., Salguero, F., Ruiz-Villamor, E., Sánchez-Cordón, P., Bautista, M.,and Sierra, M. (2003). Classical swine fever: pathology of bone marrow. Veterinary pathology, 40(2), 157-163.
42. Gong, Y., Trowbridge, R., Macnaughton, T. B., Westaway, E. G., Shannon, A. D.,and Gowans, E. J. (1996). Characterization of RNA synthesis during a one-step growth curve and of the replication mechanism of bovine viral diarrhoea virus. J Gen Virol, 77 ( Pt 11), 2729-2736.
43. Gray, E. W.,and Nettleton, P. F. (1987). The ultrastructure of cell cultures infected with border disease and bovine virus diarrhoea viruses. J Gen Virol, 68 ( Pt 9), 2339-2346.
44. Greiser-Wilke, I., Fritzemeier, J., Koenen, F., Vanderhallen, H., Rutili, D., De Mia, G. M., Romero, L., Rosell, R., Sanchez-Vizcaino, J. M.,and San Gabriel, A. (2000). Molecular epidemiology of a large classical swine fever epidemic in the European Union in 1997-1998. Vet Microbiol, 77(1-2), 17-27.
45. Huang, Y. L., Deng, M. C., Tsai, K. J., Liu, H. M., Huang, C. C., Wang, F. I.,and Chang, C. Y. (2017). Competitive replication kinetics and pathogenicity in pigs co-infected with historical and newly invading classical swine fever viruses. Virus Res, 228, 39-45.
46. Huang, Y. L., Tsai, K. J., Deng, M. C., Liu, H. M., Huang, C. C., Wang, F. I.,and Chang, C. Y. (2020). In Vivo Demonstration of the Superior Replication and Infectivity of Genotype 2.1 with Respect to Genotype 3.4 of Classical Swine Fever Virus by Dual Infections. Pathogens, 9(4).
47. Hulst, M. M., van Gennip, H. G.,and Moormann, R. J. (2000). Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein E(rns). J Virol, 74(20), 9553-9561.
48. Iqbal, M., Flick-Smith, H.,and McCauley, J. W. (2000). Interactions of bovine viral diarrhoea virus glycoprotein E(rns) with cell surface glycosaminoglycans. J Gen Virol, 81(Pt 2), 451-459.
49. Jamin, A., Gorin, S., Cariolet, R., Le Potier, M. F.,and Kuntz-Simon, G. (2008). Classical swine fever virus induces activation of plasmacytoid and conventional dendritic cells in tonsil, blood, and spleen of infected pigs. Vet Res, 39(1), 7.
50. Katoh, S., Kitazawa, H., Shimosato, T., Tohno, M., Kawai, Y.,and Saito, T. (2004). Cloning and characterization of Swine interleukin-17, preferentially expressed in the intestines. J Interferon Cytokine Res, 24(9), 553-559.
51. Kim, D., Paggi, J. M., Park, C., Bennett, C.,and Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 37(8), 907-915.
52. Knoetig, S. M., Summerfield, A., Spagnuolo-Weaver, M.,and McCullough, K. C. (1999). Immunopathogenesis of classical swine fever: role of monocytic cells. Immunology, 97(2), 359-366.
53. Kramer, M., Staubach, C., Koenen, F., Haegeman, A., Pol, F., Le Potier, M. F.,and Greiser-Wilke, I. (2009). Scientific review on Classical Swine Fever. . EFSA Support Publ.
54. Krey, T., Thiel, H. J.,and Rümenapf, T. (2005). Acid-resistant bovine pestivirus requires activation for pH-triggered fusion during entry. J Virol, 79(7), 4191-4200.
55. Kumar, D., Rao, P. P.,and Hegde, N. R. (2019). Next-generation sequencing as diagnostic tool in veterinary research. Journal of Animal Research, 9(6), 797-806.
56. Lackner, T., Müller, A., Pankraz, A., Becher, P., Thiel, H. J., Gorbalenya, A. E.,and Tautz, N. (2004). Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J Virol, 78(19), 10765-10775.
57. Lackner, T., Thiel, H. J.,and Tautz, N. (2006). Dissection of a viral autoprotease elucidates a function of a cellular chaperone in proteolysis. Proc Natl Acad Sci U S A, 103(5), 1510-1515.
58. Lange, A. (2010). In vitro und in vivo Expressionsprofile von Zytokinen nach Infektion mit dem Virus der Klassischen Schweinepest.
59. Le Potier, M. F., Le Dimna, M., Kuntz-Simon, G., Bougeard, S.,and Mesplède, A. (2006). Validation of a real-time RT-PCR assay for rapid and specific diagnosis of Classical Swine Fever virus. Dev Biol (Basel), 126, 179-186; discusssion 326-177.
60. Lee, W. C., Wang, C. S.,and Chien, M. S. (1999). Virus antigen expression and alterations in peripheral blood mononuclear cell subpopulations after classical swine fever virus infection. Vet Microbiol, 67(1), 17-29.
61. Lee, Y. M., Tscherne, D. M., Yun, S. I., Frolov, I.,and Rice, C. M. (2005). Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J Virol, 79(6), 3231-3242.
62. Leifer, I., Hoffmann, B., Höper, D., Bruun Rasmussen, T., Blome, S., Strebelow, G., Höreth-Böntgen, D., Staubach, C.,and Beer, M. (2010). Molecular epidemiology of current classical swine fever virus isolates of wild boar in Germany. J Gen Virol, 91(Pt 11), 2687-2697.
63. Li, S., Wang, J., Yang, Q., Naveed Anwar, M., Yu, S.,and Qiu, H. J. (2017). Complex Virus-Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview. Viruses, 9(7).
64. Li, X., Song, Y., Wang, X., Fu, C., Zhao, F., Zou, L., Wu, K., Chen, W., Li, Z., Fan, J., Li, Y., Li, B., Zeng, S., Liu, X., Zhao, M., Yi, L., Chen, J.,and Fan, S. (2023). The regulation of cell homeostasis and antiviral innate immunity by autophagy during classical swine fever virus infection. Emerg Microbes Infect, 12(1), 2164217.
65. Li, Y., Wei, Y., Hao, W., Zhao, W., Zhou, Y., Wang, D., Xiao, S.,and Fang, L. (2020). Porcine reproductive and respiratory syndrome virus infection promotes C1QBP secretion to enhance inflammatory responses. Vet Microbiol, 241, 108563.
66. Lin, Y. J., Chien, M. S., Deng, M. C.,and Huang, C. C. (2007). Complete sequence of a subgroup 3.4 strain of classical swine fever virus from Taiwan. Virus Genes, 35(3), 737-744.
67. Liniger, M., Gerber, M., Renzullo, S., García-Nicolás, O.,and Ruggli, N. (2021). TNF-Mediated Inhibition of Classical Swine Fever Virus Replication Is IRF1-, NF-κB- and JAK/STAT Signaling-Dependent. Viruses, 13(10).
68. Liu, H. M., Deng, M. C., Huang, Y. L., Tsai, K. J., Chang, H. W.,and Chang, C. Y. (2023). In vivo characterization of the superior fitness of classical swine fever virus genotype 2.1 to genotype 3.4. Vet Microbiol, 285, 109854.
69. Ludwig, A., Howard, G., Mendoza-Topaz, C., Deerinck, T., Mackey, M., Sandin, S., Ellisman, M. H.,and Nichols, B. J. (2013). Molecular composition and ultrastructure of the caveolar coat complex. PLoS biology, 11(8), e1001640.
70. Luo, Y., Li, S., Sun, Y.,and Qiu, H. J. (2014). Classical swine fever in China: a minireview. Vet Microbiol, 172(1-2), 1-6.
71. McCullough, K. C., Ruggli, N.,and Summerfield, A. (2009). Dendritic cells--at the front-line of pathogen attack. Vet Immunol Immunopathol, 128(1-3), 7-15.
72. Mittelholzer, C., Moser, C., Tratschin, J. D.,and Hofmann, M. A. (2000). Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol, 74(4), 293-308.
73. Moennig, V. (2000). Introduction to classical swine fever: virus, disease and control policy. Vet Microbiol, 73(2-3), 93-102.
74. Moennig, V., Floegel-Niesmann, G.,and Greiser-Wilke, I. (2003). Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J, 165(1), 11-20.
75. Muñoz-González, S., Sordo, Y., Pérez-Simó, M., Suárez, M., Canturri, A., Rodriguez, M. P., Frías-Lepoureau, M. T., Domingo, M., Estrada, M. P.,and Ganges, L. (2017). Efficacy of E2 glycoprotein fused to porcine CD154 as a novel chimeric subunit vaccine to prevent classical swine fever virus vertical transmission in pregnant sows. Veterinary microbiology, 205, 110-116.
76. Muñoz-González, S., Pérez-Simó, M., Colom-Cadena, A., Cabezón, O., Bohórquez, J. A., Rosell, R., Pérez, L. J., Marco, I., Lavín, S., Domingo, M.,and Ganges, L. (2016). Classical Swine Fever Virus vs. Classical Swine Fever Virus: The Superinfection Exclusion Phenomenon in Experimentally Infected Wild Boar. PLoS One, 11(2), e0149469.
77. Muñoz-González, S., Ruggli, N., Rosell, R., Pérez, L. J., Frías-Leuporeau, M. T., Fraile, L., Montoya, M., Cordoba, L., Domingo, M., Ehrensperger, F., Summerfield, A.,and Ganges, L. (2015). Postnatal persistent infection with classical Swine Fever virus and its immunological implications. PLoS One, 10(5), e0125692.
78. Ning, P., Gao, L., Zhou, Y., Hu, C., Lin, Z., Gong, C., Guo, K.,and Zhang, X. (2016). Caveolin-1-mediated endocytic pathway is involved in classical swine fever virus Shimen infection of porcine alveolar macrophages. Veterinary Microbiology, 195, 81-86.
79. Ohmann, H. B. (1990). Electron microscopy of bovine virus diarrhoea virus. Rev Sci Tech, 9(1), 61-73.
80. Ophuis, R. J., Morrissy, C. J.,and Boyle, D. B. (2006). Detection and quantitative pathogenesis study of classical swine fever virus using a real time RT-PCR assay. J Virol Methods, 131(1), 78-85.
81. Parchariyanon, S., Inui, K., Damrongwatanapokin, S., Pinyochon, W., Lowings, P.,and Paton, D. (2000). Sequence analysis of E2 glycoprotein genes of classical swine fever viruses: identification of a novel genogroup in Thailand. Dtsch Tierarztl Wochenschr, 107(6), 236-238.
82. Paton, D. J., McGoldrick, A., Greiser-Wilke, I., Parchariyanon, S., Song, J. Y., Liou, P. P., Stadejek, T., Lowings, J. P., Björklund, H.,and Belák, S. (2000). Genetic typing of classical swine fever virus. Vet Microbiol, 73(2-3), 137-157.
83. Pauly, T., König, M., Thiel, H. J.,and Saalmüller, A. (1998). Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes. J Gen Virol, 79 ( Pt 1), 31-40.
84. Pereda, A. J., Greiser-Wilke, I., Schmitt, B., Rincon, M. A., Mogollon, J. D., Sabogal, Z. Y., Lora, A. M., Sanguinetti, H.,and Piccone, M. E. (2005). Phylogenetic analysis of classical swine fever virus (CSFV) field isolates from outbreaks in South and Central America. Virus Res, 110(1-2), 111-118.
85. Pestova, T. V.,and Hellen, C. U. (1999). Internal initiation of translation of bovine viral diarrhea virus RNA. Virology, 258(2), 249-256.
86. Petrov, A., Beer, M.,and Blome, S. (2014). Development and validation of a harmonized TaqMan-based triplex real-time RT-PCR protocol for the quantitative detection of normalized gene expression profiles of seven porcine cytokines. PLoS One, 9(9), e108910.
87. Postel, A., Nishi, T., Kameyama, K. I., Meyer, D., Suckstorff, O., Fukai, K.,and Becher, P. (2019). Reemergence of Classical Swine Fever, Japan, 2018. Emerg Infect Dis, 25(6), 1228-1231.
88. Rümenapf, T., Unger, G., Strauss, J. H.,and Thiel, H. J. (1993). Processing of the envelope glycoproteins of pestiviruses. J Virol, 67(6), 3288-3294.
89. Ramírez, S., Pérez-del-Pulgar, S., Carrión, J. A., Coto-Llerena, M., Mensa, L., Dragun, J., García-Valdecasas, J. C., Navasa, M.,and Forns, X. (2010). Hepatitis C virus superinfection of liver grafts: a detailed analysis of early exclusion of non-dominant virus strains. J Gen Virol, 91(Pt 5), 1183-1188.
90. Renson, P., Le Dimna, M., Gabriel, C., Levai, R., Blome, S., Kulcsar, G., Koenen, F.,and Le Potier, M. F. (2014). Cytokine and immunoglobulin isotype profiles during CP7_E2alf vaccination against a challenge with the highly virulent Koslov strain of classical swine fever virus. Res Vet Sci, 96(2), 389-395.
91. Ressang, A. A. (1973). Studies on the pathogenesis of hog cholera. II. Virus distribution in tissue and the morphology of the immune response. Zentralbl Veterinarmed B, 20(4), 272-288.
92. Richter, K. R., Nasr, A. N.,and Mexas, A. M. (2018). Cytokine Concentrations Measured by Multiplex Assays in Canine Peripheral Blood Samples. Vet Pathol, 55(1), 53-67.
93. Rijnbrand, R., van der Straaten, T., van Rijn, P. A., Spaan, W. J.,and Bredenbeek, P. J. (1997). Internal entry of ribosomes is directed by the 5' noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol, 71(1), 451-457.
94. Rios, L., Coronado, L., Naranjo-Feliciano, D., Martínez-Pérez, O., Perera, C. L., Hernandez-Alvarez, L., Díaz de Arce, H., Núñez, J. I., Ganges, L.,and Pérez, L. J. (2017). Deciphering the emergence, genetic diversity and evolution of classical swine fever virus. Sci Rep, 7(1), 17887.
95. Ross, J. W., Ashworth, M. D., Mathew, D., Reagan, P., Ritchey, J. W., Hayashi, K., Spencer, T. E., Lucy, M.,and Geisert, R. D. (2010). Activation of the transcription factor, nuclear factor kappa-B, during the estrous cycle and early pregnancy in the pig. Reprod Biol Endocrinol, 8, 39.
96. Sakoda, Y., Ozawa, S., Damrongwatanapokin, S., Sato, M., Ishikawa, K.,and Fukusho, A. (1999). Genetic heterogeneity of porcine and ruminant pestiviruses mainly isolated in Japan. Vet Microbiol, 65(1), 75-86.
97. Scanurra, R. W., Arriaga, C., Sprunger, L., Baarsch, M. J.,and Murtaugh, M. P. (1996). Regulation of interleukin-6 expression in porcine immune cells. Journal of interferon & cytokine research, 16(4), 289-296.
98. Shivaraj, D. B., Patil, S. S., Rathnamma, D., Hemadri, D., Isloor, S., Geetha, S., Manjunathareddy, G. B., Gajendragad, M. R.,and Rahman, H. (2015). Genetic clustering of recent classical swine fever virus isolates from Karnataka, India revealed the emergence of subtype 2.2 replacing subtype 1.1. Virusdisease, 26(3), 170-179.
99. Sipos, W., Duvigneau, J. C., Pietschmann, P., Schilcher, F., Hofbauer, G., Hartl, R. T.,and Schmoll, F. (2005). Porcine dermatitis and nephropathy syndrome (PDNS) is associated with a systemic cytokine expression profile indicative of proinflammation and a Th1 bias. Vet Immunol Immunopathol, 107(3-4), 303-313.
100. Stark, R., Meyers, G., Rümenapf, T.,and Thiel, H. J. (1993). Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol, 67(12), 7088-7095.
101. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S.,and Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 102(43), 15545-15550.
102. Summerfield, A., Knötig, S. M.,and McCullough, K. C. (1998). Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death. J Virol, 72(3), 1853-1861.
103. Summerfield, A., McNeilly, F., Walker, I., Allan, G., Knoetig, S. M.,and McCullough, K. C. (2001). Depletion of CD4(+) and CD8(high+) T-cells before the onset of viraemia during classical swine fever. Vet Immunol Immunopathol, 78(1), 3-19.
104. Summerfield, A.,and Ruggli, N. (2015). Immune Responses Against Classical Swine Fever Virus: Between Ignorance and Lunacy. Front Vet Sci, 2, 10.
105. Susa, M., König, M., Saalmüller, A., Reddehase, M. J.,and Thiel, H. J. (1992). Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J Virol, 66(2), 1171-1175.
106. Tang, Q., Guo, K., Kang, K., Zhang, Y., He, L.,and Wang, J. (2011). Classical swine fever virus NS2 protein promotes interleukin-8 expression and inhibits MG132-induced apoptosis. Virus Genes, 42(3), 355-362.
107. Tang, Q. H., Zhang, Y. M., Xu, Y. Z., He, L., Dai, C.,and Sun, P. (2010). Up-regulation of integrin beta3 expression in porcine vascular endothelial cells cultured in vitro by classical swine fever virus. Vet Immunol Immunopathol, 133(2-4), 237-242.
108. Tarradas, J., de la Torre, M. E., Rosell, R., Perez, L. J., Pujols, J., Muñoz, M., Muñoz, I., Muñoz, S., Abad, X., Domingo, M., Fraile, L.,and Ganges, L. (2014). The impact of CSFV on the immune response to control infection. Virus Res, 185, 82-91.
109. Tautz, N., Elbers, K., Stoll, D., Meyers, G.,and Thiel, H. J. (1997). Serine protease of pestiviruses: determination of cleavage sites. J Virol, 71(7), 5415-5422.
110. Thevkar-Nagesh, P., Habault, J., Voisin, M., Ruff, S. E., Ha, S., Ruoff, R., Chen, X., Rawal, S., Zahr, T., Szabo, G., Rogatsky, I., Fisher, E. A.,and Garabedian, M. J. (2022). Transcriptional regulation of Acsl1 by CHREBP and NF-kappa B in macrophages during hyperglycemia and inflammation. PLoS One, 17(9), e0272986.
111. Tian, L., Dong, S. S., Hu, J., Yao, J. J.,and Yan, P. S. (2018). The effect of maternal obesity on fatty acid transporter expression and lipid metabolism in the full-term placenta of lean breed swine. J Anim Physiol Anim Nutr (Berl), 102(1), e242-e253.
112. Trautwein, G. (1988). Pathology and pathogenesis of the disease. In Classical Swine Fever and related viral infections (pp. 27-54). Springer.
113. Tsai, Y. C., Jeng, C. R., Hsiao, S. H., Chang, H. W., Liu, J. J., Chang, C. C., Lin, C. M., Chia, M. Y.,and Pang, V. F. (2010). Porcine circovirus type 2 (PCV2) induces cell proliferation, fusion, and chemokine expression in swine monocytic cells in vitro. Vet Res, 41(5), 60.
114. Tu, C., Lu, Z., Li, H., Yu, X., Liu, X., Li, Y., Zhang, H.,and Yin, Z. (2001). Phylogenetic comparison of classical swine fever virus in China. Virus Res, 81(1-2), 29-37.
115. Van Oirschot, J. T.,and Terpstra, C. (1989). Hog cholera virus. In Virus infections of porcines (pp. 113-131). Elsevier, Amsterdam.
116. Velazquez-Salinas, L., Risatti, G. R., Holinka, L. G., O'Donnell, V., Carlson, J., Alfano, M., Rodriguez, L. L., Carrillo, C., Gladue, D. P.,and Borca, M. V. (2016). Recoding structural glycoprotein E2 in classical swine fever virus (CSFV) produces complete virus attenuation in swine and protects infected animals against disease. Virology, 494, 178-189.
117. Wang, G., Cao, Y., Xu, C., Zhang, S., Huang, Y., Zhang, S.,and Bao, W. (2024). Comprehensive transcriptomic and metabolomic analysis of porcine intestinal epithelial cells after PDCoV infection. Front Vet Sci, 11, 1359547.
118. Wang, L., Hu, S., Liu, Q., Li, Y., Xu, L., Zhang, Z., Cai, X.,and He, X. (2017). Porcine alveolar macrophage polarization is involved in inhibition of porcine reproductive and respiratory syndrome virus (PRRSV) replication. J Vet Med Sci, 79(11), 1906-1915.
119. Wang, Z., Nie, Y., Wang, P., Ding, M.,and Deng, H. (2004). Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry. Virology, 330(1), 332-341.
120. Weesendorp, E., Stegeman, A.,and Loeffen, W. (2009). Dynamics of virus excretion via different routes in pigs experimentally infected with classical swine fever virus strains of high, moderate or low virulence. Vet Microbiol, 133(1-2), 9-22.
121. Weiland, E., Ahl, R., Stark, R., Weiland, F.,and Thiel, H. J. (1992). A second envelope glycoprotein mediates neutralization of a pestivirus, hog cholera virus. J Virol, 66(6), 3677-3682.
122. Wilkinson, J. M., Sargent, C. A., Galina-Pantoja, L.,and Tucker, A. W. (2010). Gene expression profiling in the lungs of pigs with different susceptibilities to Glässer's disease. BMC Genomics, 11, 455.
123. Xin, X., Liu, H., Zhang, S., Li, P., Zhao, X., Zhang, X., Li, S., Wu, S., Zhao, F.,and Tan, J. (2024). S100A8/A9 promotes endometrial fibrosis via regulating RAGE/JAK2/STAT3 signaling pathway. Commun Biol, 7(1), 116.
124. Zaffuto, K. M., Piccone, M. E., Burrage, T. G., Balinsky, C. A., Risatti, G. R., Borca, M. V., Holinka, L. G., Rock, D. L.,and Afonso, C. L. (2007). Classical swine fever virus inhibits nitric oxide production in infected macrophages. J Gen Virol, 88(Pt 11), 3007-3012.
125. Zhao, S. H., Kuhar, D., Lunney, J. K., Dawson, H., Guidry, C., Uthe, J. J., Bearson, S. M., Recknor, J., Nettleton, D.,and Tuggle, C. K. (2006). Gene expression profiling in Salmonella Choleraesuis-infected porcine lung using a long oligonucleotide microarray. Mamm Genome, 17(7), 777-789.
126. Zhu, M., Xing, M., Sun, R., Li, M., Qian, W.,and Fan, M. (2024). Identification of potential immune-related genes and infiltrations in temporomandibular joint osteoarthritis. Ann Med Surg (Lond), 86(12), 7135-7146.
127. 陳姿妤 (2002)。臺灣本土型與外來型豬瘟病毒株致病性之比較。碩士論文。國立中興大學獸醫病理學研究所。臺中市。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97224-
dc.description.abstract豬瘟(Classical swine fever, CSF)是一種由豬瘟病毒(Classical swine fever virus, CSFV)引起的高度傳染性疾病,具有強致病性,對豬隻免疫系統造成嚴重抑制。在臺灣,自1996年以來,豬瘟病毒的基因型經歷了顯著轉變,從過去占主導地位的基因型3.4(G3.4)被國外引入的新興基因型2.1(G2.1)所取代。這種基因型的優勢轉變不僅限於臺灣,也在其他國家觀察到。然而,這一現象背後的潛在機制仍有待進一步探討。先前的研究顯示,無論是在體外還是體內實驗中,G2.1的病毒複製效率均顯著高於 G3.4。除了病毒複製能力的差異之外,不同豬瘟基因型對宿主免疫調節機制是否存在差異,仍需進一步深入探討。巨噬細胞是豬瘟病毒感染的主要標靶細胞之一,能分泌促發炎細胞激素、免疫調節因子及血管活性物質,進而調控受感染豬隻的免疫反應。本研究主旨在探討不同基因型豬瘟病毒株引發的免疫反應差異,以瞭解其調控機制。本研究利用免疫螢光染色技術觀察兩種豬瘟病毒基因型對豬肺臟巨噬細胞的感染率,並採用高通量多重細胞激素檢測平台同步測定感染巨噬細胞分泌的細胞激素。此外,透過RNA轉錄體分析全面探討基因表現變化,並利用多種富集分析方法找出可能引起兩者反應差異的相關路徑。最後,使用即時定量聚合酶連鎖反應進行驗證。研究結果顯示,豬瘟G2.1的病毒株對於豬肺臟巨噬細胞的感染率在感染後第一天時顯著高於G3.4,且在感染後的第一至三天,豬瘟G2.1誘發的促發炎細胞激素IL-18,和在感染後的第二天的TNF-α的基因表現量均顯著高於豬瘟G3.4。RNA轉錄體分析結果顯示,豬瘟G2.1感染誘導的功能基因數量多於豬瘟G3.4,且涉及更多與促發炎相關的免疫訊息傳遞路徑。特別是在G2.1感染的巨噬細胞中,有較多的基因表現參與在路徑JAK-STAT signaling pathway及Th17 cell differentiation中,且與促發炎反應、Th1型免疫以及招募免疫細胞相關。透過轉錄組分析篩選出參與多條顯著富集路徑的基因,例如與細胞貼附相關的ICAM1基因和促發炎的S100A9基因,在豬瘟G2.1中的表達量顯著高於豬瘟G3.4,這些基因的差異顯示出豬瘟G2.1的感染與促發炎反應的增強,以及感染持續性有正向關聯性。而在豬瘟G3.4感染巨噬細胞後,某些表現量上升的特定基因,如招募B細胞的CXCL13,以及具有抗發炎功能的前列腺素受體PTGIR,被推論有可能是豬瘟G3.4在感染宿主後較容易被清除,且引發較弱發炎反應的原因。我們的研究顯示,相較於豬瘟G3.4,豬瘟G2.1能誘導更強的免疫刺激反應,顯示兩病毒在免疫調節機制上存在差異性。這些發現有助於探討野外豬瘟病毒株基因型置換的機制,並凸顯不同豬瘟病毒基因型所採用的免疫逃避策略。zh_TW
dc.description.abstractClassical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious disease that induces significant immunosuppression in pigs. Since 1996, a genotypic shift has occurred in Taiwan, with the historically dominant Genotype 3.4 (G3.4) replaced by the emergent Genotype 2.1 (G2.1). Similar shifts have been observed elsewhere, though the underlying mechanisms remain unclear. Previous studies indicate that G2.1 exhibits higher replication efficiency than G3.4 in both in vitro and in vivo models. However, beyond replication capacity, the immunomodulatory differences between these genotypes warrant further investigation. Macrophages, a key CSFV target, regulate immune responses by releasing pro-inflammatory cytokines and immune-modulating factors. This study examines the differential immune responses triggered by G2.1 and G3.4 to elucidate their regulatory mechanisms. Pig alveolar macrophage (PAM) infection rates were assessed via immunofluorescence assay (IFA), while cytokine secretion was analyzed using a high-throughput multiplex platform. RNA transcriptome analysis provided a comprehensive gene expression profile, with key findings validated via qPCR. The results show that G2.1 infects PAMs more efficiently than G3.4 at 1 day post-infection (dpi). IL-18 levels were significantly higher in G2.1-infected PAMs at 1, 2, and 3 dpi, while TNF-α levels were also elevated at 2 dpi. Transcriptomic analysis revealed that G2.1-infected PAMs exhibited increased activation of immune pathways, including JAK-STAT signaling and Th17 cell differentiation, which are linked to pro-inflammatory responses and Th1 immunity. Genes such as ICAM1 (cell adhesion) and S100A9 (pro-inflammatory response) were significantly upregulated in G2.1-infected cells, suggesting enhanced inflammation and viral persistence. Conversely, G3.4 uniquely upregulated genes like CXCL13 (B-cell recruiter) and PTGIR (anti-inflammatory prostaglandin receptor), potentially mitigating excessive immune activation and reducing host damage. These findings highlight the critical role of genotype-specific gene regulation in CSFV pathogenesis. Our study revealed that G2.1 induces a stronger immunostimulatory response than G3.4, suggesting differences in their immunomodulatory mechanisms. These findings provide valuable insights into the factors driving genotypic shifts in field strains and highlight the immune evasion strategies employed by different CSFV genotypes.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:45:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:45:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCertificate #
Acknowledgments i
中文摘要 ii
Abstract iv
Contents vi
List of Tables ix
List of Figures x
Chapter 1 Introduction 1
1.1 Structural Characteristics of CSFV 2
1.2 CSFV Transmission Routes 4
1.3 Genotypes and Sub-Genotypes of CSFV 6
1.4 Clinical Signs and Pathological Changes 7
1.5 Pathogenesis of CSFV 10
1.6 Target Cells and Immunomodulation of CSFV 11
1.7 Previous Studies Related to RNA-Sequencing Analysis in CSFV 13
1.8 Previous Studies of CSFV G2.1 and G3.4 in Our Laboratory 14
1.9 Aims of the Study 16
Chapter 2 Materials and Methods 17
2.1 Materials 17
2.1.1 Virus Proliferation and Preservation 17
2.1.2 Porcine Alveolar Macrophages (PAMs) Acquisition 17
2.2 Methods 18
2.2.1 Analysis of CSFV Infected Rate by Immunofluorescence Assay (IFA) 18
2.2.2 Analysis of Multiplex Cytokine Analysis 19
2.2.3 Transcriptomics 19
2.2.3.1 Total RNA Preparation and Quality Control 19
2.2.3.2 RNA-sequencing 20
2.2.3.3 Principal Component Analysis (PCA) 20
2.2.3.4 Differential Expression Analysis and Function Enrichment 21
2.2.3.5 Gene Set Enrichment Analysis (GSEA) 21
2.2.4 mRNA Expression by qPCR and Relative Quantification 22
2.2.4.1 cDNA Synthesis 22
2.2.4.2 Real-Time Quantitative Polymerase Chain Reaction (qPCR) 22
2.2.5 Statistical Analysis 23
Chapter 3 Results 24
3.1 The Infection Rate of CSFV-Infected PAMs 24
3.2 G2.1-Infected PAMs Induced Higher Pro-inflammatory Cytokine Expression 24
3.3 Transcript Abundance and Differential Expression 26
3.3.1 Transcript Abundance 26
3.3.2 Principal Component Analysis (PCA) 26
3.3.3 Differential Gene Expression Analysis 27
3.3.3.1 Overview of Differentially Expressed Genes (DEGs) 27
3.3.3.2 Unique DEGs of G2.1 and G3.4 Group 28
3.3.3.3 Common DEGs between G2.1 and G3.4 Group 28
3.4 Functional Enrichments 29
3.4.1 Gene Ontology (GO) 29
3.4.2 Kyoto Encyclopedia of Genes and Genomes (KEGG) 30
3.4.3 Gene Set Enrichment Analysis (GSEA) 32
3.5 Validation of the Gene Expression via qPCR 33
Chapter 4 Discussion 35
Tables 41
Figures 57
References 68
-
dc.language.isoen-
dc.title比較豬瘟2.1與3.4基因型病毒株感染豬肺泡巨噬細胞後的免疫反應與基因表現差異zh_TW
dc.titleComparison of Immune and Gene Expression Responses in Porcine Alveolar Macrophages Infected with CSFV Genotypes 2.1 and 3.4en
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.coadvisor張家宜zh_TW
dc.contributor.coadvisorChia-Yi Changen
dc.contributor.oralexamcommittee林翰佑;黃有良zh_TW
dc.contributor.oralexamcommitteeHan-You Lin;Yu-Liang Huangen
dc.subject.keyword豬瘟病毒,豬肺臟巨噬細胞,細胞激素,RNA轉錄體,促發炎免疫反應,zh_TW
dc.subject.keywordCSFV,PAMs,Cytokines,RNA transcriptome,Pro-inflammatory response,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202500690-
dc.rights.note未授權-
dc.date.accepted2025-02-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-liftN/A-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
1.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved