Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97194
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張書瑋zh_TW
dc.contributor.advisorShu-Wei Changen
dc.contributor.author周語涵zh_TW
dc.contributor.authorYu-Han JHouen
dc.date.accessioned2025-02-27T16:37:15Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-17-
dc.identifier.citation[1] Yukiko Hirabayashi, Haireti Alifu, Dai Yamazaki, Yukiko Imada, Hideo Shiogama, and Yuki Kimura. Anthropogenic climate change has changed frequency of past flood during 2010-2013. Progress in Earth and Planetary Science, 8(1):1–9, December 2021. Publisher: SpringerOpen.
[2] Luca Delle Monache, F. Anthony Eckel, Daran L. Rife, Badrinath Nagarajan, and Keith Searight. Probabilistic Weather Prediction with an Analog Ensemble. Monthly Weather Review, 141(10):3498–3516, October 2013. Publisher: American Meteorological Society.
[3] Pascal Horton. AtmoSwing: Analog Technique Model for Statistical Weather forecasting and downscaling (v2.1.0). Geoscientific Model Development, 12(7):2915–2940, July 2019. Publisher: Copernicus GmbH.
[4] Ashesh Chattopadhyay, Ebrahim Nabizadeh, and Pedram Hassanzadeh. Analog forecasting of extreme-causing weather patterns using deep learning, July 2019.
[5] Liuyi Chen, Bocheng Han, Xuesong Wang, Jiazhen Zhao, Wenke Yang, and Zhengyi Yang. Machine Learning Methods in Weather and Climate Applications: A Survey. Applied Sciences, 13(21):12019, January 2023. Publisher: Multidisciplinary Digital Publishing Institute.
[6] Maria J. Molina, Travis A. O'Brien, Gemma Anderson, Moetasim Ashfaq, Katrina E. Bennett, William D. Collins, Katherine Dagon, Juan M. Restrepo, and Paul A. Ullrich. A Review of Recent and Emerging Machine Learning Applications for Climate Variability and Weather Phenomena. September 2023.
[7] Catherine O. de Burgh-Day and Tennessee Leeuwenburg. Machine learning for numerical weather and climate modelling: a review. Geoscientific Model Development, 16(22):6433–6477, November 2023. Publisher: Copernicus GmbH.
[8] Bogdan Bochenek and Zbigniew Ustrnul. Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere, 13(2):180, February 2022. Publisher: Multidisciplinary Digital Publishing Institute.
[9] Amy McGovern, Ryan Lagerquist, David John Gagne, G. Eli Jergensen, Kimberly L. Elmore, Cameron R. Homeyer, and Travis Smith. Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning. November 2019.
[10] Leonardo Olivetti and Gabriele Messori. Advances and prospects of deep learning for medium-range extreme weather forecasting. Geoscientific Model Development, 17(6):2347–2358, March 2024. Publisher: Copernicus GmbH.
[11] Kevin J. Gutzwiller and Kimberly M. Serno. Using the risk of spatial extrapolation by machine-learning models to assess the reliability of model predictions for conservation. Landscape Ecology, 38(6):1363–1372, June 2023.
[12] Peter A. G. Watson. Machine learning applications for weather and climate need greater focus on extremes, September 2022. arXiv:2207.07390.
[13] Xiaoli Ren, Xiaoyong Li, Kaijun Ren, Junqiang Song, Zichen Xu, Kefeng Deng, and Xiang Wang. Deep Learning-Based Weather Prediction: A Survey. Big Data Research, 23:100178, February 2021.
[14] Weiming Hu, Guido Cervone, George Young, and Luca Delle Monache. Machine Learning Weather Analogs for Near-Surface Variables. Boundary-Layer Meteorology, 186(3):711–735, March 2023.
[15] Kimberly L. Elmore and Michael B. Richman. Euclidean Distance as a Similarity Metric for Principal Component Analysis. Monthly Weather Review, 129(3):540–549, March 2001. Publisher: American Meteorological Society.
[16] Baiquan Zhou and Panmao Zhai. A New Forecast Model Based on the Analog Method for Persistent Extreme Precipitation. Weather and Forecasting, 31(4):1325–1341, August 2016. Publisher: American Meteorological Society.
[17] Peter Hoffmann, Jascha Lehmann, Bijan Fallah, and Fred F. Hattermann. Atmosphere similarity patterns in boreal summer show an increase of persistent weather conditions connected to hydro-climatic risks. Scientific Reports, 11(1):22893, November 2021. Publisher: Nature Publishing Group.
[18] Weiming Hu, Guido Cervone, George Young, and Luca Delle Monache. Weather Analogs with a Machine Learning Similarity Metric for Renewable Resource Forecasting, March 2021. arXiv:2103.04530.
[19] Sebastian Hoffmann and Christian Lessig. AtmoDist: Self-supervised Representation Learning for Atmospheric Dynamics, August 2022. arXiv:2202.01897.
[20] C. Matulla, X. Zhang, X. L. Wang, J. Wang, E. Zorita, S. Wagner, and H. von Storch. Influence of similarity measures on the performance of the analog method for downscaling daily precipitation. Climate Dynamics, 30(2):133–144, February 2008. Publisher: Springer-Verlag.
[21] L. Panziera, U. Germann, M. Gabella, and P. V. Mandapaka. NORA – Nowcasting of Orographic Rainfall by means of Analogues. Quarterly Journal of the Royal Meteorological Society, 137(661):2106–2123, 2011. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qj.878.
[22] Vimal Mishra, Francina Dominguez, and Dennis Lettenmaier. Urban precipitation extremes: How reliable are regional climate models? Geophysical Research Letters, 39:3407, February 2012.
[23] Michael D. Warner, Clifford F. Mass, and Eric P. Salathé. Wintertime Extreme Precipitation Events along the Pacific Northwest Coast: Climatology and Synoptic Evolution. Monthly Weather Review, 140(7):2021–2043, July 2012. Publisher: American Meteorological Society.
[24] Paul Gregory, Frederic Vitart, Rabi Rivett, Andrew Brown, and Yuriy Kuleshov. Subseasonal Forecasts of Tropical Cyclones in the Southern Hemisphere Using a Dynamical Multimodel Ensemble. Weather and Forecasting, 35(5):1817–1829, October 2020. Publisher: American Meteorological Society.
[25] David A. Lavers and Gabriele Villarini. The nexus between atmospheric rivers and extreme precipitation across Europe.
[26] Shih-Yu Wang, Jin-Ho Yoon, Robert R. Gillies, and Changrae Cho. What Caused the Winter Drought in Western Nepal during Recent Years? November 2013. Section: Journal of Climate.
[27] Hongyu Chen, Tim Li, and Jing Cui. The Reexamination of the Moisture–Vortex and Baroclinic Instabilities in the South Asian Monsoon. Atmosphere, 15(2):147, January 2024.
[28] Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie. Contribution of Cross-Barrier Moisture Transport to Precipitation in the Upper Indus River Basin. Monthly Weather Review, 148(7):2801–2818, July 2020. Publisher: American Meteorological Society.
[29] Ashesh Chattopadhyay, Pedram Hassanzadeh, and Saba Pasha. Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data. Scientific Reports, 10(1):1317, January 2020. Publisher: Nature Publishing Group.
[30] Peter D. Dueben and Peter Bauer. Challenges and design choices for global weather and climate models based on machine learning. Geoscientific Model Development, 11(10):3999–4009, October 2018. Publisher: Copernicus GmbH.
[31] Nigel M. Roberts and Humphrey W. Lean. Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. January 2008. Section: Monthly Weather Review.
[32] Quantitative precipitation forecasting in the UK. Journal of Hydrology, 239(1-4):286–305, December 2000. Publisher: Elsevier.
[33] H. M. Van Den Dool. Searching for analogues, how long must we wait? Tellus A, 46(3):314–324, 1994. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1600-0870.1994.t01-2-00006.x.
[34] S. Radanovics, J.-P. Vidal, E. Sauquet, A. Ben Daoud, and G. Bontron. Optimising predictor domains for spatially coherent precipitation downscaling. Hydrology and Earth System Sciences, 17(10):4189–4208, October 2013. Publisher: Copernicus GmbH.
[35] Charles Obled, Guillaume Bontron, and Rémy Garçon. Quantitative precipitation forecasts: a statistical adaptation of model outputs through an analogues sorting approach. Atmospheric Research, 63(3):303–324, August 2002.
[36] Thomas M. Hamill and Jeffrey S. Whitaker. Probabilistic Quantitative Precipitation Forecasts Based on Reforecast Analogs: Theory and Application. November 2006. Section: Monthly Weather Review.
[37] Renaud Marty, Isabella Zin, Charles Obled, Guillaume Bontron, and Abdelatif Djerboua. Toward Real-Time Daily PQPF by an Analog Sorting Approach: Application to Flash-Flood Catchments. March 2012. Section: Journal of Applied Meteorology and Climatology.
[38] Luca Delle Monache, Thomas Nipen, Yubao Liu, Gregory Roux, and Roland Stull. Kalman Filter and Analog Schemes to Postprocess Numerical Weather Predictions. Monthly Weather Review, 139(11):3554–3570, November 2011. Publisher: American Meteorological Society.
[39] Aiguo Dai. Precipitation Characteristics in Eighteen Coupled Climate Models. September 2006. Section: Journal of Climate.
[40] K. E. Trenberth and C. J. Guillemot. Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dynamics, 14(3):213–231, March 1998.
[41] Yong Zhu and Reginald E. Newell. A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers. March 1998. Section: Monthly Weather Review.
[42] Luis Gimeno, Francina Dominguez, Raquel Nieto, Ricardo Trigo, Anita Drumond, Chris J. C. Reason, Andréa S. Taschetto, Alexandre M. Ramos, Ramesh Kumar, and José Marengo. Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(Volume 41, 2016):117–141, October 2016. Publisher: Annual Reviews.
[43] Aurélien Ben Daoud, Eric Sauquet, Guillaume Bontron, Charles Obled, and Michel Lang. Daily quantitative precipitation forecasts based on the analogue method: Improvements and application to a French large river basin. Atmospheric Research, 169:147–159, March 2016. ADS Bibcode: 2016AtmRe.169..147B.
[44] Mari R. Jones, Stephen Blenkinsop, Hayley J. Fowler, and Christopher G. Kilsby. Objective classification of extreme rainfall regions for the UK and updated estimates of trends in regional extreme rainfall. International Journal of Climatology, 34(3):751–765, 2014. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/joc.3720.
[45] C. Berndt and U. Haberlandt. Spatial interpolation of climate variables in Northern Germany—Influence of temporal resolution and network density. Journal of Hydrology: Regional Studies, 15:184–202, February 2018.
[46] Ronald B. Smith. The Influence of Mountains on the Atmosphere. In Barry Saltzman, editor, Advances in Geophysics, volume 21, pages 87–230. Elsevier, January 1979.
[47] Brian J. Hoskins and Kevin I. Hodges. New Perspectives on the Northern Hemisphere Winter Storm Tracks. March 2002. Section: Journal of the Atmospheric Sciences.
[48] Clifford F. Mass, Mark Albright, David Ovens, Richard Steed, Mark Maciver, Eric Grimit, Tony Eckel, Brian Lamb, Joseph Vaughan, Kenneth Westrick, Pascal Storck, Brad Colman, Chris Hill, Naydene Maykut, Mike Gilroy, Sue A. Ferguson, Joseph Yetter, John M. Sierchio, Clint Bowman, Richard Stender, Robert Wilson, and William Brown. Regional Environmental Prediction Over the Pacific Northwest. October 2003. Section: Bulletin of the American Meteorological Society.
[49] Luca Delle Monache, Joshua P. Hacker, Yongmei Zhou, Xingxiu Deng, and Roland B. Stull. Probabilistic aspects of meteorological and ozone regional ensemble forecasts. Journal of Geophysical Research: Atmospheres, 111(D24), 2006. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2005JD006917.
[50] Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. Euclidean Distance Matrices: Essential theory, algorithms, and applications. IEEE Signal Processing Magazine, 32(6):12–30, January 2015.
[51] Christina Görner, Johannes Franke, Rico Kronenberg, and Olaf Hellmuth. Multivariate non-parametric Euclidean distance model for hourly disaggregation of daily climate data. Theoretical and Applied Climatology, 143, January 2021.
[52] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the Surprising Behavior of Distance Metrics in High Dimensional Space. In Jan Van den Bussche and Victor Vianu, editors, Database Theory—ICDT 2001, pages 420–434, Berlin, Heidelberg, 2001. Springer.
[53] Zihao Chen. Study on Evaporation Duct Model A Considering Turbulence Based on Cosine Similarity. In 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), volume 10, pages 2538–2541, June 2022. ISSN: 2693-2865.
[54] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, April 2004.
[55] Allison H. Baker, Alexander Pinard, and Dorit M. Hammerling. On a Structural Similarity Index Approach for Floating-Point Data. IEEE Transactions on Visualization and Computer Graphics, pages 1–13, 2023.
[56] Glenn W. Brier. Verification of Forecasts Expressed in Terms of Probability. January 1950. Section: Monthly Weather Review.
[57] Statistical Methods in the Atmospheric Sciences. May 2011.
[58] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
[59] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important Features Through Propagating Activation Differences. In Proceedings of the 34th International Conference on Machine Learning, pages 3145–3153. PMLR, July 2017. ISSN: 2640-3498.
[60] Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee. Consistent Individualized Feature Attribution for Tree Ensembles, March 2019. arXiv:1802.03888.
[61] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks, November 2013. arXiv:1311.2901.
[62] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better understanding of gradient-based attribution methods for Deep Neural Networks, March 2018. arXiv:1711.06104.
[63] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction. In Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys ’17, pages 297–305, New York, NY, USA, August 2017. Association for Computing Machinery.
[64] Benjamin A. Toms, Elizabeth A. Barnes, and Imme Ebert-Uphoff. Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability. Journal of Advances in Modeling Earth Systems, 12(9):e2019MS002002, 2020. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS002002.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97194-
dc.description.abstract極端降水事件對防災減災構成重大挑戰,使得準確的預測更為重要。而天氣類比法利用歷史大氣模式尋找相似的過去事件,提供了一種具有物理一致性且經驗證的方法,在極端降水的預測中已被證明有效。然而,傳統的天氣類比方法在處理複雜的大氣狀態時,往往難以有效捕捉局部特徵與非線性關係。因此,本研究提出基於 AtmoDist 的機器學習方法,用於評估大氣相似性並提升降水事件的預測能力。

為了提高模型對局部特徵的敏感度,我們引入了空間加權處理與兩階段天氣類比技術,並將 AtmoDist 與傳統方法進行系統比較。此外,利用可解釋人工智慧 (XAI) 技術深入分析模型的決策過程,以揭示重要特徵與影響因素。

研究結果顯示,不同相似性計算方法對大氣變數的表現存在差異,反映變數特定評估的必要性。AtmoDist 模型在降水預測上優於傳統方法,尤其對局部降水事件的預測能力經空間加權後明顯提升。同時,結果也指出模型準確度未必能充分代表其預測能力,需進一步關注特徵重要性分析。透過 DeepSHAP 評估發現,AtmoDist 對具有高時空變異性的大氣變數表現出更強的關注。

本研究為改善降水預測模型提供了新的視角,並說明可解釋技術對理解模型行為和提升可信度的重要性。此外,結果凸顯機器學習方法在捕捉非線性特徵與空間變異性方面的優勢,為未來替代傳統方法提供了潛在應用價值。
zh_TW
dc.description.abstractExtreme precipitation events pose significant challenges for disaster prevention and mitigation, making accurate forecasting essential. Weather analog methods leverage historical atmospheric patterns to identify similar past events, offering a physically consistent and empirically validated approach that has proven effective in predicting extreme precipitation. However, traditional weather analog methods often struggle to effectively capture localized features and nonlinear relationships in complex atmospheric states. To address these challenges, this study proposes a machine learning-based approach using AtmoDist to assess atmospheric similarity and improve precipitation event prediction.

To enhance sensitivity to localized features, we incorporated spatial weighting techniques and a two-stage weather analog framework, systematically comparing AtmoDist with conventional methods. Furthermore, we applied explainable artificial intelligence (XAI) techniques to analyze the model's decision-making process, providing insights into key features and influencing factors.

Our findings reveal that different similarity metrics yield varying performances across atmospheric variables, highlighting the need for variable-specific assessments. The AtmoDist model outperforms traditional approaches in precipitation forecasting, particularly for localized precipitation events, with notable improvements after spatial weighting adjustments. However, results also suggest that accuracy alone may not fully capture predictive performance, emphasizing the importance of feature importance analysis. Using DeepSHAP, we observed that AtmoDist places greater emphasis on atmospheric variables with high spatiotemporal variability.

This study offers a new perspective on improving precipitation forecasting models and underscores the role of explainable techniques in enhancing model interpretability and reliability. Moreover, the results demonstrate the advantages of machine learning methods in capturing nonlinear patterns and spatial variability, highlighting their potential as viable alternatives to traditional approaches.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:37:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:37:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Table of Contents ix
List of Figures xiii
List of Tables xvii
Chapter 1 Introduction 1
1.1 Background and Motivation ........................ 1
1.2 Literature Review ................................. 5
1.2.1 Machine Learning-based Weather Analog Ensemble Methods ... 5
1.2.2 Similarity Metrics for Atmospheric Applications .......... 8
1.2.3 Downscaling for Enhanced Localized Climate Projections ... 12
1.3 Research Objectives .............................. 16
1.4 Dissertation Structure ........................... 17
Chapter 2 Data 19
2.1 ERA5 (ECMWF Reanalysis v5) ...................... 19
2.1.1 Feature Selection ...................................... 20
2.1.2 Exploratory Data Analysis .............................. 23
2.2 Met Office Rain Radar Data from the NIMROD System ....... 33
2.3 Extreme Precipitation Events ............................ 36
Chapter 3 Methods 39
3.1 Framework of Two-Phase Weather Analog Method ............ 39
3.2 Traditional Methods for Real-Space Similarity Calculation ... 44
3.2.1 Weighting for Similarity Calculation ............... 44
3.2.1.1 Formula-Driven Weight Calculation for Atmospheric Data ... 45
3.2.1.2 Analysis of Weight Calculations for Spatiotemporal and Variable Components ... 48
3.2.2 Comprehensive Similarity Calculation Formula for Weather Event Analogs ... 52
3.2.2.1 Different Types of Similarity Metrics ......... 53
3.2.2.2 Similarity Calculation Formula for Weather Events ... 58
3.3 Machine Learning Approaches for Similarity Estimation .... 60
3.3.1 Reconstructed Model Structure .................... 63
3.3.2 Data Processing and Feature Analysis ............. 65
3.3.3 Model Performance ............................... 70
3.4 Framework and Metrics for Assessing Method Performance ... 74
3.4.1 Phase I: Evaluation Methods for the Capability of Different Similarity Metrics in Precipitation Event Search ... 75
3.4.1.1 Methodology for Evaluating Similarity Metrics Across Variables in a Single Event ... 76
3.4.1.2 Evaluation Methodology for Similarity Search Results Across 157 Precipitation Events .................. 79
3.4.1.3 Computational Approach for Binned Spread Skill Assessment Using Different Similarity Metrics ... 80
3.4.1.4 Brier Score and Brier Skill Score Computation ... 83
3.4.2 Phase II: Evaluation Methods for Localized Precipitation Forecast Results ... 86
3.4.3 Methods for Explaining the Intrinsic Performance of Models Using DeepSHAP ... 88
3.4.3.1 Theoretical Foundation of DeepSHAP .......... 88
3.4.3.2 Processing Flow of DeepSHAP ............... 90
Chapter 4 Results and Discussion 95
4.1 Phase I: Comparison of Weather Event Similarity Calculation and Prediction ... 95
4.1.1 Sum of Squared Differences Analysis of Calculation Results for a Single Event ... 96
4.1.2 Sum of Squared Differences Analysis of Prediction Results for 157 Precipitation Events ... 100
4.1.3 Spread Skill Evaluation of Models and Methods ... 103
4.1.4 Brier Skill Score Evaluation ............... 107
4.2 Phase II: Localized Precipitation Forecasting ........... 111
4.3 Explaining Prediction Results Using DeepSHAP ........... 116
Chapter 5 Conclusion and Outlook 123
5.1 Conclusion .......................................... 123
5.2 Future Work and Outlook ............................. 125
References 129
Appendix A — 157 Extreme Precipitation Events 143
A.1 Complete List of Precipitation Events .................. 143
Appendix B — Model Optimization Process and Accuracy Comparison 153
B.1 Model Architectures ................................... 153
B.2 Different Data Preprocessing Methods .................. 155
B.3 Effect of Temporal Resolution ......................... 156
Appendix C — Evaluation of Different Weather Analog Methods 160
C.1 Single-Event SSR Evaluation Across Variables for Multiple Methods 160
-
dc.language.isoen-
dc.subject大氣相似性zh_TW
dc.subject極端降水預測zh_TW
dc.subject天氣類比法zh_TW
dc.subject機器學習zh_TW
dc.subjectAtmospheric Similarityen
dc.subjectMachine Learningen
dc.subjectWeather Analog Methoden
dc.subjectExtreme Precipitation Predictionen
dc.title探索基於機器學習之天氣類比法於預測極端降水事件之應用zh_TW
dc.titleDevelopment of A Machine Learning-Based Weather Analog Method for Predicting Extreme Precipitation Eventsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee汪立本;周佳靚zh_TW
dc.contributor.oralexamcommitteeLi-Pen Wang;Chia-Ching Chouen
dc.subject.keyword機器學習,天氣類比法,極端降水預測,大氣相似性,zh_TW
dc.subject.keywordMachine Learning,Weather Analog Method,Extreme Precipitation Prediction,Atmospheric Similarity,en
dc.relation.page163-
dc.identifier.doi10.6342/NTU202500712-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-17-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-02-28-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf18 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved