Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97213
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余化龍zh_TW
dc.contributor.advisorHwa-Lung Yuen
dc.contributor.author張成嘉zh_TW
dc.contributor.authorCheng-Chia Changen
dc.date.accessioned2025-02-27T16:42:18Z-
dc.date.available2025-04-09-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-18-
dc.identifier.citation1. 吳瑞賢, 謝仲霖, 馬家齊, 劉日順. (2019). 桃園地區農業埤塘灌溉系統調蓄能力分析,農業工程學報, 65(4), 12-25. https://doi.org/10.29974/JTAE.201912_65(4).0002
2. 林喬莉 (2010). 以系統動力模式評估水田埤塘灌溉系統 國立中央大學. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/65gkc7
3. 韓釗 (2009). 《系統動力學:探索動態複雜之鑰 (第二版)》. 滄海圖書,ISBN:9789866507014。
4. 中華系統動力學學會(2025),中華系統動力學學會:成立背景與宗旨。https://www.csds.org.tw/www/about-society,網頁檢視日期:2025年1月9日。
5. 行政院客家委員會 (2003),《桃園大圳及光復圳系統埤塘調查研究》,行政院客家委員會出版,ISBN: 957016185X
6. 張潔如 (2009). 桃園地區埤塘水質特性與操作管理現狀關聯之研究 萬能科技大學. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/qus64q
7. 吳思儒、朱淳懿、謝智元、林柏安、王之佑、方偉達 (2024). 遊客餵食行為對於流路型埤塘水質影響-以八德埤塘自然生態公園為例. 農業工程學報, 70(2), 40-51. https://doi.org/10.29974/JTAE.202406_70(2).0004
8. 鄧雅雲 (2010). 桃園臺地埤塘水質研究 國立臺灣師範大學. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/n2h3p5
9. 楊瑞成 (2014). 桃園航空城區段徵收範圍內桃園農田水利會埤塘漁業之研究 國立臺灣大學. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/a5u272
10. 陳世楷、劉振宇、黃偉哲(1998). 水田入滲水力特性之試驗研究。台灣水利,46(4),52-64。https://doi.org/10.6937/TWC.199812_46(4).0005
11. 經濟部. (2008). 修正「水權登記審查作業要點」第2點規定、第4點附件,自即日生效,經濟部令,中華民國97年12月17日,經授水字第09720209540號,行政院公報資訊網,第014卷,第242期。https://gazette.nat.gov.tw/egFront/detail.do?metaid=28002&log=detailLog (最後查閱日期: 2024年11月11日)
12. 童慶斌&連宛渝(2000). 氣候變遷對灌溉需水量之影響。農業工程學報,第46卷第1期
13. 蔡欣妤 (2009). 以系統動力模型評估農業灌溉系統之研究 國立中央大學. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/8ezu6u
14. 監察院. (2021). 仉委員桂美調查:桃園多數埤塘傳出吳郭魚感染吳郭魚湖泊病毒,究疫情有無擴散?埤塘有無違法養魚?養殖生物安全何在?埤塘之灌溉功能有無受損?相關機關及人員有無違失?均有深入瞭解之必要案之調查報告 (字號:106財調0043)。取自監察院網站:https://www.cy.gov.tw/CyBsBoxContent.aspx?n=133&s=5841 (網路資料檢視日期:2024年11月12日)
15. 福壽實業 (2024). 尼羅魚浮水系列水產飼料. 福壽實業股份有限公司(Fwusow Industry). 網頁檢視日期 2024年11月2日, 網址:https://www.fwusow.com.tw/index.php/products/item/963-%E5%B0%BC%E7%BE%85%E9%AD%9A%E6%B5%AE%E6%B0%B4%E7%B3%BB%E5%88%97
16. 王瑋 (2014). 臺灣北部沿岸區域溼沉降中氮物種分佈與分子量組成之研究 國立臺灣海洋大學. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/qbwgf9
17. 胡振寰 (2018). 東海南端大氣氮與磷濕沉降之研究 國立臺灣海洋大學. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/5u952h
18. 台灣電力公司 (2024). 資訊揭露-發電資訊-購入電力概況-各縣市太陽光電容量因數。網址: https://www.taipower.com.tw/2289/2363/2380/2385/10625/,網頁檢視日期2024/12/02
19. 陳柏元 (2006). 桃園埤塘景觀特性與水鳥族群關係之研究 中國文化大學. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/ax89jy
20. 甘嘉雯 (2019,5月20日)。埤塘鋪滿光電板 雁鴨無家可歸。中國時報。網址:https://www.chinatimes.com/newspapers/20190520000516-260114?chdtv,網頁檢視日期:2024/10/29
21. 陳曉芙、陳玥蓁. (2019,10月27日)。 初聲/候鳥棲地遭破壞 光電埤塘綠能美意不再。 今日新聞。網址:https://www.nownews.com/news/3670184?srsltid=AfmBOor2_e_KYPf_cboa70WaoRL5ivwOIbR0xBQ7XmozPvfvIcZ__Uk_,網頁檢視日期:2024/10/29
22. 詹淑雲 (2018, 12月 27日)。野鳥學會調查 桃園光電埤塘雁鴨消失。公視新聞網。網址:https://news.pts.org.tw/article/417650,網頁檢視日期:2024/10/29
23. 魏瑾筠 (2018, 12月21日)。 埤塘裝光電板 鳥會:不利野鳥棲息。自由時報。網址:https://news.ltn.com.tw/news/local/paper/1255462,網頁檢視日期:2024/10/29
24. 鄭明昇. (2007). 桃園灌區之區域迴歸水分析研究 國立中央大學. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/7v4j9n
25. 經濟部能源署(2024)。中華民國一百十三年度再生能源電能躉購費率及其計算公式。[經濟部公告] 中華民國113年3月5日,經能字第11358000900號。經濟部能源署。網址:https://www.moeaea.gov.tw/ecw/populace/Law/Content.aspx?menu_id=26351,網頁檢視日期:2024年12月25日。
26. 農業部 (2024)。桃園吳郭魚交易行情。農業部-田邊好幫手。網址:https://m.moa.gov.tw/Transaction/AquaticTrans/Detail?FishCode=1011&MarketNo=F330&MarketName=%E6%A1%83%E5%9C%92&StartDate=2023/01/01&EndDate=2023/12/31,網頁檢視日期:2024年12月25日。
27. 經濟部(2024)。經濟部所屬產業園區管理機構下水道使用管理及收費規定。經園字第11355700180號公告。附表二:經濟部所屬產業園區管理機構污水處理系統使用費費率。經濟部產業園區管理局。網址:https://law.moea.gov.tw/LawContent.aspx?id=GL001132,網頁檢視日期:2024/12/25
28. 國家科學及技術委員會 (2024)。修正「科技部新竹科學園區管理局龍潭園區污水下水道使用費計價基準」,並自即日生效,發布日期:110.02.04 發布字號: 竹環字第1100003917號函。立法理由:科技部新竹科學園區管理局龍潭園區污水下水道使用費計價基準總說明及對照表1100204。主管法規查詢系統,網址:https://law.nstc.gov.tw/NewsContent.aspx?id=131481,網頁檢視日期:2024/12/25
29. 蔡國平 (1990). 灌溉用水之價值評估─線性規劃法在嘉南地區之應用 國立臺灣大學. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/kps3sd
30. 農業部農田水利署桃園管理處 (2024). 大崙工作站-工作站分布-桃園管理處,農業部農田水利署桃園管理處. 網頁檢視日期:2024年8月2日,網址: https://www.iatyu.nat.gov.tw/about/WorkStationPage?a=10161&id=9&q=
31. Acosta, L.A., S.P. Gerrard, H.G.H. Luchtenbelt, M. Nazareth, R. Sabado Jr., J.R. Eugenio, S. Zabrocki, O. Nanfuka, and V. Todorov (2020). Green Growth Simulation Tool Phase 1 – Concept, Methods and Applications. GGGI Technical Report No. 17, Global Green Growth Institute, Seoul, South Korea.
32. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
33. Adams, R. (2013) [updated 2022]. Pied stilt poaka. In Miskelly, C.M. (ed.) New https://www.nzbirdsonline.org.nz/species/pied-stilt
34. Avnimelech, Y., Mozes, N., Diab, S., & Kochba, M. (1995). Rates of organic carbon and nitrogen degradation in intensive fish ponds. Aquaculture, 134(3-4), 211-216. https://doi.org/10.1016/0044-8486(95)00063-8
35. Brutsaert, W. (1982) Evaporation into the Atmosphere: Theory, History, and Applications. Springer, Dordrecht, 299. http://dx.doi.org/10.1007/978-94-017-1497-6
36. Beaton, G. H. (1981). Protein-energy ratios. Joint FAO/WHO/UNU Expert Consultation on Energy and Protein Requirements, 5-17 October 1981, Rome. Food and Agriculture Organization of the United Nations. Retrieved January 14, 2025, from https://www.fao.org/4/M2889E/M2889E00.htm
37. Buettner, A. E., & Pazos, J. P. (2013). Tringa glareola, Wood sandpiper. Animal Diversity Web. University of Michigan Museum of Zoology. Retrieved January 1, 2025, from https://animaldiversity.org/accounts/Tringa_glareola/
38. British Trust for Ornithology. (2025a). Green Sandpiper (Tringa ochropus). British Trust for Ornithology-Understanding-birds-BirdFacts. Retrieved January 1, 2025, https://www.bto.org/understanding-birds/birdfacts/green-sandpiper
39. British Trust for Ornithology. (2025b). Kingfisher (Alcedo atthis). British Trust for Ornithology-Understanding-birds-BirdFacts. Retrieved January 1, 2025, https://www.bto.org/understanding-birds/birdfacts/kingfisher
40. BirdID. (2025). Adult male Eastern Yellow Wagtail (Motacilla tschutschensis). Retrieved January 1, 2025, from https://www.birdid.co.uk/BirdDetail.aspx?UniqueId=4781-4758
41. Boyd, C.E. (1990). Water Quality in Ponds for Aquaculture. Auburn University, Auburn, Alabama.
42. Biswas, A. K., Endo, M., & Takeuchi, T. (2002). Effect of different photoperiod cycles on metabolic rate and energy loss of both fed and unfed young tilapia Oreochromis niloticus: Part I. Fisheries science, 68(3), 465-477. https://doi.org/10.1046/j.1444-2906.2002.00450.x
43. Boyd, C. E. (1995). Bottom Soils, Sediment, and Pond Aquaculture. Chapman & Hall, New York, p. 348.
44. Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world's ecosystem services and natural capital. nature, 387, 253-260. DOI: https://doi.org/10.1038/387253a0
45. Cui, F., Du, Y., Chen, B., Zhao, Y., & Zhou, Y. (2020). Variation in shallow sandy loam porosity under the influence of shallow coal seam mining in north-west China. Energy Exploration & Exploitation, 38(5), 1349-1366. https://doi.org/10.1177/0144598720918673
46. Chow, V.T.; Maidment, D.R.; Mays, L.W. (1988). Applied Hydrology. McGraw-Hill Series in Water Resources and Environmental Engineering. McGraw-Hill: New York. ISBN 0-07-010810-2. xiii, 572 pp.
47. Crossland, A.C. (2013a) [updated 2022]. Common sandpiper. In Miskelly, C.M. (ed.) New Zealand Birds Online. Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/common-sandpiper
48. Crossland, A. (2013b). Black-tailed godwit in Miskelly, C.M. (ed.) New Zealand Birds Online. Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/black-tailed-godwit
49. Château, P. A., Wunderlich, R. F., Wang, T. W., Lai, H. T., Chen, C. C., & Chang, F. J. (2019). Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds. Science of the total environment, 687, 654-666. https://doi.org/10.1016/j.scitotenv.2019.05.420
50. Camargo Valero, M. A., & Mara, D. D. (2007). Nitrogen removal via ammonia volatilization in maturation ponds. Water Science and Technology, 55(11), 87-92. https://doi.org/10.2166/wst.2007.349
51. Chatvijitkul, S., Boyd, C. E., & Davis, D. A. (2018). Nitrogen, phosphorus, and carbon concentrations in some common aquaculture feeds. Journal of the World Aquaculture Society, 49(3), 477-483. https://doi.org/10.1111/jwas.12443
52. Duraiappah, A. K. (2011). Ecosystem services and human well-being: do global findings make any sense?. BioScience, 61(1), 7-8. https://doi.org/10.1525/bio.2011.61.1.2
53. Driessen, P.M., (1986). The water balance of the soil. In: Eds H. van Keulen & J. Wolf, Modelling of agricultural production: weather, soils and crops. Simulation Monographs, Pudoc, Wageningen, 76-116.
54. de Lisle, G.W. (2013) [updated 2017]. Common moorhen. In Miskelly, C.M. (ed.) New Zealand Birds Online. Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/common-moorhen
55. Dantas, M. C., & Attayde, J. L. (2007). Nitrogen and phosphorus content of some temperate and tropical freshwater fishes. Journal of Fish Biology, 70(1), 100-108. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1095-8649.2006.01277.x
56. Drozdz, D., Malinska, K., Mazurkiewicz, J., Kacprzak, M., Mrowiec, M., Szczypiór, A., Postawa P. & Stachowiak, T. (2020). Fish pond sediment from aquaculture production-Current practices and the potential for nutrient recovery: a Review. International Agrophysics, 34(1). https://doi.org/10.31545/intagr/116394
57. European Environment Agency (2025a). Common International Classification of Ecosystem Services (CICES), Version 5.1. Accessed January 3, 2025, from https://cices.eu
58. European Environment Agency (2025b). Common International Classification of Ecosystem Services (CICES), Structure of CICES. Accessed January 3, 2025, from https://cices.eu/cices-structure/
59. eBird Taiwan (2024). Cornell Lab of Ornithology, Cornell University. Accessed November 10, 2024, from:https://ebird.org/region/TW
60. El‐Sayed, A. F., El‐Ghobashy, A., & Al‐Amoudi, M. (1996). Effects of pond depth and water temperature on the growth, mortality and body composition of Nile tilapia, Oreochromis niloticus (L.). Aquaculture research, 27(9), 681-687. https://doi.org/10.1046/j.1365-2109.1996.00776.x
61. Emerson, K., Russo, R.C., Lund, R.E. and Thurson, R.V. (1975). Aqueous ammonia equilibrium calculations: effect of pH and temperature. Journal of the Fisheries Research Board of Canada, 32, 2379–2383. https://doi.org/10.1139/f75-274
62. Eymontt, A., Wierzbicki, K., Brogowski, Z., Burzyńska, I., & Rossa, L. (2017). Nowa technologia wydobywania osadów dennych z rowów na stawach rybnych i ich zastosowanie w rolnictwie [New technology for extracting bottom sediments from ditches in fish ponds and their application in agriculture]. Komunikaty Rybackie, 2(157), 7-13. (Original work published in Polish)
63. Forrester, J. W. (1994). System dynamics, systems thinking, and soft OR. System Dynamics Review, 10(2‐3), 245-256. https://doi.org/10.1002/sdr.4260100211
64. Freeze, R.A., & Cherry, J.A. (1979). Groundwater. Prentice-Hall, Englewood Cliffs, New Jersey, 604 pp.
65. Fabiano, M., & Pusceddu, A. (1998). Total and hydrolizable particulate organic matter (carbohydrates, proteins and lipids) at a coastal station in Terra Nova Bay (Ross Sea, Antarctica). Polar Biology, 19, 125-132. https://doi.org/10.1007/s003000050223
66. Guillet A, Furness RW. (1985). Energy requirements of a great white pelican (Pelecanus onocrotalus) population and its impact on fish stocks. J Zool. 205(4):573–583. https://doi.org/10.1111/j.1469-7998.1985.tb03545.x
67. Homer, J. B., & Hirsch, G. B. (2006). System dynamics modeling for public health: background and opportunities. American journal of public health, 96(3), 452-458. https://doi.org/10.2105/AJPH.2005.062059
68. Haines-Yong, R. and Potschin, M. (2012) CICES Version 4: Response to Consultation. Centre for Environmental Management, University of Nottingham.
69. Hahn, S., Bauer, S., & Klaassen, M. (2007). Estimating the contribution of carnivorous waterbirds to nutrient loading in freshwater habitats. Freshwater Biology,52(12), 2421-2433. https://doi.org/10.1111/j.1365-2427.2007.01838.x
70. Hammond, P. (2013) [updated 2017]. Plumed egret. In Miskelly, C.M. (ed.) New Zealand Birds Online. Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/plumed-egret
71. Hepher, B., Liao, I. C., Cheng, S. H., & Hsieh, C. S. (1983). Food utilization by red tilapia—effects of diet composition, feeding level and temperature on utilization efficiencies for maintenance and growth. Aquaculture, 32(3-4), 255-275. https://doi.org/10.1016/0044-8486(83)90223-5
72. India Biodiversity Portal. (2025a). Rostratula benghalensis (Linnaeus, 1758). Retrieved January 2, 2025, from https://indiabiodiversity.org/species/show/239317
73. India Biodiversity Portal. (2025b). Charadrius dubius (Scopoli, 1786). Retrieved January 4, 2025, from https://indiabiodiversity.org/species/show/239119
74. Ivlev, V.S. (1961). Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven, Connecticut.
75. Islam, M. J., C. Jang, J. Eum, S.-M. Jung, M.-S. Shin, Y. Lee, Y. Choi, and B. Kim.. (2019). C: N: P stoichiometry of particulate and dissolved organic matter in river waters and changes during decomposition. Journal of Ecology and Environment,43, 1-8. https://doi.org/10.1186/s41610-018-0101-4
76. Jónasdóttir, S. H. (2019). Fatty acid profiles and production in marine phytoplankton. Marine drugs,17(3), 151. https://doi.org/10.3390/md17030151
77. Jørgensen, S. E., Kamp-Nielsen, L., & Jørgensen, L. A. (1986). Examination of the generality of eutrophication models. Ecological Modelling,32 (4), 251-266. https://doi.org/10.1016/0304-3800(86)90090-6
78. Kabir, K. A., Verdegem, M. C. J., Verreth, J. A. J., Phillips, M. J., & Schrama, J. W. (2019). Effect of dietary protein to energy ratio, stocking density and feeding level on performance of Nile tilapia in pond aquaculture. Aquaculture, 511, 634200. https://doi.org/10.1016/j.aquaculture.2019.06.014
79. Kasprzak, P., Padisák, J., Koschel, R., Krienitz, L., & Gervais, F. (2008). Chlorophyll a concentration across a trophic gradient of lakes: An estimator of phytoplankton biomass?. Limnologica, 38(3-4), 327-338. https://doi.org/10.1016/j.limno.2008.07.002
80. Komabayasi, M. (1959). Dissolved oxygen in rainwater and its relation to the raincloud structure (II). Precipitation from April to September. Journal of the Meteorological Society of Japan. Ser. II, 37(1), 35-41. https://doi.org/10.2151/jmsj1923.37.1_35
81. Karasov W.H. (1990) Digestion in birds: chemical and physiological determinants and ecological implications. Studies in Avian Biology, 13, 391–415.
82. Kestenholz, M. (1994). Body mass dynamics of wintering Tufted Duck Aythya fuligula and Pochard A. ferina in Switzerland.Wildfowl,45, 147-158.
83. Kolding, J., Haug, L., & Stefansson, S. (2008). Effect of ambient oxygen on growth and reproduction in Nile tilapia (Oreochromis niloticus). Canadian Journal of Fisheries and Aquatic Sciences,65(7), 1413-1424. https://doi.org/10.1139/F08-059
84. Kouba, A., R. Lunda, D. Hlaváč, I. Kuklina, J. Hamáčková, T. Randák, P. Kozák, A. Koubová, and M. Buřič. (2018). Vermicomposting of sludge from recirculating aquaculture system using Eisenia andrei: Technological feasibility and quality assessment of end-products. Journal of Cleaner Production, 177, 665-673. https://doi.org/10.1016/j.jclepro.2017.12.216
85. Li, L., & Yakupitiyage, A. (2003). A model for food nutrient dynamics of semi-intensive pond fish culture. Aquacultural Engineering, 27(1), 9-38, ISSN 0144-8609. https://doi.org/10.1016/S0144-8609(02)00037-7
86. Li, L., Yakupitiyage, A., Saeed, K. (1998). Food nutrient dynamics model for fertilized pond aqauculture. System Dynamics - An Internal Journal of Policy Modelling X (1 and 2), 85/115.
87. Leonard, J. N., & Skov, P. V. (2022). Capacity for thermal adaptation in Nile tilapia (Oreochromis niloticus): Effects on oxygen uptake and ventilation. Journal of Thermal Biology, 105, 103206. https://doi.org/10.1016/j.jtherbio.2022.103206
88. Li, H., Ling, W., & Lin, C. (2011). Fishpond sediment-borne DDTs and HCHs in the Pearl River Delta: characteristics, environmental risk and fate following the use of the sediment as plant growth media. Journal of hazardous materials, 186(2-3), 1474-1480. https://doi.org/10.1016/j.jhazmat.2010.12.031
89. Millennium Ecosystem Assessment (2005), Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC. ISBN: 1597260401
90. Marion L, Clergeau P, Brient L, Bertru G. (1994). The importance of avian-contributed nitrogen (N) and phosphorus (P) to Lake Grand-Lieu, France. Hydrobiologia. 279- 280:133–147. https://doi.org/10.1007/BF00027848
91. Melville, D.S. (2013a). Grey heron. In Miskelly, C.M. (ed.) New Zealand Birds Online.Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/grey-heron
92. Monfils, M.J. (2004). Special animal abstract for Nycticorax nycticorax (black-crowned nightheron). Michigan Natural Features Inventory, Lansing, MI. 6 pp.
93. Mccleese, C. (2018). Gallinago gallinago, common snipe. Animal Diversity Web. University of Michigan Museum of Zoology. Retrieved January 3, 2025, from https://animaldiversity.org/accounts/Gallinago_gallinago/
94. Melville, D.S. (2013b) [updated 2023]. Common greenshank. In Miskelly, C.M. (ed.) New Zealand Birds Online.Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/common-greenshank
95. Mayo, A. W., Hanai, E. E., & Kibazohi, O. (2014). Nitrification–denitrification in a coupled high rate–water hyacinth ponds. Physics and Chemistry of the Earth, Parts A/B/C, 72, 88-95. https://doi.org/10.1016/j.pce.2014.09.013
96. Mitsch, W. J., & Reeder, B. C. (1991). Modelling nutrient retention of a freshwater coastal wetland: estimating the roles of primary productivity, sedimentation, resuspension and hydrology. Ecological Modelling, 54(3-4), 151-187. https://doi.org/10.1016/0304-3800(91)90075-C
97. Ma, Y., L. Sun, C. Liu, X. Yang, W. Zhou, B. Yang, G. Schwenke, and D. L. Liu. (2018). A comparison of methane and nitrous oxide emissions from inland mixed-fish and crab aquaculture ponds. Science of the Total Environment, 637, 517-523. https://doi.org/10.1016/j.scitotenv.2018.05.040
98. NACA. (1989). Integrated fish farming in China. NACA Technical Manual 7. A World Food Day Publication of the Network of Aquaculture Centres in Asia and the Pacific, Bangkok, Thailand. 278 pp.
99. Nagy, K. A., Girard, I. A., & Brown, T. K. (1999). Energetics of free-ranging mammals, reptiles, and birds. Annual review of nutrition, 19(1), 247-277. https://doi.org/10.1146/annurev.nutr.19.1.247
100. Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly weather review, 100(2), 81-92.https://doi.org/10.1175/1520-0493(1972)100%3C0081:OTAOSH%3E2.3.CO;2
101. Paul, D. S., & Manning, A. E. (2002). Great Salt Lake Waterbird Survey five-year report (1997-2001). Great Salt Lake Ecosystem Program and Utah Division of Wildlife Resources. Retrieved November 10, 2024, from https://wildlife.utah.gov/waterbirdsurvey/
102. Petch, S. (2013) [updated 2024]. Long-toed stint. In Miskelly, C.M. (ed.) New Zealand Birds Online. Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/long-toed-stint
103. Potapov, M. A., Kurochkin, A. A., & Frolov, D. I. (2020). Equalization of the moisture content of the mixture for obtaining fertilizers from high-moisture waste of poultry farming by extrusion. In IOP Conference Series: Materials Science and Engineering (Vol. 1001, No. 1, p. 012029). IOP Publishing. https://doi.org/10.1088/1757-899X/1001/1/012029
104. Piedrahita, R. H. (1984). Development of a computer model of the aquaculture pond ecosystem. Ph.D.Thesis. University of California, Davis, California.
105. Polprasert, C., & Agarwalla, B. K. (1994). A facultative pond model incorporating biofilm activity. Water Environment Research, 66(5), 725-732. https://doi.org/10.2175/WER.66.5.9
106. Qu, M., Yu, S., Chen, D., Chu, J., & Tian, B. (2016). State-of-the-art of design, evaluation, and operation methodologies in product service systems. Computers in industry, 77, 1-14. https://doi.org/10.1016/j.compind.2015.12.004
107. Quiroga, G., Castrillón, L., Fernández-Nava, Y., & Marañón, E. (2010). Physico-chemical analysis and calorific values of poultry manure. Waste management, 30(5), 880-884. https://doi.org/10.1016/j.wasman.2009.12.016
108. Raudsepp-Hearne, Ciara & Peterson, Garry & Tengö, Maria & Bennett, Elena & Holland, Tim & Benessaiah, Karina & MacDonald, Graham & Pfeifer, Laura. (2010). Untangling the Environmentalist's Paradox: Why Is Human Well-being Increasing as Ecosystem Services Degrade?. BioScience.60(8). 576-589. https://doi.org/10.1525/bio.2010.60.8.4
109. Rawls, W. J., Brakensiek, D. L., & Saxtonn, K. E. (1982). Estimation of soil water properties. Transactions of the ASAE, 25(5), 1316-1320. https://doi.org/10.13031/2013.33720
110. Rai, R. K., Singh, V. P., & Upadhyay, A. (2017). Planning and Evaluation of Irrigation Projects, Chapter 12 - Irrigation Scheduling (pp. 385-412). Academic Press. ISBN 9780128117484. https://doi.org/10.1016/B978-0-12-811748-4.00012-1
111. Raudkivi, A. J. (1979). Hydrology—An Advanced Introduction to Hydrological Processes and Modelling, Pergamon Press, Offord.
112. Ramseyer, L. J. (2002). Predicting whole-fish nitrogen content from fish wet weight using regression analysis. North American Journal of Aquaculture, 64(3), 195-204. https://doi.org/10.1577/1548-8454(2002)064%3C0195:PWFNCF%3E2.0.CO;2
113. Rahman, M. M., & Yakupitiyage, A. (2006). Use of fishpond sediment for sustainable aquaculture; agriculture farming. International Journal of Sustainable Development and Planning, 1(2), 192-202. https://doi.org/10.2495/SDP-V1-N2-192-202
114. Saxton, K.E. and Rawls, W.J. (2006), Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil science society of America Journal, 70(5), 1569-1578. https://doi.org/10.2136/sssaj2005.0117
115. Silva, C., González, D., & Suárez, F. (2017). An experimental and numerical study of evaporation reduction in a salt-gradient solar pond using floating discs. Solar energy,142, 204-214. https://doi.org/10.1016/j.solener.2016.12.036
116. Shaik, S.; Vigneshwaran, P.; Roy, A.; Kontoleon, K. J.; Mazzeo, D.; Cuce, E.; Saleel, C. A.; Alwetaishi, M.; Khan, S. A.; Gürel, A. E.; Agbulut, Ü. (2023). Experimental analysis on the impacts of soil deposition and bird droppings on the thermal performance of photovoltaic panels. Case Studies in Thermal Engineering, 48, 103128. https://doi.org/10.1016/j.csite.2023.103128
117. Scherer, N. M., Gibbons, H. L., Stoops, K. B., & Muller, M. (1995). Phosphorus loading of an urban lake by bird droppings. Lake and Reservoir Management, 11(4), 317-327. https://doi.org/10.1080/07438149509354213
118. Shmueli M, Izhaki IDO, Arieli AMI, Arad Z. (2000). Energy requirements of migrating great white pelicans Pelecanus onocrotalus. Ibis. 142(2):208–216 https://doi.org/10.1111/j.1474-919X.2000.tb04860.x
119. Seabrook-Davison, M.N.H. (2013) [updated 2017]. Little egret. In Miskelly, C.M. (ed.) New Zealand Birds Online. Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/little-egret
120. Schofield, R. (2013). Cattle egret [updated 2023]. In Miskelly, C.M. (ed.) New Zealand Birds Online. Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/cattle-egret
121. Szabo, M.J. (2013) [updated 2022]. Pacific golden plover kuriri. In Miskelly, C.M. (ed.) New Zealand Birds Online. Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/pacific-golden-plover
122. Southey, I. (2013) [updated 2023]. Little tern tara teo. In Miskelly, C.M. (ed.) New Zealand Birds Online Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/little-tern
123. Sulawesty, F., Rahayu, S. Y. S., & Chrismada, T. (2023). Phytoplankton response to differences in light and the addition of phosphorus in Lake Cikaret. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 13(1), 27-36. https://doi.org/10.29244/jpsl.13.1.27-36
124. Stratton FE. (1969). Nitrogen losses from alkaline water impoundments. Journal of the Sanitary Engineering Division, American Society of Civil Engineers (ASCE) ; 95(SA2):223–31 https://doi.org/10.1061/JSEDAI.0000945
125. The Royal Society for the Protection of Birds. (2025a). Little grebe (Tachybaptus ruficollis). Retrieved January 1, 2025, from https://www.rspb.org.uk/birds-and-wildlife/little-grebe
126. The Royal Society for the Protection of Birds. (2025b). Grey Wagtail (Motacilla cinerea). Retrieved January 1, 2025, from https://www.rspb.org.uk/birds-and-wildlife/grey-wagtail
127. The Royal Society for the Protection of Birds. (2025c). Pied Wagtail (Motacilla alba). Retrieved January 1, 2025, from https://www.rspb.org.uk/birds-and-wildlife/pied-wagtail
128. Tamiya, H., Hase, E., Shibata, K., Mituya, A., Iwamura, T., Nihei, T., Sasa, T. (1964). Kinetics of growth of Chlorella, with special reference to its dependence on quantity of available light and on temperature. In: Burlew, J.S. (Ed.), Algal culture from laboratory to pilot plant. Carnegie Institute of Washington Publication 600, pp. 204-234.
129. U.S. Department of Agriculture (USDA). (2024). FoodData Central: Fish, tilapia, farm raised, raw (FDC ID: 2684442,NDB Number:100326,FDC Published: 4/18/2024). U.S. Department of Agriculture, Agricultural Research Service. Retrieved October 6, 2024, from https://fdc.nal.usda.gov/food-details/2684442/nutrients
130. U.S. Food and Drug Administration (FDA). (2013). A food labeling guide: Guidance for industry. U.S. Department of Health & Human Services. Retrieved September 30, 2024, from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guide-developing-and-using-data-bases-nutrition-labeling
131. Verstijnen, Y. J. M., Maliaka, V., Catsadorakis, G., Lürling, M., & Smolders, A. J. P. (2021). Colonial nesting waterbirds as vectors of nutrients to Lake Lesser Prespa (Greece).Inland Waters,11(2), 191–207. https://doi.org/10.1080/20442041.2020.1869491
132. Ventana Systems (2024). IF THEN ELSE. Vensim Help. Retrieved January 10, 2025, from: https://www.vensim.com/documentation/20475.html
133. Weathers, W. W. (1992). Scaling nestling energy requirements. Ibis, 134(2), 142-153. https://doi.org/10.1111/j.1474-919X.1992.tb08391.x
134. Williams, M.J. (2013) [updated 2022]. Mallard rakiraki. In Miskelly, C.M. (ed.) New Zealand Birds Online. Retrieved January 1, 2025, from https://www.nzbirdsonline.org.nz/species/mallard
135. Walker, J. (2013) [updated 2022]. Sharp-tailed sandpiper | kohutapu. In Miskelly, C.M. (ed.) New Zealand Birds Online. https://www.nzbirdsonline.org.nz/species/sharp-tailed-sandpiper
136. Wang, L. K., Vielkind, D., & Wang, M. H. (1978). Mathematical models of dissolved oxygen concentration in fresh water. Ecological Modelling, 5(2), 115-123. https://doi.org/10.1016/0304-3800(78)90034-0
137. Wolfe, J. R., Zweig, R. D., & Engstrom, D. G. (1986). A computer simulation model of the solar-algae pond ecosystem. Ecological modelling, 34(1-2), 1-59. https://doi.org/10.1016/0304-3800(86)90078-5
138. Wirat, J., (1996). Nitrogen fixation of blue-green algae and its nutritional value in fish culture. AIT Dissertation , No. AE-96-3.
139. Yuzyk, A. V. (2024). Clobal insights on the impact of solar power plants on bird populations. Біорізноманіття екологія та експериментальна біологія. 26. 64-75. https://doi.org/10.34142/2708-5848.2024.26.1.06
140. Youssefi, M. R., Hosseini, S. H., Tabarestani, A. H. A., Ardeshir, H. A., Jafarzade, F., & Rahimi, M. T. (2014). Gastrointestinal helminthes of green–winged teal (Anas crecca) from North Iran. Asian Pacific journal of tropical biomedicine,4, S143-S147. https://doi.org/10.12980/APJTB.4.2014C1205
141. Yi, Y. (1998). A bioenergetics growth model for Nile tilapia (Oreochromis niloticus) based on limiting nutrients and fish standing crop in fertilized ponds.Aquacultural Engineering,18(3), 157-173.https://doi.org/10.1016/S0144-8609(98)00028-4
142. Zison, S.T., W.B. Mills, Deimer, D., Chen, C.W., (1978). Rates, constants, and kinetics formulations in surface water quality modelling. Tetra. Tech. Inc., 3700 Mt. Diablo Blud., Lafayette, California 94549, 317 pp.
143. Zimmo, O.R., van der Stehen, N.P. and Gijzen, H.J. (2003). Comparison of ammonia volatilisation rates in algae and duckweed- based waste stabilisation ponds treating domestic wastewater. Water Research, 37, 4587–4594. https://doi.org/10.1016/j.watres.2003.08.013
144. Zhang, L., Sun, J., Liu, D., & Yu, Z. (2005). Studies on growth rate and grazing mortality rate by microzooplankton of size-fractionated phytoplankton in spring and summer in the Jiaozhou Bay, China. Acta Oceanologica Sinica, 24(2), 85-101
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97213-
dc.description.abstract居住於台灣桃園區域早期的居民,為因應農業灌溉用水之需求而建造了許多埤塘,數千座的埤塘形成該市特有之景觀,因此桃園市又被譽為「千塘之鄉」,埤塘的功能除了灌溉用途之外,也具有生態維護、自然調節、養分傳輸與滯留,以及文化價值方面等重要功能。
然而,由於太陽能光電技術的發展,設置光電板的空間已不再侷限於陸地,亦適用於水域環境,因此埤塘的大面積水域空間就有了被利用的動機與經濟利益等誘因。近年來台灣為了追求綠能的發展,推動了許多綠能計畫,而桃園市的埤塘水域空間主要係透過覆蓋「浮動式太陽能光電板」(floating photovoltaics, FPV)建立太陽能發電之可再生能源供應源,並且已形成一定規模之產業型態與供應鏈。
然而,對於埤塘覆蓋太陽能光電板的行為,前後經歷過不少的質疑與抗議,其中不乏居民與環保團體對於埤塘附近區域景觀破壞、生態惡化、水質劣化、鳥類棲息破壞所造成的負面影響具有不少的擔憂,研究學者對於埤塘覆蓋浮動式太陽能光電板所帶來的經濟效益,是否能彌補其所造成副作用的經濟損失,也抱持懷疑的態度。
因此,本研究主要以「系統動力學」(System Dynamics, SD),透過系統動力模擬專業軟體Vensim,對於桃園區大崙工作站內數個埤塘及灌區,進行系統動力模型建模。本研究之系統動力模型分為「水量交換與變動模型」和「養分傳輸與滯留模型」兩個模型。
水量交換與變動模型主要參考並修改自吳瑞賢等人(2019)與林喬莉(2010)的模式設定,為模擬埤塘和灌區與大圳渠道水源、河水堰水源之間的水量傳輸交換情形。而養分傳輸與滯留模型,主要參考並修改自Li and Yakupitiyage (2003)的半集約式池塘養殖營養動態模型,並針對埤塘系統的特性與水量交換與變動模式串聯,額外考慮了水量交換所導致的埤塘養分輸入與輸出,並同時運行埤塘內的養分傳輸與滯留模擬。
 
最後將會根據模型模擬結果,評估光電板在不同覆蓋比例(0~100%)之下,對於埤塘光電板發電量、提供灌溉水源、氮與磷的濃度變化與養分滯留、溶氧濃度、植物性浮游生物與異營性成分能量密度、沉積氮與沉積磷、水溫、吳郭魚之生物能量、光電板上所沾黏的鳥類排泄物量與所造成的發電效益損失,以及鳥類的數量等所造成的影響。並粗估在不同光電板的覆蓋比例之下,光電板的發電量、養分滯留、吳郭魚販售、提供灌溉水源所帶來的經濟價值,以探討埤塘光電板的適當設置程度,提供埤塘最佳資源配置之參考。
模擬結果整體而言,當光電板的覆蓋比例越多時,能減少埤塘蒸發損失量,以提高一定程度之埤塘對於灌區的供水,並一定程度減少埤塘與灌區對於大圳、河水水源的依賴。
然而,由於光電板的覆蓋比例提高會降低太陽輻射能量對於埤塘水體的輸入,導致自營性的植物性浮游生物生長受到限制,進一步使異營性成分也隨之下降,因此,兩者之能量密度均會降低,於模擬埤塘中有養殖吳郭魚時,此現象在覆蓋率高於約0.3~0.4左右後更為明顯,且最終吳郭魚所能收成的總生物量也會隨光電板的覆蓋率上升而降低。
植物性浮游生物與異營性成分能量密度隨覆蓋率提高而降低,會導致溶氧量、氮與磷在埤塘系統中的自然面向(植物性浮游生物、異營性成分、吳郭魚、沉積物)中整體傳輸量降低,使全年總沉積氮與磷的量下降,而埤塘水中溶氧濃度、無機氮與無機磷的濃度變動劇烈程度則會趨緩。此外,模擬結果中光電板的覆蓋比例提高,也會導致鳥類的數量減少(但此現象與模式假設鳥類數量會隨光電板覆蓋比例提高而遞減有關),同時導致鳥類所產生的排泄物總量輸入也減少,且由於光電板的面積增加能夠分攤更多鳥類排泄物的沾粘影響,因此鳥類排泄物造成的光電板發電損失率會隨覆蓋比例提高而下降。
雖然模擬結果中光電板的發電經濟價值遠高出其餘生態系統服務之價值,然受限於研究領域的專業限制,本研究之經濟價值估算並不嚴謹,亦尚未探討利害關係人利益分配的問題,因此不建議以追求光電板的發電為首要考量目標。
zh_TW
dc.description.abstractThe early inhabitants of the Taoyuan region (in Taiwan) constructed numerous agricultural ponds to meet the agricultural irrigation water demands. The large number of agricultural ponds has shaped a unique geographical landscape, earning Taoyuan the nickname “Hometown of a Thousand Ponds”. In addition to their primary function of irrigation, these ponds also serve important roles in ecological maintenance, natural regulation, nutrient transport and retention, as well as holding cultural value.
However, with the advancement of solar photovoltaic technology, the space for installing solar panels is no longer limited to land but also extends to aquatic environments. As a result, the vast water areas of the ponds have become attractive for utilization due to economic incentives and potential benefits. In recent years, Taiwan has promoted numerous green energy initiatives to support the development of renewable energy. In Taoyuan, the water spaces of the ponds are primarily used to install “floating photovoltaics” (FPV) for solar power generation, establishing a renewable energy supply source. This has led to the formation of an emerging industry and supply chain.
Therefore, this study primarily adopts the System Dynamics (SD) approach and utilizes the professional system dynamics simulation software Vensim to conduct system dynamics modeling for several agricultural irrigation ponds and irrigation zones within the Dalun Workstation area in Taoyuan. The system dynamics model developed in this study consists of two models: the Water Exchange and Fluctuation Model and the Nutrient Transport and Retention Model.
The Water Exchange and Fluctuation Model is primarily adapted and modified from the models proposed by Wu Ruixian et al. (2019) and Lin Qiaoli (2010). It simulates the water transfer dynamics between agricultural irrigation ponds, irrigation zones, major canal water sources, and river weir water sources. The Nutrient Transport and Retention Model is mainly adapted and modified from Li and Yakupitiyage’s (2003) semi-intensive pond aquaculture nutrient dynamics model. It is further integrated with the characteristics of the irrigation pond system and the Water Exchange and Fluctuation Model, incorporating additional considerations for nutrient inflows and outflows due to water exchange, while simultaneously simulating the internal nutrient transport and retention dynamics within the pond system.
Finally, based on the simulation results, this study evaluates the impact of different FPV coverage ratios (0%–100%) on solar power generation, irrigation water supply, changes in nitrogen and phosphorus concentrations, nutrient retention, dissolved oxygen levels, autotrophic (phytoplankton) and heterotrophic energy density, sediment nitrogen and phosphorus accumulation, water temperature, tilapia biomass, the amount of bird excrement deposited on FPVs and its associated power generation losses, as well as changes in bird populations. Additionally, a rough economic estimation is conducted under different FPV coverage scenarios to assess the economic value of power generation, nutrient retention, tilapia sales, and irrigation water provision, with the aim of determining the optimal FPV deployment level and providing a reference for optimal resource allocation in irrigation ponds.
Overall, the simulation results indicate that increasing FPV coverage reduces evaporation losses, thereby improving irrigation water supply and reducing reliance on major canals and river water sources. However, as FPV coverage increases, the reduction in solar radiation input into the pond system restricts the growth of autotrophic phytoplankton, which in turn leads to a decline in heterotrophic energy. Consequently, the energy density of both components decreases. In scenarios where tilapia is farmed in the pond, this phenomenon becomes more pronounced when FPV coverage exceeds approximately 30%–40%, leading to a reduction in the total harvestable biomass of tilapia.
The decrease in phytoplankton and heterotrophic energy density results in reduced oxygen, nitrogen, and phosphorus fluxes within the natural pathways of the pond system (including phytoplankton, heterotrophic components, tilapia, and sediments), ultimately leading to a decline in total sediment nitrogen and phosphorus accumulation. Meanwhile, fluctuations in dissolved oxygen, inorganic nitrogen, and inorganic phosphorus concentrations in the pond become less pronounced.
Additionally, the simulation results show that increasing FPV coverage leads to a decrease in bird populations (However, this phenomenon is related to the model's assumption that the populations of birds will decrease as the coverage of FPV increases.), thereby reducing the total input of bird excrement. Moreover, as the FPV surface area increases, the deposition of bird excrement becomes more dispersed, effectively diluting its impact on power generation loss, resulting in a lower overall power generation loss rate due to excrement fouling.
Although the simulation results indicate that the economic value of FPV-generated electricity far exceeds that of other ecosystem services, the economic estimation in this study is not rigorous, as the primary focus of this research is not economics. Additionally, issues regarding stakeholder benefit distribution have not yet been explored. Therefore, this study does not recommend prioritizing FPV power generation as the primary consideration.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:42:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:42:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書
誌謝 I
中文摘要 II
英文摘要(Abstract) IV
第一章 研究動機與目的 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 5
2.1 系統動力學之簡介 5
2.2 生態系統服務之概述 6
2.3 埤塘相關文獻回顧與名詞定義 9
第三章 研究方法與模式設置 12
3.1 研究區域分析與架構設定 12
3.1.1 水量交換與變動模型設計 12
3.1.1.1 研究區基本屬性資料 12
3.1.1.2 研究區域土壤性質分析與設定 20
3.1.1.3 大圳供水量上限 34
3.1.1.4 河水堰供水量上限 39
3.1.1.5 埤塘蒸發量之推算 40
3.1.1.5.1 結合的空氣動力學與能量平衡法 40
3.1.1.5.2 光電板覆蓋所造成埤塘蒸發量的減少 44
3.1.1.6 埤塘滲漏量之推算 45
3.1.1.7 灌區農田蒸發散量之推算 46
3.1.1.8 灌區農田垂直與側向滲漏量之推算 47
3.1.1.9 灌區作物之設定 50
3.1.1.10 作物需水高度、灌區田埂缺口高度及灌區溢流量之設定 52
3.1.2 養分傳輸與滯留模型設計 54
3.1.2.1 吳郭魚之養殖 56
3.1.2.2 吳郭魚之飼料設定 59
3.1.2.3 埤塘施肥之設定 61
3.1.2.4 圳路、溪流、農田溢流水與雨水水源中組成分濃度之設定 62
3.1.2.5 溪流河水堰水源組成分濃度之擬訂 62
3.1.2.6 圳路水源組成分濃度之擬訂 70
3.1.2.7 雨水中組成分濃度之擬訂 70
3.1.2.8 光電板設置與發電量評估 72
3.1.2.9 埤塘鳥類棲息種類與數量設定 79
3.1.2.10 光電板對於埤塘鳥類棲息數量之影響 82
3.1.2.11 鳥類排泄物對於埤塘之養分輸入 83
3.1.2.12 鳥類排泄物落入埤塘水體與光電板的機率 98
3.1.2.13 鳥類排泄物對於埤塘光電板發電效率所造成的影響 105
3.2 研究區建模程序與模式串聯 112
第四章 模型公式之設定 115
4.1 水量交換與變動模型公式之設定 115
4.1.1 埤塘水平衡設定 115
4.1.2 灌區水平衡設定 118
4.2 養分傳輸與滯留模型公式之設定 123
4.2.1 植物性浮游生物能量的存量變化 127
4.2.2 異營性組成分的存量變化 134
4.2.3 吳郭魚的生物量與數量變化 138
4.2.4 總無機氮的存量變化 153
4.2.5 總沉積氮的存量變化 162
4.2.6 總無機磷的存量變化 163
4.2.7 埤塘中總沉積磷的存量變化 166
4.2.8 埤塘中水溫的變化 168
4.2.9 溶氧量的存量變化 171
4.2.10 光電板上所沾黏的鳥類排洩物存量變化 177
4.2.11 養分滯留效率的計算 178
第五章 模型演算流程之設定 184
5.1 水量交換與變動模式演算流程設定 184
5.2 養分傳輸與滯留模式演算流程設定 193
第六章 模型參數之擬定 195
6.1 水量交換與變動模式參數擬定 196
6.2 養分傳輸與滯留模式參數擬定 199
第七章 模式存量初始值之擬定 233
7.1 水量交換與變動模式存量初始值之擬定 233
7.1.1灌區水量之初始值設定 233
7.1.2埤塘蓄水量之初始值設定 233
7.2 養分傳輸與滯留模式存量初始值之擬定 234
7.2.1埤塘中的總溶氧量與溶氧濃度的初始值設定 234
7.2.2埤塘中所有吳郭魚生物質量所具有的能量與埤塘中吳郭魚的數量的初始值設定 234
7.2.3埤塘水溫的初始值設定 235
7.2.4埤塘中植物性浮游生物的能量與埤塘中植物性浮游生物的能量密度的初始值設定 235
7.2.5埤塘中異營性組成分的能量與埤塘中異營性組成分的能量密度的初始值設定 236
7.2.6埤塘水體中的總無機氮量與總無機氮濃度的初始值設定 237
7.2.7埤塘水體中的總無機磷量與總無機磷濃度的初始值設定 238
7.2.8埤塘底部總沉積氮與總沉積磷的初始值設定 239
7.2.9埤塘光電板上沾黏的鳥類排泄物質量初始值設定 241
第八章 模擬結果與討論 242
8.1 水量交換與變動模式模擬結果分析 242
8.1.1 灌區水量輸入與輸出之分析 248
8.1.2 埤塘水量輸入與輸出之分析 265
8.2 養分傳輸與滯留模式模擬結果分析 276
8.2.1 植物性浮游生物能量之分析 276
8.2.2 異營性組成分能量之分析 286
8.2.3 總無機氮濃度之分析 295
8.2.4 總無機磷濃度之分析 305
8.2.5 總沉積氮之分析 314
8.2.6 總沉積磷之分析 322
8.2.7 溶氧濃度變化之分析 330
8.2.8 吳郭魚之生物能量與數量分析 343
8.2.9 水溫變化分析 352
8.2.10 光電板上沾黏的鳥類排泄物量 357
8.2.11 鳥類的數量 362
8.2.12 光電板的發電量 364
8.3 模擬之生態系統服務探討 366
8.3.1 養分滯留量與養分滯留效率的計算 366
8.3.2 全年光電板發電、吳郭魚生產、氮磷滯留、埤塘供灌之生態系統服務計算 373
8.3.3 氮與磷的傳輸探討 379
8.4生態系統服務經濟價值粗估分析 381
8.5總結論 388
8.6模型限制探討 390
第九章 未來展望 392
參考文獻 393
附錄 412
附錄一 本研究所使用之資料 412
附錄二 Vensim軟體建置模式圖 413
-
dc.language.isozh_TW-
dc.title透過系統動力學模型評估光電板覆蓋比對於埤塘生態系統服務之影響:以桃園大崙工作站為例zh_TW
dc.titleAssessing Impacts of Solar Panel Coverage on Ecosystem Service in Agricultural Ponds by System Dynamics Modelling: A Case Study of the Dalun Workstation in Taoyuanen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee任秀慧;張峰勲;蕭友晉zh_TW
dc.contributor.oralexamcommitteeSau-Wai Yam;Feng-Hsun Chang;Yo-Jin Shiauen
dc.subject.keyword系統動力學,埤塘,太陽能光電板,生態系統服務,灌溉,養分傳輸,zh_TW
dc.subject.keywordSystem Dynamics (SD),Agricultural ponds,floating photovoltaics (FPV),ecosystem services (ES),irrigation,nutrient transport,en
dc.relation.page414-
dc.identifier.doi10.6342/NTU202500170-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-18-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2027-02-18-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2027-02-18
23.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved