Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97210
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林日白zh_TW
dc.contributor.advisorJih-Pai Linen
dc.contributor.author苗斯納zh_TW
dc.contributor.authorAmmu Sankar Senanen
dc.date.accessioned2025-02-27T16:41:30Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2024-08-12-
dc.identifier.citationAdams, C. G., Benson, R., Kidd, R. B., Ryan, W. B. F. and Wright, R. C., (1977). The Messinian salinity crisis and evidence of late Miocene eustatic changes in the world ocean. Nature, 269(5627), 383–386.
Adobe Systems Incorporated, (2002). Adobe Photoshop, Version 7.0.1, Adobe Systems Incorporated, San Jose, CA.
Agassiz, A., (1872). Revision of the Echini. Memoirs of the Museum of Comparative Zoology at Harvard College, 3, i-xii+1–378, pls 1–49.
Agassiz, A., (1873). Revision of the Echini. Memoirs of the Museum of Comparative Zoology at Harvard College, 3, 379–628 +1, pls 50–77.
Agassiz, J. L. R., Desor, P. J. É. and Lawrence, J., (1846). Catalogue Raisonné of the Families, Genera and Species of the Class of Echinoderms: A translation of Agassiz, Louis, Desor, E. 1846. Catalogue raisonné des familles des genres et des espèces de la Classe de Echinodermes. Annales des sciences naturelles.
Agassiz, L. and Desor, P. J. E., (1846-1847). Catalogue raisonné des familles, des genres, et des espèces de la classe des échinodermes. Annales des Sciences Naturelles, Troisième Série, Zoologi, 6(1846), 305–374.
Agassiz, L. and Desor, P. J. É., (1847). Catalogue raisonné des familles, des genres et des espèces de la classe des échinodermes (Vol. 3). L. Martinet.
Agassiz, L., (1835). Prodrome d’une monographie des Radiaires ou Echinodermes. Memoires de la Societe des Sciences Naturelles de Neuchatel, 1, 168–199.
Agassiz, L., (1836). Prodrome d'ine monographie des radiaires ouchinodermes. Man. de la Soc. d'HLst. nat. de Neuchatel, 1–168.
Agassiz, L., (1838). Monographies d'Échinodermes vivants et fossiles. Première monographie: Des Salénies. Petitpierre, Neuchâtel, 32.
Agassiz, L., (1840). Catalogus systematicus Ectyporum Echinodermatum fossilium Musei Neocomiensis, secundum ordinem zoologicum dispositus; adjectis synonymis recentioribus, nec non stratis et locis in quibus reperiuntur. Sequuntur characteres diagnostici generum novorum vel minus cognitorum. Petitpierre, Neuchatel, 20 pp.
Agassiz, L., (1840). Description des Echinodermes fossiles de la Suisse; Seconde partie. Cidarides. Memoires de la Societe helvetique des Sciences Naturelles, 4, i-iv, 1–97.
Agassiz, L., (1841). Monographies d’Echinodermes vivans et fossiles. Echinites. Famille des Clypeasteroides. Seconde Monographie. Des Scutelles. Petitpierre, L. Agassiz, vi + 149 pp.
Agassiz, L., (1841). Observations sur les progres recens del’histoire naturelle des echinodermes. Pp. 20 in L. Agassiz (ed.) Monographies d’Echinodermes vivants et fossils. L. Agassiz, Neuchatel.
Agassiz, L., (1841). Preface. Pp. 10 in G. G. Valentin (ed.) Monographies d’Echinodermes vivans et fossiles. Anatomie des Echinodermes. I. Monographie de anatomie du genre Echinus. L. Agassiz, Neuchatel.
Agiadi, K., Hohmann, N., Gliozzi, E., Thivaiou, D., Bosellini, F. R., Taviani, M. and García-Castellanos, D., (2024). The marine biodiversity impact of the Late Miocene Mediterranean salinity crisis. Science, 385(6712), 986–991.
Agiadi, K., Hohmann, N., Gliozzi, E., Thivaiou, D., Bosellini, F. R., Taviani, M. and García-Castellanos, D., (2024). A revised marine fossil record of the Mediterranean before and after the Messinian Salinity Crisis. Earth System Science Data, 16(10), 4767–4775.
Agiadi, K., Hohmann, N., Gliozzi, E., Thivaiou, D., Bosellini, F. R., Taviani, M. and García-Castellanos, D., (2024). Late Miocene transformation of Mediterranean Sea biodiversity. Science Advances, 10(39), eadp1134.
Aitchison, J. C., Ali, J. R. and Davis, A. M., (2007). When and where did India and Asia collide?. Journal of Geophysical Research: Solid Earth, 112(B5).
Aitchison, J. C., Ali, J. R. and Davis, A. M., (2008). Reply to comment by Eduardo Garzanti on" When and where did India and Asia collide?". Journal of Geophysical Research, 113, B04412.
Ali, J. R. and Aitchison, J. C., (2008). Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166-35 Ma). Earth-Science Reviews, 88(3), 145–166.
Allmon, W. D., (2011). Natural history of turritelline gastropods (Cerithioidea: Turritellidae): a status report. Malacologia, 54(1–2), 159–202.
Allmon, W. D., Nieh, J. C. and Norris, R. D., (1990). Drilling and peeling of turritelline gastropods since the late Cretaceous. Palaeontology, 33(3), 595–611.
Ansell, A. D. and Morton, B., (1987). Alternative predation tactics of a tropical naticid gastropod. Journal of Experimental Marine Biology and Ecology, 111(2), 109–119.
Archuby, F. M. and Gordillo, S., (2018). Drilling predation traces on recent limpets from northern Patagonia, Argentina. Palaeontologia Electronica, 21(3), 1–23.
Ashlock, P. D., (1974). The uses of cladistics. Annual Review of Ecology and Systematics, 81–99.
Barras, C. G., (2008). Morphological innovation associated with the expansion of atelostomate irregular echinoids into fine-grained sediments during the Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 263(1–2), 44–57.
Bialik, O. M., Frank, M., Betzler, C., Zammit, R. and Waldmann, N. D., (2019). Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean. Scientific Reports, 9(1), 8842.
Biswas, S. K., (1965). A new classification of the Tertiary rocks of Kutch, western India. Geology Department, Calcutta University, 35, 1–6.
Biswas, S. K., (1971). Note on the geology of Kutch, India, 43, 223–236.
Biswas, S. K., (1987). Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135(4), 307–327.
Biswas, S. K., (1992). Tertiary stratigraphy of Kutch. Journal of the Palaeontological Society of India, 37, 1–29.
Blanc, P. L., (2000). Of sills and straits: a quantitative assessment of the Messinian Salinity Crisis. Deep Sea Research Part I: Oceanographic Research Papers, 47(8), 1429–1460.
Bookstein, F. L., (1991). Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge, 435 p.
Bookstein, F. L., Grayson, B., Cutting, C. B., Kim, H. C. and McCarthy, J. G., (1991). Landmarks in three dimensions: reconstruction from cephalograms versus direct observation. American Journal of Orthodontics and Dentofacial Orthopedics, 100(2), 133–140.
Borghi, E. and Garilli, V., (2022). Climate-driven diversity changes of Mediterranean echinoids over the last 6 Ma. Acta Palaeontologica Polonica, 781–805.
Briggs, D. E., (2005). Evolving form and function fossils and development. New Haven: Peabody Museum of Natural History, Yale University.
Bromley, R. G., (1981). Concepts in ichnotaxonomy illustrated by small round holes in shells. Acta Geológica Hispánica, 16, 55–64.
Bronn, H. G., (1860). Die Klassen und Ordnungen des ThierReichs, wissenschaftlich dargestellt in Wort und Bild. Zweiter Band. Actinozoen. C.F. Winter’sche Verlagshandlung, Leipzig and Heidelberg, 434 pp.
Bronstein, O., Kroh, A. and Haring, E., (2018). Mind the gap! The mitochondrial control region and its power as a phylogenetic marker in echinoids. BMC Evolutionary Biology, 18(1), 1–15.
Bryant, D., (2003). A classification of consensus methods for phylogenetics. DIMACS series in discrete mathematics and theoretical computer science, 61, 163–184.
Carriker, M. R. and Yochelson, E. L,. (1968). Recent gastropod boreholes and Ordovician cylindrical borings. U.S. Geological Survey Professional Paper, 593B, B1–B26.
Chang, L. Y., Lee, S. J., Tsai, M. H. and Lin, J. P., (2021). Review of clypeasteroids phylogeny and a case study of Sinaechinocyamus mai (Taiwanasteridae). Terrestrial, Atmospheric and Oceanic Sciences, 32(6), 1.
Chao, S. M., (2000). The irregular sea urchins (Echinodermata: Echinoidea) from Taiwan, with descriptions of six new records. Zoological Studies Taipei, 39(3), 250–265.
Chattopadhyay, D. and Baumiller, T. K., (2007). Drilling under threat: an experimental assessment of the drilling behavior of Nucella lamellosa in the presence of a predator. Journal of Experimental Marine Biology and Ecology, 352(1), 257–266.
Chattopadhyay, D., Kella, V. G. S. and Chttopadhyay, D., (2020). Effectiveness of small size against drilling predation: Insights from lower Miocene faunal assemblage of Quilon Limestone, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 551, 109742.
Chauhan, D. S., Gautam, P. K. and Tripathi, S. K., (2021). Structural mapping and mineral potential of Deoban Group, Tons valley, Kumaun Lesser Himalaya. Himalayan. Geology, 42(2), 299–311.
Chen, H. K., Hsu, C. H. and Lin, J. P., (2024). Three echinoid assemblages with the earliest cidaroid (Echinodermata: Echinoidea) fossil record from the Middle Miocene of Taiwan. Geobios, 88–89, 35–48.
Chen, W. S. and Lee, W. C., (1990). Reconsideration of the stratigraphy on the west Hengchun Hill. Ti-Chih Geology, 10(2), 127–140.
Chen, W. S., (2005). Characteristics of accretionary prism of Hengchun Peninsula, southern Taiwan. Holocene activity of the Hengchun fault. Western Pacific Earth Sciences, 5, 129–154.
Chen, W. S., (2016). Hengchun Peninsula. An introduction to the geology of Taiwan. Geological society of Taiwan, Taipei, 91–99.
Cheniug, H. W., Wuiug, L. C., Huangug, C. Y. and Masuda, K., (1991). Late Pleistocene molluscan paleoecology of lagoon deposits of the Szekou Formation, Hengchun Peninsula, southern Taiwan. Proceedings of the Geological Society of China, 34, 57–87.
Clark, H. L., (1917). Hawaiian and other Pacific Echini. The Echinoneidae, Nucleolitidae, Urechinida, Echinocorythidae, Calymnidae, Pourtalesiidae, Palaeostomatidae, Aeropside, Palaeopneustidae, Hemiasteridae, and Spatangidae. Memoirs of the Museum of Comparative Zoology at Harvard College, 46, 81–283.
Claus, C., (1876) Untersuchungen zur Erforschung der genealogischen Grundlage des Crustaceen-Systems. Carl Gerold’s Sohn, Wien, 113 p.
Collin, R. and Miglietta, M. P., (2008). Reversing opinions on Dollo’s Law. Trends in Ecology and Evolution, 23(11), 602–609.
Conrad, T. A., (1866). Check list of the invertebrate fossils of North America: Eocene and Oligocene. Smithsonian Miscellaneous Collections, 7, 1–41.
Conrad, T. A., (1868). Descriptions of new genera and species of Miocene shells, with notes on other fossil and recent species. American Journal of Conchology, 3(4), 257–270.
Cooke, C. W., (1959). Cenozoic echinoids of eastern United States. United States Geological Survey Professional Papers, 321, 1–106.
Copley, A., Avouac, J. P. and Royer, J. Y., (2010). India‐Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. Journal of Geophysical Research, 115(B3).
d’Orbigny, A., (1853–1860). Terrains Cretaces. Tome Sixieme, contenant les Echinodermes. Paleontologie Francaise. Description zoologique et geologique de tous les Animaux Mollusques et Rayonnes fossiles de la France, comprenant leur application a la reconnaissance des couches. 6, Victor Masson, Paris, 596.
Delage, Y. and Herouard, E., (1903). Traite de Zoologie concrete. III, Les Echinodermes. Schleicher, Paris, x + 496 pp.
Desor, E., (1842). Monographies d’Echinodermes vivants et fossiles. Echinites. Famille des Clypéastroides. Troisieme monographie des Galerites, Petitpierre, Neuchatel, iv + 94 pp.
Desor, E., (1847). Sur quelques oursins fossiles de la Patagonie. Bulletin de la Société Géologique de France, 2(4), 287–288.
Dryden, I. L. and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester, 347 pp.
Dudley, E. C. and Dudley, E. C., (1980). Drilling predation on some Miocene marine mollusks. The Nautilus, 94, 63–66.
Dudley, E. C. and Vermeij, G. J., (1978). Predation in time and space: drilling in the gastropod Turritella. Paleobiology, 4(4), 436–441.
Duncan, P. M., (1889). A revision of the genera and great groups of the Echinoidea. Journal of the Linnean Society, Zoology, 23, 1–311.
Dupon-Nivet, G., Van Hinsbergen, D. J. and Torsvik, T. H., (2010). Persistently low Asian paleolatitudes: Implications for the India‐Asia collision history. Tectonics, 29(5).
Dupont-Nivet, G., Lippert, P. C., Van Hinsbergen, D. J., Meijers, M. J. and Kapp, P., (2010). Palaeolatitude and age of the Indo–Asia collision: palaeomagnetic constraints. Geophysical Journal International, 182(3), 1189–1198.
Durham, J. W. and Melville, R.V., (1957). A classification of echinoids. Journal of Paleontology, 31, 242–272.
Durham, J. W., (1955). Classification of clypeasteroid echinoids. University of California Publications in Geological Sciences, 31(4), 73–198.
Farrar, L., Graves, E., Petsios, E., Portell, R. W., Grun, T. B., Kowalewski, M. and Tyler, C. L., (2020). Characterization of traces of predation and parasitism on fossil echinoids. Palaios, 35(5), 215–227.
Felsenstein, J., (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27(4), 401–410.
Felsenstein, J., (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39 (4), 783–791.
Fitzhugh, K., (2006). The philosophical basis of character coding for the inference of phylogenetic hypotheses. Zoologica Scripta, 35(3), 261–286.
Garzanti, E., (2008), Comment on “When and where did India and Asia collide?”. Journal of Geophysical Research, 113, B04411.
Goloboff, P. A. and Morales, M. E., (2023). TNT version 1.6, with a graphical interface for MacOS and Linux, including new routines in parallel. Cladistics, 39(2), 144–153.
Gordillo, S. and Archuby, F., (2012). Predation by drilling gastropods and asteroids upon mussels in rocky shallow shores of southernmost South America: paleontological implications. Acta Palaeontologica Polonica, 57(3), 633–646.
Govers, R., (2009). Choking the Mediterranean to dehydration: the Messinian salinity crisis. Geology, 37(2), 167–170.
Gray, J. E., (1825). An attempt to divide the Echinida, or sea eggs, into natural families. Annals of Philosophy, 26, 423–431.
Gray, J. E., (1835). On the genera distinguishable in Echinus. Proceedings of the Zoological Society of London, 3, 57–60.
Gray, J. E., (1851). Description of two new genera and some new species of Scutellidae and Echinolampidae in the Collection of the British Museum. Proceedings of the Zoological Society of London, 19, 34–38.
Gray, J. E., (1851). Descriptions of some new genera and species of Spatangidae in the British Museum. Annals and Magazine of Natural History, 2(7), 130–134.
Gray, J. E., (1855). An arrangement of the Families of Echinida, with Descriptions of some New Genera and Species. Proceedings of the Zoological Society London, 23, 35–39.
Gray, J. E., (1855). Catalogue of the Recent Echinida, or Sea Eggs, in the Collection of the British Museum. Part I. Echinida Irregularia. Woodfall & Kinder, London, 69 pp.
Gregory, J. W., (1900). Polytremacis and the ancestry of Helioporidae. Proceedings of the Royal Society of London, 66(424–433), 291–305.
Grun, T., Sievers, D. and Nebelsick, J. H., (2014). Drilling predation on the clypeasteroid echinoid Echinocyamus pusillus from the Mediterranean Sea (Giglio, Italy). Historical Biology, 26(6), 745–757.
Guerrero, S. and Reyment, R. A., (1988). Predation and feeding in the naticid gastropod Naticarius intricatoides (Hidalgo). Palaeogeography, Palaeoclimatology, Palaeoecology, 68(1), 49–52.
Haeckel, E., (1866). Generelle Morphologie der Organismen. Allgeme-ine Grundz€uuge der organischen Formenwissenschaft, mechanischbegr€uundet durch die von Charles Darwin reformierte Descendenz-Theorie. G. Reimer, Berlin. https://doi.org/10.5962/bhl.title.3953.
Haeckel, E., (1896). Systematische Phylogenie der wirbellosen Thiere (Invertebrata). Vol. 2. Georg Reimer Verlag, Berlin, xviii + 720 pp.
Hagadorn, J. W. and Boyajian, G. E., (1997). Subtle changes in mature predator-prey systems: An example from Neogene Turritella (Gastropoda). Palaios, 12, 372–379.
Halder, K. and Bano, S., (2014). Cenozoic Corbulidae (Bivalvia, Mollusca) from the Indian subcontinent-palaeobiogeography and revision of three species from Kutch, India. Arabian Journal of Geosciences, 8, 2019–2034.
Hall, R., (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4), 353–431.
Hammer, Ø. and Harper, D. A., (2001). Past: paleontological statistics software package for educaton and data anlysis. Palaeontologia Electronica, 4(1), 1.
Harzhauser, M., Piller, W. E. and Steininger, F. F., (2002). Circum-Mediterranean Oligo–Miocene biogeographic evolution–the gastropods’ point of view. Palaeogeography, Palaeoclimatology, Palaeoecology, 183(1-2), 103–133.
Hayasaka, I. and Hayasaka, S., (1960). Molluscan fossils from Tungyüping in the Penghu islands, Taiwan. Transactions and Proceedings of the Palaeontological Society of Japan, 38, 263–274.
Hayasaka, I. and Morishita, A., (1947). Fossil species of Clypeaster from Taiwan. Acta Geologica. Taiwanica, 1, 39–57.
Hayasaka, I., (1948). Notes on some fossil echinoids of Taiwan, III. Acta Geologica Taiwanica, 1, 111–128.
Hennig, W., (1965). Phylogenetic Systematics. Annual Review of Entomology, 10, 97–116.
Hennig, W., (1966). Phylogenetic Systematics. University of Illinois Press, Chicago, 1–99.
Ho, S. L., Wang, J. K., Lin, Y. J., Lin, C. R., Lee, C. W., Hsu, C. H. and Lin, J. P., (2022). Changing surface ocean circulation caused the local demise of echinoid Scaphechinus mirabilis in Taiwan during the Pleistocene–Holocene transition. Scientific Reports, 12(1), 8204.
Hoffman, A., Pisera, A. and Ryszkiewicz, M., (1974). Predation by muricid and naticid gastropods on the Lower Tortonian mollusks from the Korytnica clays. Acta Geologica Polonica, 24(1), 249–260.
Holmes, F. C., (1995). Australian Tertiary Neolampadidae (Echinoidea): a review and description of two new species. Proceedings-Royal Soceity of Victoria, 107(1995), 113–128.
Hopkins, M. J. and Smith, A. B., (2015). Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proceedings of the National Academy of Sciences, 112(12), 3758–3763.
Hou, Z. and Li, S., (2018). Tethyan changes shaped aquatic diversification. Biological Reviews, 93(2), 874–896.
Hsu, C. H., Lin, J. P. and Lin, C. H., (2024). A spatangoid echinoid assemblage from the Gutingkeng Formation (Early Pleistocene) of Taiwan and its paleoenvironmental and geological implications. Geobios, 87, 9–23.
Hsü, K. J., (1978). The messinian salinity crisis: Evidence of Late Miocene eustatic changes in the world ocean. Naturwissenschaften, 65(3), 151–151.
Hu, C. H. and Tao, H. J., (1991). Mollusk fossils of the Szekou Formation (Pleistocene) of the Hengchun West Platform, Hengchun Peninsula, Taiwan. Mollusk Fauna of Taiwan, 1, 315–464.
Huang, B. C., Chen, J. S. and Yi, Z. Y., (2010). Paleomagnetic discussion of when and where India and Asia initially collided. Chinese Journal of Geophysics, 53(9), 2045–2058.
Huntley, J. W. and Kowalewski, M., (2007). Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences, 104(38), 15006–15010.
Irwin, R. P., (1995). New family and genus of Clypeasteroida (Echinoidea) from the Australian Tertiary. Memoirs of the Association of Australasian Palaeontologists, 18, 189–198.
Jackson, R. T., (1912). Phylogeny of the Echini with a revision of Palaeozoic species. Memoirs of the Boston Society of Natural History, 7, 1–491.
Jaeger, J. J., Courtillot, V. and Tapponnier, P., (1989). Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology, 17(4), 316–319.
Jain, R. L., (2002). Echinoids from the Gaj Formation (early and middle Miocene) of Kathiawar, Gujarat, India. Journal of the Paleontological Society of India, 47, 107–135.
Ji, H. A., (1998). The predatory system of molluscan fossils in Tainan Formation, Tainan Area. MS Thesis. National Cheng Kung University, Tainan, 1–121.
Johnson, E. H., Anderson, B. M. and Allmon, W. D., (2017). What can we learn from all those pieces? Obtaining data on drilling predation from fragmented high-spired gastropod shells. Palaios, 32(5), 271–277.
Kabat, A. R., (1990). Predatory ecology of naticid gastropods with a review of shell boring predation. Malacologia, 32(1), 155–193.
Kelley, P. H. and Hansen, T. A., (2003). The fossil record of drilling predation on bivalves and gastropods. Springer US, 113–139.
Kelley, P. H. and Hansen, T. A., (2006). Comparisons of class- and lower taxon-level patterns in naticid gastropod predation, Cretaceous to Pleistocene of the U.S. Coastal Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 236(3–4), 302–320.
Kelley, P. H., Hansen, T. A., Graham, S. E. and Huntoon, A. G., (2001). Temporal patterns in the efficiency of naticid gastropod predators during the Cretaceous and Cenozoic of the United States Coastal Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 236, 302–320.
Kendall, D.G., (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 81–121.
Kier, P. M., (1962). Revision of the cassiduloid echinoids. Smithsonian Miscellaneous Collections, 144(3), 1–262.
Kier, P. M., (1968). Echinoids from the Middle Eocene Lake City Formation of Georgia. Smithsonian Miscellaneous Collections, 153, 1–45.
Kier, P. M., (1968). The Triassic Echinoderms of North America. Journal of Paleontology, 42, 1000–1006.
Kier, P. M., (1974). Evolutionary trends and their functional significance in the post-Paleozoic echinoids. The Paleontological Society, 1–95.
Kier, P. M., (1980). The echinoids of the Middle Eocene Warley Hill Formation, Santee Limestone, and Castle Hayne Limestone of North and South Carolina. Smithsonian Contributions to Paleobiology, 39, 1–102.
Kier, P. M., (1982). Rapid evolution in echinoids. Palaeontology, 25, 1–9.
Kitchell, J. A., Boggs, C. H., Kitchell, J. F. and Rice, J. A., (1981). Prey selection by naticid gastropods: experimental tests and application to the fossil record. Paleobiology, 7(4), 533–552.
Kitching, I. J., (1998). Cladistics: the theory and practice of parsimony analysis (No. 11). Oxford University Press, USA.
Klingenberg, C. P., (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology. Resources, 11(2), 353–357.
Klompmaker, A. A. and Kittle, B. A., (2021). Inferring octopodoid and gastropod behavior from their Plio-Pleistocene cowrie prey (Gastropoda: Cypraeidae). Palaeogeography, Palaeoclimatology, Palaeoecology, 567, 110251.
Klompmaker, A. A., (2009). Taphonomic bias on drill-hole predation intensities and paleoecology of Pliocene mollusks from Langenboom (Mill), the Netherlands. Palaios, 24(11), 772–779.
Klompmaker, A. A., Kelley, P. H., Chattopadhyay, D., Clements, J. C., Huntley, J. W. and Kowalewski, M., (2019). Predation in the marine fossil record: studies, data, recognition, environmental factors, and behavior. Earth–Science Reviews, 194(2019), 472–520.
Klompmaker, A. A., Kowalewski, M., Huntley, J. W. and Finnegan, S., (2017). Increase in predator-prey size ratios throughout the Phanerozoic history of marine ecosystems. Science, 356, 1178–1180.
Klootwijk, C. T., Gee, J. S., Peirce, J. W., Smith, G. M. and McFadden, P. L., (1992). An early India-Asia contact: paleomagnetic constraints from Ninetyeast ridge. Geology, 20(5), 395–398.
Koch, N. M. and Thompson, J. R., (2020). A total-evidence dated phylogeny of echinoids and the evolution of body size across adaptive landscape. Systematic Biology, 70(3), 421–439.
Koch, N. M. and Thompson, J. R., (2021). A total-evidence dated phylogeny of Echinoidea combining phylogenomic and paleontological data. Systematic Biology, 70(3), 421–439.
Koch, N. M., (2024). Embracing the taxonomic and topological stability of phylogenomics. Scientific Reports, 14(1), 4088.
Koch, N. M., Coppard, S. E., Lessios, H. A., Briggs, D. E., Mooi, R. and Rouse, G. W., (2018). A phylogenomic resolution of the sea urchin tree of life. BioMed Cental Evolutionary Biology, 18, 1–18.
Koch, N. M., Thompson, J.R., Hiley, A. S., McCowin, M. F., Armstrong, A. F., Coppard, S. E., Aguilera, F., Bronstein, O., Kroh, A., Mooi, R. and Rouse, G. W., (2022). Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record. Elife, 11, e72460.
Kojumdjieva, E., (1974). Les gasteropodes perceurs et leurs victimes du Miocene de Bulgarie du Nord-Ouest. Bulgarian Academy of Sciences Ministry of Heavy Industry, Bulletin of the Geological Institute Series Palaeontology, 23, 5–24.
Kowalewski, M. and Nebelsick, J. H., (2003). Predation on recent and fossil echinoids. In Predator-Prey Interactions in the Fossil Record (ed. Kelley, P. H.). Springer, 279–302.
Kowalewski, M., (1990). A hermeneutic analysis of the shell-drilling gastropod predation on mollusks in the Korytnica Clays (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologica Polonica, 40, 183–212.
Kowalewski, M., (2002). The fossil record of predation: An overview of analytical methods. Paleontological Society Papers, 8, 3–42.
Kowalewski, M., Dulai, A. and Fürsich, F. T., (1998). A fossil record full of holes: The Phanerozoic history of drilling predation. Geology, 26, 1091–1094.
Kroh, A. and Smith, A. B., (2010). The phylogeny and classification of post-Palaeozoic echinoids. Journal of systematic Paleontology, 8(2), 147–212.
Kroh, A., (2020). Phylogeny and classification of echinoids. Developments in Aquaculture and Fisheries Science, 43, 1–17.
Lamarck, J. B. M., (1801) Système des animaux sans vertèbres, ou tableau général des classes, des ordres et des genres de ces animaux; résentant leurs caractères essentiels et leur distribution, d’apres la considération de leurs rapports naturels et deleur organisation, et suivant l’arrangement établi dans les galeries du Muséum d’Histoire Naturelle, parmi leurs dépouilles conservées; récédé du discours d’ouverture du Cours de Zoologie, donné dans le Muséum National d’Histoire Naturellel’an 8 de la épublique. J. B. Lamarck and Deterville, Paris, 432 pp.
Lambert, J., (1900). Étude sur quelques Échinides de l’Infra-Lias et du Lias. Bulletin de la Société des Sciences Historiques et Naturelles de l’Yonne, 52(1899), 3–57.
Lambert, J., (1905). Echinides éocéniques de l’Aude et de l’Hérault. Catalogue descriptif des fossils nummuliques de l’Aude et de l’Hérault. Premiere partie: Montagne Noire et Minervous. Annales de l’Université de Lyon, 17, 1–184
Lambert, J., (1917). Note sur quelques Holasteridae. Bulletin de la Societe des Sciences Historiques et Naturelles de l’Yonne, 70, 191–223.
Lambert, J., (1918). Considerations sur la classification des Echinides At elostomes. I. Brachygnata et Procassiduloida. Memoires de la Societe Academique d’Agriculture des Sciences, Arts et Belles-Lettres du Departement de l’Aube, Serie 3, 55, 9–54.
Lambert, J., (1918). Note sur deux Echinides nouveaux du Cretacede la Provence. Notes Provenc¸aIes du Dr. Guebhard, 6, 7–10.
Latreille, P. A., (1825). Familles naturelles du regne animal. Bailliere, Paris, 570 pp.
Lee, H., Lee, K. S., Hsu, C. H., Lee, C. W., Li, C. E., Wang, J. K., Tseng, C. C., Chen, W. J., Horng, C. C., Kroh, A. and Janies, D., (2024). Reply to: Embracing the taxonomic and topological stability of phylogenomics. Scientific Reports, 14(1), 4094.
Lee, H., Lee, K. S., Hsu, C. H., Lee, C. W., Li, C. E., Wang, J. K., Tseng, C. C., Chen, W. J., Horng, C. C., Ford, C. T. and Kroh, A., (2023). Phylogeny, ancestral ranges and reclassification of sand dollars. Scientific Reports, 13(1), 10199.
Lee, H., Lin, J. P., Li, H. C., Chang, L. Y., Lee, K. S., Lee, S. J., Chen, W. J., Sankar, A. and Kang, S. C., (2019). Young colonization history of a widespread sand dollar (Echinodermata; Clypeasteroida) in western Taiwan. Quaternary International, 528, 120–129.
Lemoine, F., Domelevo Entfellner, J. B., Wilkinson, E., Correia, D., Dávila Felipe, M., De Oliveira, T. and Gascuel, O., (2018). Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature, 556(7702), 452–456.
Leske, N.G., (1778). Additamenta ad Iacobi Theodori Klein Naturalem dispositionim echinodermatum et lucubratiunculam de aculeis echinorum marinorum/Nathanaelis Godofredi Leske. G. E. Beer, Leipzig, xxii +, 278 pp.
Li, X., Wang, C., Luba, J. and Hu, X., (2006). Age of initiation of the India-Asia collision in the east-central Himalaya: A discussion. The Journal of Geology, 114(5), 637–640.
Liao, Y., (1979) A new genus of clypeasteroid sea urchin from Huang Hai. Oceanologia et Limnologia Sinica, 10, 70–74.
Lin, C. H., Ou, H. Y., Lin, C. Y. and Chen, H. M., (2022). First skeletal fossil record of the red reabream Pagrus major (Sparidae, Perciformes) from the Late Pleistocene of subtropical West Pacific, southern Taiwan. Zoological Studies, 61, 10.
Lin, J. P., Tsai, M. H., Kroh, A., Trautman, A., Machado, D. J., Chang, L. Y., Reid, R., Lin, K. T., Bronstein, O., Lee, S. J. and Janies, D., (2020). The first complete mitochondrial genome of the sand dollar Sinaechinocyamus mai (Echinoidea: Clypeasteroida). Genomics, 112(2), 1686–1693.
Lin, P. J., Wu, T. R., Lin, J. P., Chuang, M. H., Huang, Y. X. and Chu, J. J., (2024). Using the discontinuous bi-viscosity model to analyze the three-dimensional flow field and local scour behavior around Claviaster libycus (Echinodermata, Echinoidea). Journal of Mechanics, 40, 223–238.
Lin, Y. J., Fang, J. N., Chang, C. C., Cheng, C. C. and Lin, J. P., (2021). Stereomic microstructure of Clypeasteroida in thin section based on new material from Pleistocene strata in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 32, 1093–1105.
Link, H. F., (1807). Beschreibung der Naturalien-Sammlung der Universität zu Rostock. Abt. 2, Mollusken. dlersrben, Rostock, 82–100.
Lipscomb, D., (1998). Basics of cladistic analysis. George Washington University, Washington DC, 20052.
Littlewood, D. T. J. and Smith, A. B., (1995). A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata). Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 347(1320), 213–234.
Lokho, K., Aitchison, J. C., Kumar, A., Zhou, R., Prakasam, M. and Raju, D. S. N., (2023). Middle Miocene final demise of remnants of an eastern Neotethyan seaway, Naga Hills, Indo-Myanmar Range. Marine Micropaleontology, 181, 102243.
Lutken, C. F., (1864). Bidrag til Kundskab om Echiniderne.Videnskabelige Meddelelser fraden naturhistoriske Forening i Kjöbenhavn, 1863, 69–207.
Mallick, S., Bardhan, S., Paul, S., Mukherjee, S. and Das, S. S., (2013). Intense naticid drilling predation on turritelline gastropods from below the K-T Boundary at Rajahmundry, India. Palaios, 28, 683–696.
Mancosu, A. and Nebelsick, J. H., (2013). Multiple routes to mass accumulations of clypeasteroid echinoids: a comparative analysis of Miocene echinoid beds of Sardinia. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 173–186.
Mancosu, A. and Nebelsick, J. H., (2017). Ecomorphological and taphonomic gradients in clypeasteroid-dominated echinoid assemblages along a mixed siliciclastic-carbonate shelf from the early Miocene of northern Sardinia, Italy. Acta Palaeontologica Polonica, 62, 627–646.
Markov, A.V., (1994). Morphology, systematics and phylogeny of schizasterid sea urchins. Trudy Paleontologicheskogo Instituta, 258, 1–94.
Martinelli, J. C., Gordillo, S. and Archuby, F., (2013). Muricid drilling predation at high latitudes: Insights from southernmost Atlantic. Palaios, 28(1), 33–41.
Mayer, P., (1876). Ueber Ontogenie und Phylogenie der insekten. na.
Meijer, P. T. and Krijgsman, W., (2005). A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 240(2), 510–520.
Mihaljević, M. O. R. A. N. A., Jerjen, I. and Smith, A. B., (2011). The test architecture of Clypeaster (Echinoidea, Clypeasteroida) and its phylogenetic significance. Zootaxa, 2983(1), 21–38.
MolluscaBase eds., (2022). MolluscaBase. Neverita didyma (Röding, 1798). Accessed at: https://www.molluscabase.org/aphia.php?p=taxdetails&id=568320 on 2022-12-13.
Molnar, P. and Stock, J. M., (2009). Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28(3).
Molnar, P. and Tapponier, P., (1975). Cenozoic tectonics of Asia: effects of a continental collision. Science, 189(4201), 419–426.
Mondal, S., Goswami, P. and Bardhan, S., (2017). Naticid confamilial drilling predation through time. Palaios, 32, 278–287.
Monteiro, L. R., (2013). Morphometrics and the comparative method: Studying the evolution of biological shape. Hystrix, 24, 25–32.
Mooi, R., (1989). Living and fossil genera of the Clypeasteroida (Echinoidea: Echinodermata): An illustrated key and annotated checklist. Smithsonian Contributions to Zoology, 488, 1–60,
Mooi, R., (1990). Paedomorphosis, Aristotle’s lantern, and the origin of the sand dollars. (Echinodermata: Clypeasteroida). Paleobiology, 16, 25–48.
Mooi, R., (1990). Progenetic minaturization in the sand dollar Sinaechinocyamus: implications for clypeasteroid phylogeny. Echinoderm Research, 137–143.
Mortensen, T., (1932). Annals and Magazine of Natural History, 10, 356.
Mortensen, T., (1935). A monograph of the Echinoidea II. Bothriocidaroida, Melonechinoida, Lepidocentroida and Stirodonta. C. A. Reitzel, Copenhagen.
Mortensen, T., (1943). A monograph of the Echinoidea Part III.2, Camarodonta 1. C. A. Reitzel, Copenhagen.
Mortensen, T., (1948). A Monograph of the Echinoidea. IV, 1 Holectypoida, Cassiduloida. C. A. Reitzel, Copenhagen, 371 pp.
Mortensen, T., (1948). A Monograph of the Echinoidea. IV, 2. Clypeasteroida. Clypeasteridæ, Arachnoidæ, Fibulariidæ, Laganidæ and Scutellidæ. C. A. Reitzel, Copenhagen, 471 pp.
Mortensen, T., (1951). A monograph of the Echinoidea. V. Spatangoida 2. C. A. Reitzel, Copenhagen.
Najman, Y., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti, E., Godin, L. and Vezzoli, G., (2010). Timing of India‐Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research: Solid Earth, 115(B 12).
Nisiyama, S., (1935). On some fossil echinoids from north eastern Japan. Saito Ho-on Kai Museum of Natural History Research Bulletin, 5, 131–172.
Nisiyama, S., (1966). The echinoid fauna from Japan and adjacent regions, Part 1. Palaeontological Society of Japan, Special Papers, 11, 1–277.
Nisiyama, S., (1968). The Echinoid fauna from Japan and adjacent regions. Part II. Palaeontological Society of Japan Special Papers, 13, 1–491.
Ohshima, H., (1927). The Illustrated Manual of the Zoology of Japan. Hokuryukan Press, Tokyo.
Oji, T., Ogaya, C. and Sato, T., (2003). Increase of shell-crushing predation recorded in fossil shell fragmentation. Paleobiology, 29, 520–526.
Parkinson, J., (1811). Organic remains of a former world: An examination of the mineralized remains of the vegetables and animals of the Antediluvian World; generally termed extraneous fossils, 3.
Paul, C. R. C. and Smith, A. B., (1984). The early radiation and phylogeny of echinoderms. Biological Reviews, 59(4), 443–481.
Paul, G., Das, A., Bardhan, S. and Mondal, S., (2013). Predation on recent turritelline gastropods from the Indian subcontinent and comparison with a revised global database. Malacologia, 56, 193–213.
Peng, S. N. and Tiao, S. H., (1971). The ecology of Taiwan sea urchin, research and study on the processing of Taiwan sea urchin picked from its gonad. Fisheries Research Institute Taiwan, 18, 129–155.
Pennant, T., (1777). British Zoology. Crustacea, Mollusca, Testacea. London, 4, 136 pp.
Petsios, E., Farrar, L., Tennakoon, S., Jamal, F., Portell, R. W., Kowalewski, M. and Tyler, C. L., (2023). The Ecology of Biotic Interactions in Echinoids: Modern Insights Into Ancient Interactions. Elements of Paleontology. Published online. DOI: 10.1017/9781108893510
Petsios, E., Portell, R. W., Farrar, L., Tennakoon, S., Grun, T. B., Kowalewski, M. and Tyler, C. L., (2021). An asynchronous Mesozoic marine revolution: the Cenozoic intensification of predation on echinoids. Proceedings of the Royal Society B, 288(1947), 20210400.
Pomel, A., (1869). Revue des echinodermes et de leur classification pour servir d’introduction a l’etude des fossiles. Deyrolle, Paris, i-lxvii pp.
Pomel, A., (1883). Classification méthodique et Genera des Échinides vivante et fossiles. Thèses présentées a la Faculté des Sciences de Paris pour obtenir le Grade de Docteur ès Sciences Naturelles 503, Aldolphe Jourdan, Alger, 131 pp.
Purvis, A. and Garland, T., (1993). Polytomies in comparative analyses of continuous characters. Systematic Biology, 42(4), 569–575.
Raja, N. B., Dunne, E. M., Matiwane, A., Khan, T. M., Nätscher, P. S., Ghilardi, A. M. and Chattopadhyay, D., (2021). Colonial history and global economics distort our understanding of deep-time biodiversity. Nature Ecology and Evolution, 6, 145–154.
Robba, E., Geronimo, I. D., Chaimanee, N., Negri, M. P. and Sanfilippo, R., (2007). Holocene and Recent shallow soft-bottom mollusks from the Western Gulf of Thailand: Pak Phanang Bay and additions to Phetchaburi fauna. Bollettino Malacologico, 43, 1–98.
Röding, P. F., (1798). Museum Boltenianum sive Catalogus cimeliorum e tribus regnis naturæ quæ olim collegerat Joa. Fried Bolten, M. D. p. d. per XL. annos proto physicus Hamburgensis. Pars secunda continens Conchylia sive Testacea univalvia, bivalvia & multivalvia. Trapp, Hamburg, viii +, 199 pp.
Rohlf, F. J. and Slice, D., (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40–59.
Rohlf, F. J., (2015). The tps series of software. Hystrix, 26(1), 9–12.
Rohlf, F. J., (2018). Tpsdig, digitize landmarks and outlines, version 2.31. Department of Ecology and Evolution, State University of New York at Stony Brook.
Römer, F., (1864). Jenaische zeitschrift für medicin und naturwissenschaft, (Vol. 1).
Roy, K., Miller, D. J. and Labarbera, M., (1994). Taphonomic bias in analyses of drilling predation: effects of gastropod drill holes on bivalve shell strength. Palaios, 9, 413–421.
Sankar, A. and Swisher, R., (2021). Generic-level identification of Astriclypeidae based on incomplete onsite-specimens from Yehliu Geopark, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 32, 1107–1115.
Sansom, R. S. and Wills, M. A., (2017). Differences between hard and soft phylogenetic data. Proceedings of the Royal Society B: Biological Sciences, 284(1869), 20172150.
Saucede, T., Alibert, P., Laurin, B. and David, B., (2006). Environmental and ontogenetic constraints on developmental stability in the spatangoid sea urchin Echinocardium (Echinoidea). Biological Journal of the Linnean Society, 88(2), 165–177.
Saucède, T., Mooi, R. and David, B., (2007). Phylogeny and origin of Jurassic irregular echinoids (Echinodermata: Echinoidea). Geological Magazine, 144(2), 333–359.
Schlüter, N., (2019). Ecophenotypic variation and developmental instability in the Late Cretaceous echinoid Micraster brevis (Irregularia; Spatangoida). PloS One, 11, e0148341.
Seilacher, A., (1979). Constructional morphology of sand dollars. Paleobiology, 5(3), 191–221.
Seilacher, A., (1990). The sand-dollar syndrome: A polyphyletic constructional breakthrough. Evolutionary Innovations, 232–252.
Sereno, P. C., (2009). Comparative cladistics. Cladistics, 25(6), 624–659.
Shigei, M., (1981). A study on the echinoid fauna of the East China Sea and the coastal waters of southern Korea, Kyushu, Ryukyu, and Taiwan. Publications of the Seto Marine Biological Laboratory, 26(1–3), 191–241.
Siawal, A., Dash, P. P. and Srivastava, H. C., (2019). Evolution of west coast of India-a plate tectonic approach. Bull Oil and Natural Gas Corporation, 54(1), 147–164.
Simmons, M. P. and Gatesy, J., (2021). Collapsing dubiously resolved gene-tree branches in phylogenomic coalescent analyses. Molecular Phylogenetics and Evolution, 158, 107092.
Smith, A. B. and Savill, J. J., (2001). Bromidechinus, a new Ordovician echinozoan (Echinodermata), and its bearing on the early history of echinoids. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 92(2), 137–147.
Smith, A. B. and Wright, C. W., (1990). British Cretaceous Echinoids. Part 2, Echinothurioida, Diadematoida and Stirodonta (1, Calycina). Monograph of the Palaeontographical Society, 101–198, pls 33–72.
Smith, A. B., (1981). Implications of lantern morphology for the phylogeny of post-Palaeozoic echinoids. Palaeontology, 24, 779–801.
Smith, A. B., (1984). Echinoid Palaeobiology. Allen and Unwin, London, x + 190 pp.
Smith, A. B., (1995). Late Campanian-Maastrichtian echinoids from the United Arab Emirates-Oman border region. Bulletin of the Natural History Museum London Geology Series, 51, 121–240.
Smith, A. B., (2001). Probing the cassiduloid origins of clypeasteroid echinoids using stratigraphically restricted parsimony analysis. Paleobiology, 27(2), 392–404.
Smith, A. B., (Editor) (2005). The Echinoid Directory. World Wide Web electronic publication. Available online at http://www.nhm.ac.uk/palaeontology/echinoids
Smith, A. B., Pisani, D., Mackenzie-Dodds, J. A., Stockley, B., Webster, B. L. and Littlewood, D. T. J., (2006). Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Molecular Biology and Evolution, 23(10), 1832–1851.
Sowerby, G. B. I., (1825). A catalogue of the shells contained in the collection of the late Earl of Tankerville: arranged according to the Lamarckian conchological system: together with an appendix, containing descriptions of many new species. E. J. Stirling, London, 92.
Sowerby, G. B., (1860). Monograph of the genus Dentalium. Thesaurus Conchyliorum or Monographs of Genera of Shells, 3, 98–104.
Srivastava, D. K., (2006). Diversity of fossil echinoids (Echinodermata) in the Indian subcontinent during the Late Cretaceous-Paleogene. Journal of the Palaeontological Society of India, 51(2), 63.
Srivastava, D. K., (2012). An annotated bibliography of fossil Echinoids (Echinodermata) of India and Pakistan. Journal of the Palaeontological Society of India, 57(2), 163–203.
Stara, P. and Marini, F., (2018). Amphiope caronei n. sp.(Echinoidea Astriclypeidae) from the Tortonian of Cessaniti, Vibo Valentia Province (Calabria, Italy). Biodiversity Journal, 9, 73–88.
Stara, P. and Rizzo, R., (2014). Paleogeography and diffusion of astriclypeids (Echinoidea Clypeasteroida) from Proto-Mediterranean basins. Biodiveristy Journal, 5(2), 225–358.
Stara, P. and Sanciu, L., (2014). Analysis of some astriclypeids (Echinoidea Clypeasteroida). Biodiversity Journal, 5, 291–358.
Stefanini, G., (1912). Osservazioni sulla distribuzione geografica, sulla origini e sulla filogenesi degli Scutellidae. Bolletino della Societa Geologica Italiana, 30(1911), 739–754.
Swisher, R. E. and Lin, J. P., (2019). A geometric morphometric analysis of Arachnoides placenta (Echinoidea: Clypeasteroida): An examination of ontogenetic development and morphological variation. Zoosymposia, 15, 159–171.
Thompson, J. R., Petsios, E. and Bottjer, D. J., (2017). A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids. Journal of Paleontology, 91(4), 767–780.
Tillyard, R. J., (1919). The panorpoid complex. Part 3: the wingvenation. Proc. Linnean Society of New South Wales, 44, 533–717.
Tschulok, S., (1922). Deszenzlehre (Entwicklungslehre): ein Lehrbucj auf historisch-kritischer Grundlage. Fischer.
Tull, D. S. and Böhning-Gaese, K., (1993). Patterns of drilling predation on gastropods of the Family Turritellidae in the Gulf of California. Paleobiology, 19, 476–486.
Tyler, C. L., Dexter, T. A., Portell, R. W. and Kowalewski, M., (2018). Predation-facilitated preservation of echinoids in a tropical marine environment. Palaios, 33(10), 478–486.
Valentine, J. W. and Moores, E. M., (1970). Plate-tectonic regulation of faunal diversity and sea level: a model. Nature, 228(5272), 657–659.
Van Phelsum, M., (1774). Brief aan Cornelius Noze- man, over de Gewelvslekken of Zee-egelen. Rotterdam, 145 pp.
Vermeij, G. J., (1983). Shell-breaking predation through time. In Biotic interactions in recent and fossil benthic communities. Springer US, 649–669.
Vermeij, G. J., Zipser, E. and Dudley, E. C., (1980). Predation in time and space: peeling and drilling in terebrid gastropods. Paleobiology, 6, 352–364.
Verrill, A. E., (1867). Notes on Radiata in the museum of Yale College with descriptions of new genera and species. No. 2. Notes on the echinoderms of Panama and the west coast of America, with descriptions of a new genus. Transactions of the Connecticut Academy of Arts and Sciences, 1(2), 251–322.
Wagner, W. H., (1961). Problems in the classification of ferns.Recent Advances in Botany, 1, 841–844.
Wang, C. C., (1982). On the early Miocene sand dollar Echinodiscus yeliuensis n. sp. from the Taliao Formation of Yeliu, northern Taiwan. Proceedings of the Geological Society of China, 25, 150–157.
Wang, C. C., (1983). A new species of Astriclypeus from the Wuchihshan Formation near Chilung, Taiwan. Bulletin of the Central Geological Survey of Taiwan, 2, 113–120.
Wang, C. C., (1984). Geology of the west Hengchun terrace, with a list of Mollusca from Szekou Formation. Annual Report, Central Geological Survey, 1984, 57–75.
Wang, C. C., (1984). New classification of clypeasteroid echinoids. Proceedings of the Geological Society of China, 27, 119–152.
Wang, C. C., (1986). Fossil astriclypeid echinoids from Taiwan. Proceedings of the Geological Society of China, 29, 149–183.
Wang, C. C., (1994). Phylogenetic analysis of the fossulasterid echinoids (Order Clypeasteroida) from Australia. Journal of the Geological Society of China, 37(2), 225–246.
Wang, C., Li, X., Hu, X. and Jansa, L. F., (2002). Latest marine horizon north of Qomolangma (Mt Everest): Implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14(2), 114–120.
Webster, M. and Sheets, H. A., (2010). A practical introduction to landmark-based geometric morphometrics. The Paleontological Society Papers, 16, 163–188.
White, S., (2009). Effects of drilling predation on global turritellid diversity and abundance: A potential catalyst for evolution. MS Thesis. University of North Carolina. Wilmington, 102 p.
Willmann, R., (2003). From Haeckel to Hennig: the early development of phylogenetics in German-speaking Europe. Cladistics, 19, 449–479.
Wilson, M. E. J. and Moss, S. J., (1999). Cenozoic tectonics, basin development and petroleum systems of SE Asia. Marine and Petroleum Geology, 16(5), 371–398.
Worthington, S., (2017). Selection of character coding method is not phylogenetically neutral: A test case using Hominoids. Folia Primatologica, 88(5), 385–400.
Wright, T. W., (1857–1878). Monograph on the British fossil Echinodermata of the Oolitic formations. London Paeleontological Soceity, 469 pp.
Wynne, A. B., (1872). Memoir on the Geology of Kutch to Accompany the Map Compiled by A.B. Wynne and F. Fidden during the Season of 1867-1868 and 1868-1869. Memoirs of the Geological Survey of India, 9, 1–293.
Yokoyama, M., (1928). Mollusca from the oil field of Taiwan. Reports of Imperial Geologic Survey of Japan 101, 1–128.
Zhu, B., Kidd, W. S., Rowley, D. B., Currie, B. S. and Shafique, N., (2005). Age of initiation of the India-Asia collision in the east-central Himalaya. The Journal of Geology, 113(3), 265–285.
Ziegler, A., Lenihan, J., Zachos, L. G., Faber, C. and Mooi, R., (2016). Comparative morphology and phylogenetic significance of Gregory’s diverticulum in sand dollars (Echinoidea: Clypeasteroida). Organisms Diversity and Evolution, 16, 141–166.
Zittel, K. A., (1879). Echinodermata. Handbuch der Palaontologie: Palaozoologie. Vol. 1. Pt. 1. R. Oldenbourg, Munchen and Leipzig, 308–560.
Zlotnik, M. and Ceranka, T., (2005). Patterns of drilling predation of cassid gastropods preying on echinoids from the middle Miocene of Poland. Acta Palaeontologica Polonica, 50(3).
Zonneveld, J. P., Furlong, C. M. and Sanders, S. C., (2016). Triassic echinoids (Echinodermata) from the Aksala Formation, north Lake Laberge, Yukon Territory, Canada. Papers in Palaeontology, 2(1), 87–100.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97210-
dc.description.abstract論文分為幾個獨立研究章節,每個章節都採用了不同的方法論來深入探討沙錢海膽生物地理演化與遷徙模式。通過整合不同的分析技術,本研究提供了對沙錢海膽如何隨著時間的推移而擴散和適應的全面理解。每一章節都專注於生物地理學的特定研究方向,包括遷徙事件、環境因素的影響以及生物互動,從而提供了對沙錢海膽分佈演化過程的多面向觀點及深入研究。
形態計量學方法,包括傳統測量和幾何形態計量學分析,可應用於野柳地質公園內現地保存不完整之星楯海膽科沙錢海膽化石標本研究中。幾何形態計量學分析揭示了所研究的兩個屬有明顯離散聚集,即使在最少三個標記點數量的數據分析結果也是如此。這一方法的有效性並獲得使用傳統線性測量之獨立研究結果進一步證實。因此,本研究加強了這些方法在臺灣中新世沙錢海膽化石群落屬級識別中的可信度和可靠性。
對捐贈給臺大地質科學系之臺灣及全球其他地區化石海膽收藏進行系統分支分析,產生了一個追溯演化關係和生物地理模式的海膽系統發育樹。通過這一根據形態特徵而產生的系統發育樹與現有分子數據所得到的系統演化樹進行比較,對所研究標本的演化模式有了更清晰的理解。這進一步強調了採用多種方法來全面認識演化關係的重要性。
根據Seilacher(1979年)提出的沙錢海膽全球遷徙分佈路徑假設,本研究重新評估了古地理空間中沙錢海膽遷徙,通過檢查來自三個不同地理區域的標本。對臺灣中新世野柳地質公園化石標本進行了詳細拍攝以確保全面代表性,印度標本則通過親自參與野外考察獲得,歐洲標本則通過現有出版文獻圖片進行分析。應用了傳統和幾何形態計量學方法,結果得到以下一致的結論。研究發現印度標本與臺灣標本的親緣關係比與地中海標本的親緣關係更為密切,代表有與原先假設不同的新遷徙路徑。這項研究突顯了中新世沙錢海膽遷徙模式的全新視角。
理解海膽的捕食模式和生物互動提供了對捕食者和獵物之間動態演化的洞察。從印度和臺灣化石標本中有收集到些許帶有鑽孔的沙錢海膽化石,這些孔洞證明有捕食者-獵物關係存在。對更新世四溝層貝類鑽孔進行初步研究提供了捕食者-獵物關係的研究背景,因為與貝類中更為均勻的模式相比,海膽中觀察到多樣的鑽孔形式,這使得大規模量化海膽鑽孔研究變得複雜。儘管如此,本研究標誌著第一次對鑽孔強度、數量、位置以及四溝層貝類中不完全鑽孔的出現進行量化樣本研究,為臺灣貝類化石鑽孔研究發表在國際期刊之首例。根據碗公狀鑽孔的普遍性和研究中所鑑定的玉螺標本,確定更新世四溝層中小錐螺Turritella cingulifera的主要捕食者是玉螺科軟體動物。
總結來說,這項論文工作有助於理解沙錢海膽生物地理學和演化歷史,強調了多面向方法論的必要性。研究結果提供了關於這些海膽在不同地理區域遷徙和演化的洞察,並為其他海洋無脊椎動物的生物地理研究樹立了先例。未來的研究可以通過納入更多地區和完善方法來進一步探索全球海膽綱演化和生物地理學。
zh_TW
dc.description.abstractThis study is structured into several distinct chapters, each employing a variety of methodologies to delve into the biogeographic evolution and migration patterns of clypeasteroids. By integrating different analytical techniques, the research provides a comprehensive understanding of how these organisms have dispersed and adapted over time. Each chapter focuses on specific aspects of biogeography, ranging from migration events to the influence of environmental factors as well as biotic interactions and thus offering a multifaceted view of the evolutionary processes shaping the distribution of clypeasteroids.
Morphometric methods, encompassing both traditional and geometric morphometric analyses, were utilized in the case study focusing on the generic-level identification of Astriclypeidae based on incomplete onsite specimens from Yehliu Geopark. The geometric morphometric analysis revealed distinctive clustering for the two genera studied, even with a minimal number of landmark points. The efficacy of this method is further corroborated by the results of an independent study employing traditional linear measurements. Consequently, this research reinforces the credibility and reliability of these methods for the generic-level identification of sand dollar specimens.
The application of cladistic analysis to the NTUG-donated fossil echinoid collections from Taiwan and other regions worldwide has yielded a phylogenetic tree that traces evolutionary relationships and biogeographic patterns through the examination of morphological characters. By comparing this morphological phylogenetic tree with existing molecular data, a clearer understanding of the evolutionary patterns within the studied specimens emerges. Thus, underlines the relevance of adopting multiple approaches to comprehensively perceive evolutionary relationships.
The sand dollar migration in the paleogeographic space hypothesized by Seilacher (1979) has been reevaluated in this study by examining specimens from three distinct geographic regions along the proposed migration pathway. Miocene specimens from Taiwan were meticulously photographed onsite to ensure comprehensive representation, Indian specimens were acquired through a dedicated field expedition, and European specimens were analyzed using existing published literature. Both traditional and geometric morphometric methods were applied and obtained congruent results. The findings reveal that the Indian specimens exhibit a closer affinity to the Taiwanese specimens than to the Mediterranean specimens, suggesting an alternative migration route to the one originally hypothesized. This study highlights a novel perspective on the migration patterns of Miocene sand dollars.
Understanding predation patterns and biotic interactions in echinoids provides insight into the evolutionary dynamics between predators and prey. Fossil sand dollars with drill holes, indicating predator-prey relations, were collected from India and Taiwan. A pilot study on mollusk drill holes from the Pleistocene Szekou Formation provided additional context since, diverse drillhole forms are observed in echinoids in comparison with the more uniform patterns in mollusks, complicating large-scale quantification efforts for echinoid drill holes. This study marks the first bulk sample study on drilling intensity as well as the presence of turritellines with incomplete drill holes in Szekou mollusks documenting the first example from Taiwan. The primary predators of Turritella cingulifera in the Pleistocene Szekou Formation are identified as naticids, based on the prevalence of parabolic drill holes and the presence of naticid specimens by the study.
Overall, this work contributes to the understanding of the biogeography and evolutionary history of keyhole sand dollars, emphasizing the importance of multi-faceted methodological approaches. The findings offer insights into the migration and evolution of these echinoids across different geographical regions, and set a precedent for similar biogeographic studies in other marine invertebrates. Future research could expand by incorporating additional regions and refining methodologies to further explore overall echinoid evolution and biogeography.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:41:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:41:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsDoctoral Dissertation Acceptance Certificate i
Acknowledgement and Dedication ii
摘要 iv
Abstract vi
Table of contents ix
List of figures xiii
List of tables xxi
CHAPTER 1: Introduction 1
CHAPTER 2: Generic-level identification of Astriclypeidae (Published). 14
2.1 Introduction 14
2.2 Methodology 16
2.3 Results 20
2.3.1 Geometric morphometric data analysis 20
2.3.2 Traditional morphometric data analysis 20
2.3.3 Univariate analysis (F-test) 21
2.3.4 Analysis of variance (ANOVA) 21
2.4 Discussions 22
2.4.1 Three landmark point data analysis 22
2.4.2 Seven landmark point data analysis 22
2.4.3 Traditional morphometric data analysis 23
2.4.4 Analysis of variance (ANOVA) 24
2.4.5 Broader implications 24
2.5 Conclusion 26
CHAPTER 3: WSJ collection of fossil echinoids from Taiwan (Unpublished NTUG Collection E028 -E156). 38
3.1 Introduction 38
3.2 Methodology 39
3.3 Systematic paleontology (Kroh 2020) 41
3.4 Results and Discussions 58
CHAPTER 4: WSJ collection of fossil echinoids in the world (Unpublished NTUG Collection E001-E027). 63
4.1 Methodology 63
4.2 Systematic paleontology 65
4.3 Results and Discussions 84
4.3.1 Combined Phylogenetic tree 84
4.3.2 Comparison with molecular phylogenetic trees 86
4.3.3 Congruence vs. incongruence in comparison with the molecular phylogenetic trees 90
CHAPTER 5: Fossil echinoids from India (New materials collected from field trip). 101
5.1 Introduction 101
5.2 Specimen collection, preparation and Methodologies 107
5.2.1 Taiwan 107
5.2.2 Kutch terrane, Indian Subcontinent 107
5.2.3 Mediterranean region 108
5.3 Traditional morphometrics 108
5.3.1 Specimen preparation 109
5.3.2 Data collection 109
5.3.3 Data Analysis 110
5.4 Geometric morphometrics 110
5.4.1 Specimen preparation 112
5.4.2 Landmark data collection 112
5.4.3 Data analysis 112
5.5 Results 114
5.5.1 Traditional morphometrics 114
5.5.2 Geometric morphometric analysis (5 landmark points) 116
5.5.3 Analysis of variance (ANOVA) 117
5.5.4 Univariate analysis (F-Test) 118
5.5.5 Geometric morphometric analysis (11 landmark points) 118
5.5.6 Analysis of variance (ANOVA) 121
5.5.7 Univariate analysis (F-Test) 121
5.6 Discussions 123
CHAPTER 6: Predator–prey interactions based on drillholes (Published). 152
CHAPTER 7: Summary 154
REFERENCES 157
APPENDIX A 192
APPENDIX B 215
APPENDIX C 224
-
dc.language.isoen-
dc.subject系統分支學zh_TW
dc.subject捕食者-獵物關系zh_TW
dc.subject形態測量學zh_TW
dc.subject中新世生物地理學zh_TW
dc.subject沙錢海膽演化zh_TW
dc.subjectpredator-prey relationsen
dc.subjectSand dollar evolutionen
dc.subjectMiocene biogeographyen
dc.subjectmorphometricsen
dc.subjectcladisticsen
dc.title臺灣、印度和歐洲月孔沙錢海膽生物地理學zh_TW
dc.titleBiogeography of Keyhole Sand Dollars from Taiwan, India and Europeen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳文山;宋艷芳;游能悌;拉傑夫·帕耐zh_TW
dc.contributor.oralexamcommitteeWen-Shan Chen;Yen-Fang Song;Neng-Ti Yu;Rajeev Patnaiken
dc.subject.keyword沙錢海膽演化,中新世生物地理學,形態測量學,系統分支學,捕食者-獵物關系,zh_TW
dc.subject.keywordSand dollar evolution,Miocene biogeography,morphometrics,cladistics,predator-prey relations,en
dc.relation.page232-
dc.identifier.doi10.6342/NTU202404033-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-lift2029-08-08-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
9.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved