請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97196完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕蓓德 | zh_TW |
| dc.contributor.advisor | Pei-Te Chiueh | en |
| dc.contributor.author | 江子暘 | zh_TW |
| dc.contributor.author | Tzu-Yang Chiang | en |
| dc.date.accessioned | 2025-02-27T16:37:47Z | - |
| dc.date.available | 2025-02-28 | - |
| dc.date.copyright | 2025-02-27 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-09-07 | - |
| dc.identifier.citation | Abdou, N., El Mghouchi, Y., Jraida, K., Hamdaoui, S., Hajou, A., & Mouqallid, M. (2022). Prediction and optimization of heating and cooling loads for low energy buildings in Morocco: An application of hybrid machine learning methods. Journal of Building Engineering, 61, 105332. https://doi.org/10.1016/j.jobe.2022.105332
Ahmad, M. W., Mourshed, M., & Rezgui, Y. (2017). Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings, 147, 77-89. https://doi.org/10.1016/j.enbuild.2017.04.038 Bourdeau, M., Zhai, X. Q., Nefzaoui, E., Guo, X., & Chatellier, P. (2019). Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society, 48, 101533. https://doi.org/10.1016/j.scs.2019.101533 Chou, J., & Nguyen, H. (2024). Simulating long-term energy consumption prediction in campus buildings through enhanced data augmentation and metaheuristic-optimized artificial intelligence. Energy and Buildings, 312, 114191. https://doi.org/10.1016/j.enbuild.2024.114191 Chou, S., & Nguyen, Q. (2022). Forecasting Regional Energy Consumption via Jellyfish Search-Optimized Convolutional-Based Deep Learning. International Journal of Energy Research, 2023(1), 3056688. https://doi.org/10.1155/2023/3056688 Dong, Z., Liu, J., Liu, B., Li, K., & Li, X. (2021). Hourly energy consumption prediction of an office building based on ensemble learning and energy consumption pattern classification. Energy and Buildings, 241, 110929. https://doi.org/10.1016/j.enbuild.2021.110929 Edwards, R. E., New, J., & Parker, L. E. (2012). Predicting future hourly residential electrical consumption: A machine learning case study. Energy and Buildings, 49, 591-603. https://doi.org/10.1016/j.enbuild.2012.03.010 Fan, C., Xiao, F., & Wang, S. (2014). Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Applied Energy, 127, 1-10. Fan, C., Xiao, F., & Zhao, Y. (2017). A short-term building cooling load prediction method using deep learning algorithms. Applied Energy, 195, 222-233. https://doi.org/10.1016/j.apenergy.2017.03.064 Fan, C., Xiao, F., Yan, C., Liu, C., Li, Z., & Wang, J. (2019). A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning. Applied Energy, 235, 1551-1560. https://doi.org/10.1016/j.apenergy.2018.11.081 Fathi, S., Srinivasan, R., Fenner, A., & Fathi, S. (2020). Machine learning applications in urban building energy performance forecasting: A systematic review. Renewable and Sustainable Energy Reviews, 133, 110287. https://doi.org/10.1016/j.rser.2020.110287 Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems. Haben, S., Arora, S., Giasemidis, G., Voss, M., & Vukadinović Greetham, D. (2021). Review of low voltage load forecasting: Methods, applications, and recommendations. Applied Energy, 304, 117798. https://doi.org/10.1016/j.apenergy.2021.117798 Hegde, H., Shimpi, N., Panny, A., Glurich, I., Christie, P., & Acharya, A. (2018). MICE vs PPCA: Missing data imputation in healthcare. Informatics in Medicine Unlocked, 17, 100275. https://doi.org/10.1016/j.imu.2019.100275 Jung, Y., Heo, Y., Cho, H., Kang, Y. T., Kim, Y., & Lee, H. (2023). A plan to build a net zero energy building in hydrogen and electricity-based energy scenario in South Korea. Journal of Cleaner Production, 397, 136537. https://doi.org/10.1016/j.jclepro.2023.136537 Lee, D., Jeong, J., Yoon, S. H., & Chae, Y. T. (2018). Improvement of Short-Term BIPV Power Predictions Using Feature Engineering and a Recurrent Neural Network. Energies, 12(17), 3247. https://doi.org/10.3390/en12173247 Lee, T., & Chen, C. (2007). Iteration particle swarm optimization for contract capacities selection of time-of-use rates industrial customers. Energy Conversion and Management, 48(4), 1120-1131. https://doi.org/10.1016/j.enconman.2006.10.013 Li, Y., Tong, Z., Tong, S., & Westerdahl, D. (2021). A data-driven interval forecasting model for building energy prediction using attention-based LSTM and fuzzy information granulation. Sustainable Cities and Society, 76, 103481. https://doi.org/10.1016/j.scs.2021.103481 Lu, C., Gu, J., & Lu, W. (2023). An improved attention-based deep learning approach for robust cooling load prediction: Public building cases under diverse occupancy schedules. Sustainable Cities and Society, 96, 104679. https://doi.org/10.1016/j.scs.2023.104679 Marino, C., Nucara, A., Panzera, M., & Pietrafesa, M. (2019). Towards the nearly zero and the plus energy building: Primary energy balances and economic evaluations. Thermal Science and Engineering Progress, 13, 100400. https://doi.org/10.1016/j.tsep.2019.100400 Miller, C., Kathirgamanathan, A., Picchetti, B., Arjunan, P., Park, J. Y., Nagy, Z., Raftery, P., Hobson, B. W., Shi, Z., & Meggers, F. (2020). The Building Data Genome Project 2, energy meter data from the ASHRAE Great Energy Predictor III competition. Scientific Data, 7(1), 1-13. https://doi.org/10.1038/s41597-020-00712-x Olu-Ajayi, R., Alaka, H., Sulaimon, I., Sunmola, F., & Ajayi, S. (2021). Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques. Journal of Building Engineering, 45, 103406. https://doi.org/10.1016/j.jobe.2021.103406 Pedro Domingos. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78-87. https://doi.org/10.1145/2347736.2347755 Pham, A., Ngo, N., Ha Truong, T. T., Huynh, N., & Truong, N. (2020). Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability. Journal of Cleaner Production, 260, 121082. https://doi.org/10.1016/j.jclepro.2020.121082 Seyedzadeh, S., Pour Rahimian, F., Oliver, S., Rodriguez, S., & Glesk, I. (2020). Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making. Applied Energy, 279, 115908. https://doi.org/10.1016/j.apenergy.2020.115908 Shapi, M. K. M., Ramli, N. A., & Awalin, L. J. (2021). Energy consumption prediction by using machine learning for smart building: Case study in Malaysia. Developments in the Built Environment, 5, 100037. https://doi.org/10.1016/j.dibe.2020.100037 Taiwan Climate Change Projection Information and Adaptation Knowledge Platform, https://tccip.ncdr.nat.gov.tw/ Walker, S., Khan, W., Katic, K., Maassen, W., & Zeiler, W. (2020). Accuracy of different machine learning algorithms and added-value of predicting aggregated-level energy performance of commercial buildings. Energy and Buildings, 209, 109705. https://doi.org/10.1016/j.enbuild.2019.109705 Wang, H., Lei, Z., Zhang, X., Zhou, B., & Peng, J. (2019). A review of deep learning for renewable energy forecasting. Energy Conversion and Management, 198, 111799. https://doi.org/10.1016/j.enconman.2019.111799 Wang, Z., Wang, Y., Zeng, R., Srinivasan, R. S., & Ahrentzen, S. (2018). Random Forest based hourly building energy prediction. Energy and Buildings, 171, 11-25. https://doi.org/10.1016/j.enbuild.2018.04.008 Zhou, X., Lin, W., Kumar, R., Cui, P., & Ma, Z. (2022). A data-driven strategy using long short-term memory models and reinforcement learning to predict building electricity consumption. Applied Energy, 306, 118078. https://doi.org/10.1016/j.apenergy.2021.118078 魏仰廷 (2017)。以機器學習預測建築自動化控制系統之短期電力負載,國立臺灣大學土木工程學研究所碩士論文。 李宜馨、陳彥銘、李明 (2018)。動態迴歸模型於短期區域電力負載預測之研究,臺灣能源期刊,第五卷,第四期。 賴智君、林政廷 (2021)。校園電力監控與節能管理系統效益評估,工業技術研究院,綠能與環境研究所。 羅時麒、黃瑞隆 (2017)。基於未來氣候的住宅溫室氣體排放趨勢預測與調適策略,內政部建築研究所。 109 年能源供需概況 (2021)。經濟部能源局。 臺灣電力公司 (2022)。營業規章。https://www.taipower.com.tw 臺灣電力公司 (2023)。中華民國 112 年電價表。https://www.taipower.com.tw 國立臺灣大學校園數位電錶監視系統。https://epower.ga.ntu.edu.tw/ 臺灣大學永續辦公室 (2023)。臺大電力分析報告。 國立臺灣大學總務處 (2022)。臺大總務處年報。 國立臺灣大學社會責任與永續報告書 (2020)。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97196 | - |
| dc.description.abstract | 全球氣候變遷日益嚴重,建築能源消耗佔全球總量 40%,機器學習等新技術有助於建築能耗預測與控制。實時短期預測系統對降低能耗至關重要,對建築能耗管理中有降低尖峰負載的重要性,目前臺灣對負載預測與建築淨零碳排設定了明確目標,由於臺灣因應政策須達到 2050 年 100% 新建建築物及超過 85% 既有建築物為近零碳建築的原因,仍需加強相關技術與管理策略。本研究旨在優化機器學習模型的準確性和各項指標,透過特徵工程和機器學習方法,對校園電耗資料進行分析,並考慮不同氣候變遷情境下的建築能耗趨勢,以改善學校政策和建築環境。此外,預期本研究成果將能結合契約容量最佳化和負載預測,以提供用戶適當的契約容量建議,從而實現用電規劃之目的。
研究流程包括資料收集、模型建構和實驗設計,通過 Python 架構預測模型,並利用氣象和建築歷史資料進行資料前處理和特徵選擇,確保模型的準確性和適用性。通過優化機器學習模型,包括調整演算法、訓練資料庫大小和超參數等手段,我們提高了模型的預測準確性和各項指標。在模型結果分析中,證實了長短期記憶(Long Short-Term Memory, LSTM)在準確度上的優勢,在短期預測中的 MAPE 值達到 4.26%。研究進一步考量長期預測的效果,透過 Shapley Additive Explanations(SHAP) value 分析各特徵對模型的影響,發現關鍵因子為一天前趨勢、一周前趨勢、校園日分類、年中之日及太陽輻射強度。 本研究進一步探討所建立之校園建築能耗模型結果對氣候變遷情境與契約容量最佳化分析的應用,在氣候變遷情境下的分析中,在高排放情境 Shared Socioeconomic Pathways(SSP) 5-8.5 能耗的增加最為明顯,2028 - 2100 年校園建築能耗比例增加將增加 18% - 52 %,未來在建築設計和政策制定上應採取更積極的應對措施,包括安裝高效節能設備和推廣智慧建築管理系統;粒子群優化(Particle Swarm Optimization, PSO)契約容量最佳化分析結果顯示降低原本契約容量 650 元/瓩至 504 元/瓩可以節省 18.1% (約 26 萬元)之電費,證實本研究所建立之校園建築能耗模型此方法的實用性和效益。 本研究的貢獻在於提出了一個綜合考慮負載預測、氣候變遷和契約容量最佳化的建築能源管理架構,為學校和相關機構提供了重要的參考依據和決策支持。未來可以進一步探索模型的應用範圍和準確度提升的方法,以應對不斷變化的能源管理挑戰。 | zh_TW |
| dc.description.abstract | The severity of global climate change has highlighted the importance of energy consumption in buildings, which accounts for 40% of the global total. New technologies such as machine learning are crucial for predicting and controlling building energy consumption. Short-term forecasting systems are essential for reducing energy consumption peaks. Taiwan has set clear goals for load forecasting and achieving net-zero carbon emissions in buildings, driven by policies to ensure that by 2050, 100% of new buildings and over 85% of existing ones will be nearly zero-energy buildings. However, further advancements in relevant technologies and management strategies are needed.
This study aims to optimize the accuracy and metrics of machine learning models through feature engineering and machine learning methods. It analyzes campus electricity consumption data, considering different climate change scenarios to enhance school policies and building environments. Additionally, the study expects to integrate optimal contract capacity and load forecasting to provide users with suitable contract capacity recommendations, thereby achieving efficient electricity planning. The research process involves data collection, model construction, and experimental design using Python frameworks. It preprocesses and selects features from meteorological and building historical data to ensure model accuracy and applicability. By optimizing machine learning models, including algorithm adjustments, training database sizes, and hyperparameters, the study improves prediction accuracy and various metrics. The analysis confirms the superiority of Long Short-Term Memory (LSTM) networks in accuracy, achieving a Mean Absolute Percentage Error (MAPE) of 4.26% in short-term predictions. Long-term forecasting effectiveness is further examined using Shapley Additive Explanations (SHAP) values, identifying critical factors such as trends from a day ago and a week ado prior, campus day categorization, day of year, and solar radiation intensity. Furthermore, the study explores the application of the campus building energy consumption model in climate change scenarios and optimal contract capacity analysis. In high-emission scenarios Shared Socioeconomic Pathways(SSP) 5-8.5, energy consumption increases significantly, projecting a rise of 18% to 52% in campus building energy consumption from 2028 to 2100. Future efforts in building design and policy-making should adopt proactive measures such as installing energy-efficient equipment and promoting smart building management systems. The Particle Swarm Optimization (PSO) contract capacity optimization analysis demonstrates potential savings of 18.1% (approximately 260,000 NT dollars) in electricity costs by reducing original contract capacity from 650 NT dollars per kW to 504 NT dollars per kW. This underscores the practicality and benefits of the campus building energy consumption model established in this study. Overall, this research contributes a comprehensive framework for building energy management that integrates load forecasting, climate change considerations, and optimal contract capacity. It provides crucial reference and decision support for schools and relevant institutions. Future research directions include expanding the model's application scope and enhancing accuracy to address evolving energy management challenges. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:37:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-27T16:37:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iv 圖次 ix 表次 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 1.3 研究流程與架構 6 第二章 文獻回顧 9 2.1 用電預測需求 9 2.2 資料前處理及特徵選擇方法 10 2.3 機器學習及深度學習方法 13 2.4 臺大用電現況及相關節電挑戰 16 2.5 氣候變遷對建築能耗影響 17 2.6 高壓用戶電費結構介紹 20 2.6.1 契約容量 21 2.6.2 基本電費 21 2.6.3 流動電費 22 2.6.4 超約用電費 22 2.6.5 功率因數調整費 23 2.6.6 線路補助費 23 第三章 研究方法 25 3.1 電力負載預測 25 3.1.1 數據收集 27 3.1.2 數據前處理 28 3.1.3 特徵選擇工程 29 3.1.4 機器學習方法進行預測 35 3.1.5 深度學習方法進行預測 37 3.1.6 區間預測重要性 39 3.1.7 Shapley Additive Explanations(SHAP) 方法 41 3.2 設定不同模型情境 42 3.2.1 不同演算法 42 3.2.2 調整超參數 42 3.2.3 不同訓練庫-測試庫比例 43 3.2.4 使用注意力機制與基準模型比較 44 3.2.5 預測模型表現 44 3.3 氣候變遷情境模型應用 46 3.3.1 數據收集 46 3.3.2 氣候變遷情境設定 47 3.4 契約容量最佳化 49 3.4.1 粒子群演算法簡介 49 3.4.2 粒子群演算法模式及公式 50 3.4.3 應用粒子群演算法於契約容量之最佳化 51 3.4.4 粒子群演算法求解流程 53 第四章 研究結果與討論 55 4.1 電力負載預測 55 4.1.1 數據集描述 55 4.1.2 特徵工程和選擇結果 56 4.1.3 不同模型情境預測結果和討論 58 4.1.4 電力負載預測小結與討論 79 4.2 氣候變遷情境預測結果和討論 81 4.2.1 特徵重要性分析(feature importance) 82 4.2.2 未來全年能耗之變化趨勢 83 4.3 契約容量最佳化情境結果比較 87 第五章 結論和未來展望 91 5.1 結論 91 5.2 未來研究限制與建議 93 第六章 參考文獻 95 附錄 101 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 特徵工程 | zh_TW |
| dc.subject | 粒子群優化 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 能源消耗預測 | zh_TW |
| dc.subject | 校園建築 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | Energy Consumption Prediction | en |
| dc.subject | Campus Building | en |
| dc.subject | Feature Engineering | en |
| dc.subject | Machine Learning | en |
| dc.subject | Particle Swarm Optimization | en |
| dc.subject | Climate Change | en |
| dc.title | 應用機器學習於校園建築能耗預測及契約容量最佳化 | zh_TW |
| dc.title | Applying Machine Learning to Campus Building Energy Consumption Prediction and Contract Capacity Optimization | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張源修;周瑞生 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Hsiou Chang;Jui-Sheng Chou | en |
| dc.subject.keyword | 機器學習,特徵工程,校園建築,能源消耗預測,氣候變遷,粒子群優化, | zh_TW |
| dc.subject.keyword | Machine Learning,Feature Engineering,Campus Building,Energy Consumption Prediction,Climate Change,Particle Swarm Optimization, | en |
| dc.relation.page | 115 | - |
| dc.identifier.doi | 10.6342/NTU202401248 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-09-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2029-09-02 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 此日期後於網路公開 2029-09-02 | 7.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
