請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97201完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文方 | zh_TW |
| dc.contributor.advisor | Wen-Fang Wu | en |
| dc.contributor.author | 劉宇恩 | zh_TW |
| dc.contributor.author | YU-EN LIU | en |
| dc.date.accessioned | 2025-02-27T16:39:07Z | - |
| dc.date.available | 2025-02-28 | - |
| dc.date.copyright | 2025-02-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-14 | - |
| dc.identifier.citation | [1] 李依霖(2022)。俄烏戰爭衝擊下,全球動力電池產業之挑戰與機遇。 取自 https://www.artc.org.tw/tw/knowledge/articles/13650
[2] 葉志逸(2024)。2023 年主要電動車銷售國家市場概況。財團法人車輛研究測試中心。 [3] IEA. (2024). Global EV Outlook 2024. Paris. Retrieved from https://www.iea.org/reports/global-ev-outlook-2024 [4] IEA. (2020). Global EV Outlook 2020. Paris. Retrieved from https://www.iea.org/reports/global-ev-outlook-2020 [5] Ou, S. (2023). Estimate long-term impact on battery degradation by considering electric vehicle real-world end-use factors. Journal of Power Sources, 573, 233133. doi: https://doi.org/10.1016/j.jpowsour.2023.233133 [6] Transitions, D. O. o. T. (2018). Solving Challenges in Energy Storage. [7] Office, V. T. FOTW #1272, January 9, 2023: Electric Vehicle Battery Pack Costs in 2022 Are Nearly 90% Lower than in 2008, according to DOE Estimates, . [8] Turcheniuk, K., Bondarev, D., Singhal, V., & Yushin, G. (2018). Ten years left to redesign lithium-ion batteries: Nature Publishing Group UK London. [9] Pillot, C. (2015). Battery market development for consumer electronics, automotive, and industrial: materials requirements and trends. Avicenne Energy(12). [10] Kim, S., Jung, H., Lee, M., Choi, Y. Y., & Choi, J.-I. (2023). Model-free reconstruction of capacity degradation trajectory of lithium-ion batteries using early cycle data. ETransportation, 17, 100243. [11] Sun, Y., Tian, H., Hu, F., & Du, J. (2024). Method for Evaluating Degradation of Battery Capacity Based on Partial Charging Segments for Multi-Type Batteries. Batteries, 10(6). Retrieved from doi:10.3390/batteries10060187 [12] Edge, J. S., O’Kane, S., Prosser, R., Kirkaldy, N. D., Patel, A. N., Hales, A., . . . Offer, G. J. (2021). Lithium ion battery degradation: what you need to know. Physical Chemistry Chemical Physics, 23(14), 8200-8221. doi: 10.1039/D1CP00359C [13] Bhagavathy, S., Budnitz, H., Schwanen, T., & McCulloch, M. (2021). Impact of Charging Rates on Electric Vehicle Battery Life. Findings. doi: 10.32866/001c.21459 [14] Parschau, A., Degler, D., Fill, A., Birke, K., & Allmendinger, F. (2023). Cycle Tests on the Influence of Different Charging Currents—A Case Study on Different Commercial, Cylindrical Lithium Ion Cells. Batteries, 9, 83. doi: 10.3390/batteries9020083 [15] Pelosi, D., Longo, M., Zaninelli, D., & Barelli, L. (2023). Experimental Investigation of Fast−Charging Effect on Aging of Electric Vehicle Li−Ion Batteries. Energies, 16(18). Retrieved from doi:10.3390/en16186673 [16] Manansala, J. (2023). How Long Does a Tesla Battery Last? Retrieved from: https://ev-lectron.com/blogs/blog/how-long-does-a-tesla-battery-last [17] Lambert, F. (2021). Tesla tried to charge $22,500 for new battery pack when a $5,000 repair did the trick. [18] Canals Casals, L., Etxandi-Santolaya, M., Bibiloni-Mulet, P. A., Corchero, C., & Trilla, L. (2022). Electric Vehicle Battery Health Expected at End of Life in the Upcoming Years Based on UK Data. Batteries, 8(10). Retrieved from doi:10.3390/batteries8100164 [19] Lim, L. D., Tan, A. F. J., Tomacruz, J. G. T., Castro, M. T., Remolona, M. F. M., & Ocon, J. D. (2022). Cyclic Degradation Prediction of Lithium-Ion Batteries using Data-Driven Machine Learning. Chemical Engineering Transactions, 94, 787-792. [20] Gandoman, F. H., Jaguemont, J., Goutam, S., Gopalakrishnan, R., Firouz, Y., Kalogiannis, T., . . . Van Mierlo, J. (2019). Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges. Applied Energy, 251, 113343. [21] Fernández, I., Calvillo, C., Sánchez-Miralles, A., & Boal, J. (2013). Capacity fade and aging models for electric batteries and optimal charging strategy for electric vehicles. Energy, 60, 35-43. [22] Jeng, S.-L., Tan, C. M., & Chen, P.-C. (2022). Statistical distribution of Lithium-ion batteries useful life and its application for battery pack reliability. Journal of Energy Storage, 51, 104399. [23] Mills, A., & Al-Hallaj, S. (2005). Simulation of passive thermal management system for lithium-ion battery packs. Journal of Power Sources, 141(2), 307-315. [24] Liu, Z., Tan, C., & Leng, F. (2015). A reliability-based design concept for lithium-ion battery pack in electric vehicles. Reliability Engineering & System Safety, 134, 169-177. [25] Lee, W. C., Drury, D., & Mellor, P. (2012). An integrated design of active balancing and redundancy at module level for electric vehicle batteries. Paper presented at the 2012 IEEE transportation electrification conference and expo (ITEC). [26] Jin, F., & Shin, K. G. (2012). Pack sizing and reconfiguration for management of large-scale batteries. Paper presented at the 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems. [27] Maluf, N. (2014). A PEEK INSIDE THE BATTERY OF A TESLA MODEL S. Retrieved from Qnovo website: https://www.qnovo.com/blogs/peek-inside-the-battery-of-a-tesla-model-s [28] J. Shankleman, T. B., J. Ryan, D. Merrill,. (Sep. 2017. ). We’re going to need more lithium. Bloomberg Businessweek. Retrieved from [29] Bhowmick, S. (December 16, 2021). Tesla Model S Battery System: An Engineer’s Perspective. Circuit Diges. Retrieved from: https://circuitdigest.com/article/tesla-model-s-battery-system-an-engineers-perspective [30] Keil, P., & Jossen, A. (2015). Aging of lithium-ion batteries in electric vehicles: Impact of regenerative braking. World Electric Vehicle Journal, 7(1), 41-51. [31] Panasonic. (2012). Introduction of NCR18650PD. meeting presentation. [32] Brodd, R. J. (2012). Batteries for sustainability: selected entries from the encyclopedia of sustainability science and technology: Springer Science & Business Media. [33] Andre, D., Kim, S.-J., Lamp, P., Lux, S. F., Maglia, F., Paschos, O., & Stiaszny, B. (2015). Future generations of cathode materials: an automotive industry perspective. Journal of Materials Chemistry A, 3(13), 6709-6732. [34] Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: present and future. Materials today, 18(5), 252-264. [35] Reddy, T. B. (2011). Linden's handbook of batteries: McGraw-Hill Education. [36] Garche, J., Dyer, C. K., Moseley, P. T., Ogumi, Z., Rand, D. A., & Scrosati, B. (2013). Encyclopedia of electrochemical power sources: Newnes. [37] Danilov, D., & Notten, P. (2009). Adaptive battery management systems for the new generation of electrical vehicles. Paper presented at the 2009 IEEE Vehicle Power and Propulsion Conference. [38] Jafari, M., Khan, K., & Gauchia, L. (2018). Deterministic models of Li-ion battery aging: It is a matter of scale. Journal of Energy Storage, 20, 67-77. [39] Li, J., Murphy, E., Winnick, J., & Kohl, P. (2001). Studies on the cycle life of commercial lithium ion batteries during rapid charge–discharge cycling. Journal of Power Sources, 102(1-2), 294-301. [40] Ning, G., Haran, B., & Popov, B. N. (2003). Capacity fade study of lithium-ion batteries cycled at high discharge rates. Journal of Power Sources, 117(1-2), 160-169. [41] Ma, T., Xu, G.-L., Li, Y., Wang, L., He, X., Zheng, J., . . . Curtiss, L. A. (2017). Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. The journal of physical chemistry letters, 8(5), 1072-1077. [42] Tang, A., Hu, G., & Liu, M. (2017). Mechanical degradation of electrode materials within single particle model in Li-ion batteries for electric vehicles. Journal of Mathematical Chemistry, 55, 1903-1915. [43] Jana, A., Ely, D. R., & García, R. E. (2015). Dendrite-separator interactions in lithium-based batteries. Journal of Power Sources, 275, 912-921. [44] Xu, Y., Wu, H., He, Y., Chen, Q., Zhang, J.-G., Xu, W., & Wang, C. (2019). Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy. Nano Letters, 20(1), 418-425. [45] Kalnaus, S., Wang, Y., & Turner, J. A. (2017). Mechanical behavior and failure mechanisms of Li-ion battery separators. Journal of Power Sources, 348, 255-263. [46] Millner, A. (2010). Modeling lithium ion battery degradation in electric vehicles. Paper presented at the 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply. [47] Chen, Y., & Evans, J. W. (1994). Three‐dimensional thermal modeling of lithium‐polymer batteries under galvanostatic discharge and dynamic power profile. Journal of The Electrochemical Society, 141(11), 2947. [48] Serrao, L., Chehab, Z., Guezennee, Y., & Rizzoni, G. (2005). An aging model of Ni-MH batteries for hybrid electric vehicles. Paper presented at the 2005 IEEE Vehicle Power and Propulsion Conference. [49] Al-Zareer, M., Dincer, I., & Rosen, M. A. (2018). Heat and mass transfer modeling and assessment of a new battery cooling system. International Journal of Heat and Mass Transfer, 126, 765-778. [50] Deshpande, R. D., & Uddin, K. (2021). Physics inspired model for estimating ‘cycles to failure’as a function of depth of discharge for lithium ion batteries. Journal of Energy Storage, 33, 101932. [51] Alipour, M., Esen, E., Varzeghani, A. R., & Kizilel, R. (2020). Performance of high capacity Li-ion pouch cells over wide range of operating temperatures and discharge rates. Journal of Electroanalytical Chemistry, 860, 113903. [52] Zhang, H., Zhou, M., Hu, L., & Zhang, Z. (2020). Mechanism of the dynamic behaviors and failure analysis of lithium-ion batteries under crushing based on stress wave theory. Engineering Failure Analysis, 108, 104290. [53] He, W., Williard, N., Osterman, M., & Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196(23), 10314-10321. doi: https://doi.org/10.1016/j.jpowsour.2011.08.040 [54] Dubarry, M., & Liaw, B. Y. (2009). Identify capacity fading mechanism in a commercial LiFePO4 cell. Journal of Power Sources, 194(1), 541-549. doi: https://doi.org/10.1016/j.jpowsour.2009.05.036 [55] IEEE Recommended Practice for Maintenance, Testing, and Replacement of Valve-Regulated Lead-Acid (VRLA) Batteries for Stationary Applications. (2006). IEEE Std 1188-2005 (Revision of IEEE Std 1188-1996), 1-44. doi: 10.1109/IEEESTD.2006.99014 [56] Paul, S., Diegelmann, C., Kabza, H., & Tillmetz, W. (2013). Analysis of ageing inhomogeneities in lithium-ion battery systems. Journal of Power Sources, 239, 642-650. doi: https://doi.org/10.1016/j.jpowsour.2013.01.068 [57] Baumhöfer, T., Brühl, M., Rothgang, S., & Sauer, D. U. (2014). Production caused variation in capacity aging trend and correlation to initial cell performance. Journal of Power Sources, 247, 332-338. doi: https://doi.org/10.1016/j.jpowsour.2013.08.108 [58] Lehner, S., Baumhöfer, T., & Sauer, D. U. (2016). Disparity in initial and lifetime parameters of lithium‐ion cells. IET Electrical Systems in Transportation, 6(1), 34-40. [59] Choi, S. S., & Lim, H. S. (2002). Factors that affect cycle-life and possible degradation mechanisms of a Li-ion cell based on LiCoO2. Journal of Power Sources, 111(1), 130-136. [60] Luo, Y.-F., Liu, Y.-H., & Wang, S.-C. (2009). Search for an optimal multistage charging pattern for lithium-ion batteries using the Taguchi approach. Paper presented at the TENCON 2009-2009 IEEE region 10 conference. [61] Liu, Y.-H., Hsieh, C.-H., & Luo, Y.-F. (2011). Search for an optimal five-step charging pattern for Li-ion batteries using consecutive orthogonal arrays. IEEE Transactions on Energy Conversion, 26(2), 654-661. [62] Savoye, F., Venet, P., Millet, M., & Groot, J. (2011). Impact of periodic current pulses on Li-ion battery performance. IEEE Transactions on Industrial Electronics, 59(9), 3481-3488. [63] Notten, P. H., het Veld, J. O., & Van Beek, J. (2005). Boostcharging Li-ion batteries: A challenging new charging concept. Journal of Power Sources, 145(1), 89-94. [64] Co., D. Z. N. E. T. EV Charger Levels. Retrieved from: https://zdwl-tec.com/news/ev-charger-levels/ [65] LLC, E. THE ULTIMATE GUIDE TO DC FAST CHARGING. Retrieved from: https://www.power-sonic.com/blog/the-ultimate-guide-to-dc-fast-charging/ [66] twevoasis. (2023). 電動車充電全攻略|充電原理、規格、充電樁差異一次看. EVOASIS. Retrieved from: https://www.shop.evoasis.com.tw/post/electric-vehicle-charging [67] Ebeling, C. E. (2019). An introduction to reliability and maintainability engineering: Waveland Press. [68] TESLA. Model S. from https://www.tesla.com/zh_tw/models | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97201 | - |
| dc.description.abstract | 隨著全球永續環保意識的抬頭,世界各國使用電動車(Battery Electric Vehicle, BEV)之比例逐年增加,電動車的使用壽命與可靠性也被受關注。而電動車發展至今為了讓使用者有更好的體驗,各家廠商也推出了不同充電速度之充電設備供使用者選擇,但不同的充電速度對於電動車電池之退化也會有所影響。除此之外,隨著電動車投入市場已超過10年,需要更換電池的電動車也逐漸增加,但目前為止還沒有相關針對更換電動車電池,對其電池系統可靠度與壽命影響的研究。本研究旨在以可靠度工程之方法分析與探討電動車電池系統的相關問題,根據慕尼黑工業大學之電池性能衰退數據,使用可靠度方法分析不同充電電流下之電池、電池模組與電池組之可靠度與平均失效時間,並探討以串聯或並聯系統之失效模型來分析電動車電池系統可靠度之影響差異,以使研究結果盡可能的貼近實際使用情況,此外將加入探討使用不同電流充電之電動車,在不同時機更換不同數量之電池模組,對其可靠度與平均失效時間的影響。研究結果顯示,電動車電池系統以串聯系統分析時,1 A充電的平均失效時間為2 A充電的2.3倍,以並聯系統分析時,1 A充電的平均失效時間為2 A充電的3.6倍,意旨較慢之充電速度,對於電動車之電池平均使用壽命有著較好的表現,並且在並聯系統中更為顯著。而在若有一個電池模組失效便判定電動車電池系統失效之串聯系統失效模型下,在維修更換電池模組時,若只更換部分數量之模組對電池系統可靠度並無明顯效果,且在不同時間更換也無明顯之差異,但相較起來使用較慢速之1 A充電電流充電之電動車,更換電池模組對其可靠度有較好的改善效果,其在更換8個電池模組後,可增加約5 %之平均失效時間。 | zh_TW |
| dc.description.abstract | The growing adoption of battery electric vehicles (BEVs) has raised concerns about battery lifespan and degradation. Manufacturers offer various charging speeds, affecting battery performance and longevity. As BEVs have been in use for over a decade, battery replacements due to capacity loss are becoming more common. However, limited research exists on how battery replacements impact reliability and lifespan. This study employs reliability engineering methodologies to analyze BEV battery system reliability. Using battery degradation data from the Technical University of Munich, reliability analysis is conducted to evaluate the mean time to failure (MTTF) of individual battery cells, battery modules, and battery packs under different charging currents. Additionally, the study examines the effects of series and parallel failure models on BEV battery system reliability, ensuring that the findings closely reflect real-world conditions. Furthermore, it investigates how replacing different numbers of battery modules at varying intervals influences system reliability and MTTF in BEVs utilizing different charging currents. Results show that in a series-connected system, MTTF for 1A charging is 2.3 times that of 2A charging. Under 1A charging, a parallel-connected system has twice the MTTF of a series-connected one, highlighting that slower charging extends battery lifespan. Additionally, in current electric vehicle battery systems, partial replacement of battery modules does not yield a significant improvement in system reliability, regardless of the replacement timing. However, at 1A charging, reliability improves more noticeably after module replacement, with replacing eight modules increasing MTTF by approximately 5%. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:39:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-27T16:39:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目 次 iv 圖 次 vii 表 次 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 研究目的 4 1.4 論文架構 5 第二章 研究材料與方法 6 2.1 電動車電池系統 6 2.1.1 電池車相關名詞定義 6 2.1.2 電動車電池系統配置架構 8 2.1.3 電動車電池芯 10 2.1.4 鋰電池工作原理 11 2.1.5 鋰電池失效與退化因素 12 2.1.6 鋰電池失效定義 14 2.1.7 鋰電池出廠之不均勻性 15 2.1.8 鋰電池退化不均勻性 15 2.2 電動車電池充電原理與方法 16 2.2.1 鋰電池充電方法 16 2.2.2 電動車充電設備簡介 17 2.3 本研究所用之數據說明 20 2.3.1 充電過程之參數變因 20 2.3.2 充電時間和容量利用率 21 2.3.3 鋰電池循環充電退化試驗 22 2.4 可靠度工程概論 24 2.4.1 可靠度基本理論 24 2.4.2 可靠度基本定義 25 2.4.3 可靠度常見機率分佈函數 28 2.4.4 系統可靠度 30 第三章 電動車電池系統可靠度分析 35 3.1 基本定義與假設 35 3.1.1 電池芯失效定義 35 3.1.2 電池模組失效定義 35 3.1.3 電池組失效定義 36 3.2電池芯可靠度 37 3.2.1 鋰電池退化與可靠度分析 37 3.2.2 不同充電電流對電池芯可靠度的影響 38 3.3 電池模組可靠度 40 3.3.1 電池模組可靠度分析概述 40 3.3.2 不同充電電流對電池模組可靠度之影響 40 3.4 電池組可靠度 43 3.4.1 電池組可靠度分析概述 43 3.4.2 不同充電電流對串聯系統之電池組可靠度的影響 44 3.4.3 不同充電電流對並聯系統之電池組可靠度的影響 47 3.4.4 串聯系統與並聯系統之電池組系統可靠度比較 50 3.5 電動車電池系統平均失效時間與續航里程 52 3.5.1 電動車電池系統平均失效時間(MTTF) 52 3.5.2 基於平均失效時間之電動車平均可用里程 55 第四章 電動車電池系統維護度分析 57 4.1 維護度之基本定義 57 4.2 串聯系統下更換電池模組對電動車電池系統可靠度之影響 57 4.2.1 使用1A充電之電動車於不同時機更換電池後之系統可靠度 58 4.2.2 使用2A充電之電動車於不同時機更換電池後之系統可靠度 69 4.2.3 不同充電電流對更換電池模組的可靠度與MTTF之影響 80 第五章 結論 82 參考文獻 84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電池系統 | zh_TW |
| dc.subject | 維護度 | zh_TW |
| dc.subject | 可靠度 | zh_TW |
| dc.subject | 充電速度 | zh_TW |
| dc.subject | 電池退化 | zh_TW |
| dc.subject | 電動車 | zh_TW |
| dc.subject | Battery Degradation | en |
| dc.subject | Reliability | en |
| dc.subject | Maintainability | en |
| dc.subject | Battery System | en |
| dc.subject | Electric Vehicle | en |
| dc.subject | Charging Speed | en |
| dc.title | 電動車電池系統可靠度與維護度相關問題探討 | zh_TW |
| dc.title | Issues Related to Reliability and Maintainability of EV Battery Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉霆;江明哲 | zh_TW |
| dc.contributor.oralexamcommittee | Tyng Liu;Ming-Zhe Jiang | en |
| dc.subject.keyword | 電動車,電池系統,電池退化,充電速度,可靠度,維護度, | zh_TW |
| dc.subject.keyword | Electric Vehicle,Battery System,Battery Degradation,Charging Speed,Reliability,Maintainability, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202500710 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-02-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 2.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
