Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97188
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張書瑋zh_TW
dc.contributor.advisorShu-Wei Changen
dc.contributor.author李昶毅zh_TW
dc.contributor.authorChang-Yi Leeen
dc.date.accessioned2025-02-27T16:35:38Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-13-
dc.identifier.citation1. Shirole, A. and R. Holt, Planning for a comprehensive bridge safety assurance program. Transportation Research Record, 1991. 1290(3950): p. 39-50.
2. Dudunake, T.J., R.J. Huizinga, and R.L. Fosness, Bridge scour countermeasure assessments at select bridges in the United States, 2016–18. 2019, US Geological Survey.
3. Hong, J.-H., et al., Houfeng Bridge Failure in Taiwan. Journal of Hydraulic Engineering, 2012. 138(2): p. 186-198.
4. Prendergast, L.J. and K. Gavin, A review of bridge scour monitoring techniques. Journal of Rock Mechanics and Geotechnical Engineering, 2014. 6(2): p. 138-149.
5. LeCun, Y. and Y. Bengio, Convolutional networks for images, speech, and time series, in The handbook of brain theory and neural networks. 1998, Cambridge, MA: MIT Press: Arbib MA, ed. p. 255–258.
6. Hamill, L., Bridge hydraulics. 1998: CRC Press.
7. Melville, B., Bridge Scour. Vol. 112. 2000: Water Resources Publications.
8. Wang, C., X. Yu, and F. Liang, A review of bridge scour: mechanism, estimation, monitoring and countermeasures. Natural Hazards, 2017. 87: p. 1881-1906.
9. Brandimarte, L., P. Paron, and G. Di Baldassarre, Bridge pier scour: A review of processes, measurements and estimates. Environmental Engineering and Management Journal, 2012. 11(5): p. 975-989.
10. Hayden Jesse, T. and A. Puleo Jack, Near Real-Time Scour Monitoring System: Application to Indian River Inlet, Delaware. Journal of Hydraulic Engineering, 2011. 137(9): p. 1037-1046.
11. ANDERSON, N.L., A.M. ISMAEL, and T. THITIMAKORN, Ground-Penetrating Radar: A Tool for Monitoring Bridge Scour. Environmental & Engineering Geoscience, 2007. 13(1): p. 1-10.
12. Yu, X. and X. Yu, Assessment of an Automation Algorithm for TDR Bridge Scour Monitoring System. Advances in Structural Engineering, 2011. 14(1): p. 13-24.
13. Xiong, W., C. Cai, and X. Kong, Instrumentation design for bridge scour monitoring using fiber Bragg grating sensors. Applied optics, 2012. 51: p. 547-557.
14. Luhar, M., J. Rominger, and H. Nepf, Interaction between flow, transport and vegetation spatial structure. Environmental Fluid Mechanics, 2008. 8: p. 423-439.
15. Sauer, V.B. and D.P. Turnipseed, Stage measurement at gaging stations. 2010, US Geological Survey.
16. Foti, S. and D. Sabia, Influence of Foundation Scour on the Dynamic Response of an Existing Bridge. Journal of Bridge Engineering, 2011. 16(2): p. 295-304.
17. Huffman, J.T., et al., Detection of soil-abutment interaction by monitoring bridge response using vehicle excitation. Journal of Civil Structural Health Monitoring, 2015. 5(4): p. 389-395.
18. Worden, K. and J.M. Dulieu-Barton, An Overview of Intelligent Fault Detection in Systems and Structures. Structural Health Monitoring, 2004. 3(1): p. 85-98.
19. Structural Identification for Selection, Application, and Calibration of Physics-Based Models, in Structural Identification of Constructed Systems. p. 78-112.
20. Sohn, H., et al., Structural Health Monitoring Using Statistical Pattern Recognition Techniques. Journal of Dynamic Systems, Measurement, and Control, 2001. 123(4): p. 706-711.
21. Tibaduiza Burgos, D.A., et al., Damage Identification in Structural Health Monitoring: A Brief Review from its Implementation to the Use of Data-Driven Applications. Sensors, 2020. 20(3): p. 733.
22. Xu, Y., et al., Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images. Structural Health Monitoring, 2019. 18(3): p. 653-674.
23. Xu, Y., et al., Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer‐grade camera images. Structural Control and Health Monitoring, 2018. 25(2): p. e2075.
24. Yousefpour, N. and O. Correa, Towards an AI-based early warning system for bridge scour. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2023. 17(4): p. 713-739.
25. Abdeljaber, O., et al., 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data. Neurocomputing, 2018. 275: p. 1308-1317.
26. Dong, H., et al., A Prediction Model for Local Scour Depth around Piers Based on Machine Learning. IOP Conference Series: Earth and Environmental Science, 2020. 525(1): p. 012080.
27. Farrar, C.R. and K. Worden, An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007. 365(1851): p. 303-315.
28. Worden, K. and G. Manson, The application of machine learning to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007. 365(1851): p. 515-537.
29. Yuan, F.-G., et al., Machine learning for structural health monitoring: challenges and opportunities. Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2020, 2020. 11379: p. 1137903.
30. Azimi, M., A.D. Eslamlou, and G. Pekcan, Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review. Sensors, 2020. 20(10): p. 2778.
31. Khodabandehlou, H., G. Pekcan, and M.S. Fadali, Vibration‐based structural condition assessment using convolution neural networks. Structural Control and Health Monitoring, 2019. 26(2): p. e2308.
32. Salehi, H. and R. Burgueño, Emerging artificial intelligence methods in structural engineering. Engineering structures, 2018. 171: p. 170-189.
33. Mao, J., H. Wang, and B.F. Spencer Jr, Toward data anomaly detection for automated structural health monitoring: Exploiting generative adversarial nets and autoencoders. Structural Health Monitoring, 2021. 20(4): p. 1609-1626.
34. Kaelbling, L.P., M.L. Littman, and A.W. Moore, Reinforcement learning: A survey. Journal of artificial intelligence research, 1996. 4: p. 237-285.
35. Zhao, R., et al., Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 2019. 115: p. 213-237.
36. Cha, Y.J., et al., Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types. Computer‐Aided Civil and Infrastructure Engineering, 2018. 33(9): p. 731-747.
37. Mosalam, K., S. Muin, and Y. Gao, NEW DIRECTIONS IN STRUCTURAL HEALTH MONITORING. NED University Journal of Research, 2019.
38. Yeum, C.M., S.J. Dyke, and J. Ramirez, Visual data classification in post-event building reconnaissance. Engineering Structures, 2018. 155: p. 16-24.
39. Xu, Y., et al., Automatic seismic damage identification of reinforced concrete columns from images by a region‐based deep convolutional neural network. Structural Control and Health Monitoring, 2019. 26(3): p. e2313.
40. Tokognon, C.A., et al., Structural health monitoring framework based on Internet of Things: A survey. IEEE Internet of Things Journal, 2017. 4(3): p. 619-635.
41. Abdelgawad, A. and K. Yelamarthi, Internet of things (IoT) platform for structure health monitoring. Wireless Communications and Mobile Computing, 2017. 2017(1): p. 6560797.
42. Peng, Z., et al., Smart structural health monitoring using computer vision and edge computing. Engineering Structures, 2024. 319: p. 118809.
43. Poincaré, H., Oeuvres de Henri Poincaré. Vol. 1. 1916: Gauthier-Villars et cie.
44. Poincaré, H., Mémoire sur les courbes définies par une équation différentielle. Journal de mathématiques pures et appliquées, 1881. 7: p. 375-422.
45. Lorenz, E.N., Deterministic nonperiodic flow. Journal of atmospheric sciences, 1963. 20(2): p. 130-141.
46. Haken, H., Analogy between higher instabilities in fluids and lasers. Physics Letters A, 1975. 53(1): p. 77-78.
47. Knobloch, E., Chaos in the segmented disc dynamo. Physics Letters A, 1981. 82(9): p. 439-440.
48. Takens, F., Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, Warwick 1980, D. Rand and L.-S. Young, Editors. 1981, Springer Berlin, Germany. p. 366-381.
49. 李昶毅, 張書瑋, and 黃仲偉, 結合吸引子重建與機器學習在結構健康診斷之應用. 三聯技術, 2021(121): p. 26-33.
50. Sugihara, G., et al., Detecting causality in complex ecosystems. science, 2012. 338(6106): p. 496-500.
51. Hsieh, C.-h., et al., Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature, 2005. 435(7040): p. 336-340.
52. Tsonis, A. and J. Elsner, Nonlinear prediction as a way of distinguishing chaos from random fractal sequences. Nature, 1992. 358(6383): p. 217-220.
53. Vybiral, T. and J. Skinner. The point correlation dimension of RR intervals predicts sudden cardiac death among high-risk patients. in Proceedings of Computers in Cardiology Conference. 1993. IEEE.
54. Avena-Koenigsberger, A., B. Misic, and O. Sporns, Communication dynamics in complex brain networks. Nature reviews neuroscience, 2018. 19(1): p. 17-33.
55. Janjarasjitt, S., H. Ocak, and K. Loparo, Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal. Journal of Sound and Vibration, 2008. 317(1-2): p. 112-126.
56. Peters, E.E., Fractal market analysis: applying chaos theory to investment and economics. Vol. 24. 1994: John Wiley & Sons.
57. Olson, C.C., L.A. Overbey, and M. Todd. A comparison of state-space attractor features in structural health monitoring. in Proceedings of the 23rd International Modal Analysis Conference (IMAC XXIII). 2005. Orlando, FL.
58. Overbey, L., C. Olson, and M. Todd, A parametric investigation of state-space-based prediction error methods with stochastic excitation for structural health monitoring. Smart Materials and Structures, 2007. 16: p. 1621.
59. Kantz, H. and T. Schreiber, Nonlinear time series analysis. 2003: Cambridge university press.
60. Grassberger, P., Grassberger-Procaccia algorithm. Scholarpedia, 2007. 2(5): p. 3043.
61. Kennel, M.B., R. Brown, and H.D.I. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 1992. 45(6): p. 3403-3411.
62. Monro, G. and J. Pressing, Sound visualization using embedding: The art and science of auditory autocorrelation. Computer Music Journal, 1998. 22(2): p. 20-34.
63. Fraser, A.M. and H.L. Swinney, Independent coordinates for strange attractors from mutual information. Physical Review A, 1986. 33(2): p. 1134-1140.
64. Pan, S. and K. Duraisamy, On the structure of time-delay embedding in linear models of non-linear dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020. 30(7).
65. Deshmukh, V., et al., Using curvature to select the time lag for delay reconstruction. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020. 30(6).
66. 李昶毅, et al., 結合相空間吸引子與深度學習於橋梁沖刷深度預測之應用. 結構工程, 2024. 39(1): p. 27-49.
67. Prendergast, L.J. and K. Gavin, A comparison of initial stiffness formulations for small-strain soil–pile dynamic Winkler modelling. Soil Dynamics and Earthquake Engineering, 2016. 81: p. 27-41.
68. Ministry of Transportation and Communications (MOTC), Performance-based seismic design specification for highway bridges 2016.
69. JRA, Design Specifications of Highway Bridges. 1996, JRA Tokyo.
70. SAP 2000. 2023, Computers and Strucutres Inc.
71. He, L.-G., et al., Seismic assessments for scoured bridges with pile foundations. Engineering Structures, 2020. 211: p. 110454.
72. Chen, Y.-L., et al., High-Dimensional Phase Space Reconstruction with a Convolutional Neural Network for Structural Health Monitoring. Sensors, 2021. 21(10): p. 3514.
73. Cellucci, C.J., A.M. Albano, and P.E. Rapp, Statistical validation of mutual information calculations: Comparison of alternative numerical algorithms. Physical Review E, 2005. 71(6): p. 066208.
74. Léger, J.-C., Menger curvature and rectifiability. Annals of mathematics, 1999. 149(3): p. 831-869.
75. Chopra, A.K., Dynamics of structures. 4th ed. Theory and Applications to Earthquake Engineering. 2014: Pearson Education Limited: Edinburgh Gate, Harlow, Essex CM20 2JE, England.
76. Chollet and F. Keras. 2015; Available from: https://keras.io.
77. Abadi, M., et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. 2016 March 16, 2016 [cited 2021 06 09]; Available from: https://doi.org/10.48550/arXiv.1603.04467.
78. Brincker, R., L. Zhang, and P. Andersen, Modal identification of output only systems using Frequency Domain Decomposition. Smart Materials and Structures, 2001. 10: p. 441.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97188-
dc.description.abstract近年來,氣候變遷使得沖刷的議題愈顯重要,增加跨河橋梁遭受基礎沖刷的頻率。為確保橋梁安全,本研究開發一種結合相空間吸引子與卷積神經網路的數據驅動方法,以即時監測與預測橋梁基礎沖刷深度。在相空間吸引子的重建中,本研究透過時間延遲法重構相空間吸引子,以提取橋梁結構在不同沖刷狀態下的動態特徵;而在沖刷深度的預測中,則利用卷積神經網路自提取特徵的優勢,將前述動態特徵以灰階影像圖的方式進行分類與判讀。
本研究先使用時間延遲法,利用相空間吸引子的概念描述沖刷橋梁的動態特徵,基於Takens嵌入定理將單顆速度或加速度計的歷時訊號重構沖刷橋梁的高維吸引子。其次,將重建的高維吸引子轉換成二維灰階影像,利用卷積神經網路識別以獲得沖刷深度。在時間延遲法中,本研究配合適當參數,將感測器收集到的速度與加速度時間序列轉換為吸引子矩陣,並生成灰階影像圖作為卷積神經網路模型的輸入。模型訓練過程中,本研究探討了不同感測器位置(橋柱頂部、中部、底部)對沖刷深度預測的影響,並比較平均交互資訊與Menger曲率法在吸引子矩陣中,延遲參數選取上的適用性。
本研究的測試結果驗證了將動態系統理論與深度學習技術應用於橋梁沖刷監測的可行性,測試結果也同時表明,在沖刷深度較淺時,本研究提出的深度學習方法可比傳統基於振動頻率改變量迴歸公式的方法更準確的預測沖刷深度。
zh_TW
dc.description.abstractIn recent years, climate change has made the issue of scour increasingly significant, raising the frequency of the foundation scour affecting cross-river bridges. To ensure the safety of bridge, this study develops a data-driven method that integrates phase space attractors and convolutional neural networks (CNNs) for real-time monitoring and prediction of scour depths of bridge foundations. In the reconstruction of phase space attractors, this study employs the time delay method, extracting the dynamic features of bridge structures under different scour conditions. For scour depth prediction, CNNs are utilized for their ability to automatically extract features, classifying and interpreting the previously extracted dynamic features through grayscale images.
Firstly, this study applies the time delay method, leveraging the concept of phase space attractors to describe the dynamic characteristics of scoured bridges. Based on Takens’ embedding theorem, the time history signals from a single velocity or acceleration sensor are reconstructed into a high-dimensional attractor which represents scoured bridges. Then, the reconstructed high-dimensional attractor is transformed into a two-dimensional grayscale image, subsequently analyzed using CNNs to determine the scour depth. In the time delay method, appropriate parameters are selected to convert the velocity and acceleration time series collected by sensors into attractor matrices, which are then used to generate grayscale images as inputs for the CNN model. During model training, this study examines the impact of different sensor placements (top, middle, and bottom of the bridge pier) on scour depth prediction and compares the applicability of Average Mutual Information (AMI) and Menger Curvature methods in selecting delay parameters for attractor matrices.
The results validate the feasibility of applying dynamical system theory and deep learning techniques to bridge scour monitoring. The tests also demonstrate that for the cases when the scour is not severe, the proposed deep learning method achieves more accurate scour depth predictions than conventional vibration-based methods relying on the regression of modal frequency changes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:35:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:35:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 i
Abstract iii
目次 v
圖目次 viii
表目次 xiv
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究架構 2
第二章 文獻回顧 3
2.1 結構沖刷與監測方法 3
2.2 機器學習方法於結構健康檢測的應用 8
2.3 吸引子重建與時間延遲法 11
2.3.1 相空間吸引子與重建 12
2.3.2 吸引子矩陣中不同參數的選擇 15
第三章 理論與方法 18
3.1 模型設計 18
3.1.1 有限元素模型 18
3.1.2 土壤與結構互制效應-Winkler模型 20
3.2 Takens嵌入定理 21
3.2.1 理論介紹 21
3.2.2 延遲參數τ選取-平均相互資訊法 23
3.2.3 延遲參數τ選取-Menger曲率法 25
3.2.4 維度參數d選取-非近鄰演算法 26
3.3 傳統模態識別方法 (SSI) 26
3.3.1 有限元素模態分析 26
3.3.2 利用頻率變化預估沖刷深度 27
3.4 灰階影像圖生成與圖像資料集 27
3.5 卷積神經網路(CNN)模型設置與資料集分類 29
第四章 不同時間延遲下之相空間吸引子 33
4.1 速度時間序列分析 33
4.1.1 τ的選取:平均交互資訊(AMI)分析 33
4.1.2 τ的選取:平均Menger曲率(Curvature)分析 47
4.1.3 不同延遲下的流形特徵:以底部為例 61
4.2 加速度時間序列分析 64
4.2.1 τ的選取:平均交互資訊(AMI)分析 64
4.2.2 τ的選取:平均Menger曲率(Curvature)分析 80
4.2.3 不同延遲下的流形特徵:以底部為例 92
第五章 沖刷深度預測模型分析 95
5.1 速度序列,不同位置的CNN模型表現 95
5.2 加速度序列,不同位置的CNN模型表現 100
5.3 傳統模態識別方法分析結果 105
第六章 結論及未來展望 111
6.1 結論 111
6.2 未來展望 112
參考文獻 113
-
dc.language.isozh_TW-
dc.subject吸引子zh_TW
dc.subject嵌入定理zh_TW
dc.subject橋梁沖刷zh_TW
dc.subject卷積神經網路zh_TW
dc.subject深度學習zh_TW
dc.subjectAttractoren
dc.subjectBridge Scouren
dc.subjectDeep Learningen
dc.subjectEmbedding Theoremen
dc.subjectConvolutional Neural Networken
dc.title結合不同延遲之相空間吸引子與深度學習應用於沖刷深度預測zh_TW
dc.titleBridge Scour Depth Prediction Using Phase Space Attractor with Different Delays and Deep Learningen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.coadvisor黃仲偉zh_TW
dc.contributor.coadvisorChang-Wei Huangen
dc.contributor.oralexamcommittee黃尹男;張家銘zh_TW
dc.contributor.oralexamcommitteeYin-Nan Huang;Chia-Ming Changen
dc.subject.keyword橋梁沖刷,深度學習,嵌入定理,卷積神經網路,吸引子,zh_TW
dc.subject.keywordBridge Scour,Deep Learning,Embedding Theorem,Convolutional Neural Network,Attractor,en
dc.relation.page118-
dc.identifier.doi10.6342/NTU202500643-
dc.rights.note未授權-
dc.date.accepted2025-02-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
12.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved