Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9717
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorLi-Guo Lien
dc.contributor.author李立國zh_TW
dc.date.accessioned2021-05-20T20:37:18Z-
dc.date.available2008-08-05
dc.date.available2021-05-20T20:37:18Z-
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-26
dc.identifier.citationReferences
[1] M. Fleischmann, P. J. Hendra, A. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
[2] C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 107, 7426-7433 (2003).
[3] W. I. Park, D. H. Kim, S.-W. Jung, and Gyu-Chul Yi, Appl. Phys. Lett. 80, 4232 (2002).
[4] Y. D. Wang, S. J. Chua, S. Tripathy, M. S. Sander, P. Chen, and C. G. Fonstad, Appl. Phys. Lett. 86, 071917 (2005).
[5] T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne J. Phys. Chem. B, 104, 10549 (2000).
[6] T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 19 (1998).
[7] N. Del Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, and A. Nakamura Chem. Phys. 251, 215 (2000).
[8] F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc. 100, 411 (1953).
[9] G. D. Bengough, J. M. Stuart, Brit. Patent 223,994 (1923).
10. M. M. Lohrengel, Mater. Sci. Eng. R11, 243 (1993).
[11] S. Setoh and A. Miyata, Sci Pap. Inst. Phys. Chem. Res. of Tokyo, 189 (1932).
[12] Feiyue Li, Lan Zhang, and Robert M. Metzger Chem. Mater. 10, 2470 (1998).
[13] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, J. Appl. Phys. 84, 6023 (1998).
[14] Sunil Kumar Thamida and Hsueh-Chia Chang, CHAOS, 12, 1, 1054 (2002).
[15] G. E. Thompson, Thin solid films, 297, 192 (1997).
[16] O. Jessensky, F. Muller, and U. Gosele, App. Phys. Lett. 72, 1173 (1998).
[17] D. Li, C. Jiang, X. Ren, M. Long, J. Jiang, Mater. Lett. 62, 3228 (2008).
[18] Keller, F.; Hunter, M. S.; Robinson, D. L. J. Electrochem. Soc. 100, 411 (1953).
[19] Thompson, G. E.; Wood, G. C. Anodic Films on Aluminium. In Treatise on Materials Science and Technology, Vol. 23: Corrosion: Aqueous Process and Passive Films; Scully, J. C., Ed.; Academic Press Inc.: New York, 1983; Chapter 5, pp 205-329.
[20] Nagayama, M.; Tamura, K. Electrochim. Acta, 13, 1773 (1968).
[21] V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys. 25, 258, (1992).
[22] Uwe Kreibig and Michael Vollmer, Optical Properties of Metal Clusters, (Springer, 1995).
[23] Sefan A. Maier Plasmonics: Fundamentals and Applications (Springer, 2007).
[24] S. Link and M. S. El-sayed, Int. Rev. Phys. Chem, 19, 3, 409 (2000).
[25] A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, J. Appl. Phys. 81, 6332 (1997).
[26] F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
[27] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, Appl. Phys. Lett. 71, 2770 (1997).
[28] S. A. Maier, M. L. Brongersma, G. P. Kik, and H. A. Atwater, Phys. Rev. B, 65, 193408 (2002a).
[29] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, and I. Akasaki, Appl. Phys. Lett. 73, 1691 (1998).
[30] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, and S. P. DenBaars, Appl. Phys. Lett. 73, 2006 (1998).
[31] T. Wang, D. Nakagawa, M. Lachab, T. Sugahara, and S. Sakai, Appl. Phys. Lett. 74, 3128 (1999).
[32] E. Berkowicz, D. Gershoni, G. Bahir, E. Lakin, D. Shilo, E. Zolotoyabko, A. C. Abare, S. P. Denbaars, and L. A. Coldren, Phys. Rev. B 61, 10994 (2000).
[33] M. E. Aumer, S. F. LeBoeuf, B. F. Moody, and S. M. Bedair, Appl. Phys. Lett. 79, 3803 (2001).
[34] P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K.H. Ploog, Nature 406, 865 (2000).
[45] A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstic, V. 46. J. J. Huang, T. Y. Tang, C. F. Huang, and C.C. Yang, J. Crystal Growth 310, 2712 (2004).
[47] K. P. Kim, K. S. Lee, T. W. Kim, D. H. Woo, J. H. Kim, J. H. Seo, Y. K. Kim, Thin Solid Films, 516 2633 (2008).
[48] K. Kim, J. Choi, T. Bae, M. Jung, and D. H. Woo, Jpn. J. Appl. Phys. 46 6682 (2007).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9717-
dc.description.abstract在本研究中,我們將在氮化鎵基板上或是氮化銦鎵/氮化鎵量子井結構上的鋁層氧化,從而製備陽極氧化鋁。利用這個技術,我們可以製作具有奈米孔洞陣列結構的氧化鋁層當作遮罩。我們以這種遮罩在氮化鎵或是氮化銦鎵/氮化鎵量子井結構上沉積奈米金屬顆粒陣列來研究表面電漿子的特性,或是利用它來對氮化銦鎵/氮化鎵量子井做乾式蝕刻來得到奈米孔洞陣列,以釋放量子井中的應力。
我們的第一個研究是探討氮化鎵材料上,銀和金的的奈米金屬顆粒陣列的表面電漿子特性。我們可以改變陽極氧化鋁的製程參數來調整奈米洞的直徑和間距,所以我們可以控制金屬點的大小和密度。我們觀察到表面電漿子的吸收頻譜,因此獲知不同顆粒大小和密度下,奈米金屬陣列的表面電漿子共振頻率。
第二個研究是關於在氮化銦鎵/氮化鎵量子井結構上製作出奈米孔洞陣列所產生的應力釋放現象。利用陽極氧化鋁,我們在高銦原子含量的氮化銦鎵/氮化鎵量子井結構上製作出奈米孔洞,使得應力可以有效的釋放,並因此而增強其發光強度和降低量子侷限史塔克效應。藉由在量子井上製作大小60奈米,密度每平方公分4.71 x 109 並且深度只有幾奈米的孔洞,我們可以增加內部量子效應三倍左右,量子侷限史塔克效應也可以大約降低2.5倍,若此量子井發光波段在綠光範圍,則其波長會藍移將近15奈米。藉由這種方法,我們有機會經由降低高銦濃度量子井的應力,做出藍移後和其同樣波長的低銦濃度量子井相較,內部量子效率較高,量子侷限史塔克效應較低的結構。
zh_TW
dc.description.abstractIn this research, we fabricate anodic alumina oxide (AAO) on GaN and InGaN/GaN quantum well (QW) structure. With the AAO technique, we can fabricate a thin aluminum oxide film with nano-pore array on the nitride structure, which is used as a mask to deposit metal nano-particle arrays on to study the surface plasmon (SP) characteristics, or to release the strain in the QW. Our first study is about the SP characteristics of a silver or gold nano-particle array on GaN template. We change the AAO process condition to control the hole diameter and interpore distance such that we can vary the particle size and density of the metal nano-particle array. We observe the SP absorption spectra and its resonance frequencies of different particle sizes and densities.
The second study is about the strain relaxation phenomenon by fabricating nano-hole array patterns with the AAO technique on an InGaN/GaN QW structure. The effective strain relaxation, leading to the significant enhancement of emission efficiency and reduction of quantum-confined Stark effect (QCSE), in a high-indium InGaN/GaN QW structure via nano-pore fabrication on the sample surface with the anodic aluminum oxide technique is demonstrated. By generating nano-pores of 60 nm in size, 4.71 x 109 cm-2 in pore density, and a depth several nm above the QW, the internal quantum efficiency (IQE) can be increased by about three times and the QCSE is reduced by 2.5 times while the emission spectrum is blue-shifted by 14 nm in the green range. With this approach, it is possible to achieve a higher IQE and a smaller QCSE by relaxing the built-in strain of a higher-indium QW structure and blue-shifting its emission, when compared with a lower-indium sample of the same emission spectrum as the blue-shifted one.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:37:18Z (GMT). No. of bitstreams: 1
ntu-97-R95941026-1.pdf: 8100495 bytes, checksum: 9fe7df602a74824fd656d49db46ede0a (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
中文摘要……………………………………………………………….i
Abstract………………………………………………………………iii
Contents…………………………………………………………….....v
Chapter 1
Introduction
1.1 Review of Anodic Alumina Oxide technique……..........1
1.1.1 Introduction of anodic aluminum oxide...............................1
1.1.2 Film types of anodic aluminum oxide.................................2
1.1.3 Stages of pore formation......................................................3
1.1.4 Fabrication mechanism of anodic aluminum oxide.............5
1.2 Crystal Structure of Nitride…………………………......8
1.2.1 Research Background..........................................................8
1.2.2 Introduction of metal clusters..............................................9
1.2.3 Dielectric function of large metal clusters.........................10
1.2.4 Localized surface plasmon of metal nano-particles...........12
1.3 Strain in InGaN/GaN Quantum Wells………………16
1.3.1 Strain effect........................................................................16
1.3.2 Polarization and strain-induced piezoelectric field............17
1.4 Thesis Organization……...........………………….…...19
Chapter 2
Fabrication of Metal Nano-particles and Surface Plasmon Characteristics
2.1 Fabrication of AAO and Metal Nano-particles on GaN Substrate...............................................…………........32
2.2 Surface Plasmon Characteristics of Nano-particles on GaN Substrate....................................................…35
2.3 Discussions and Summary.............................................40
Chapter 3
Strain Release of InGaN/GaN Quantum Wells through Nano-hole Fabrication
3.1 Introduction……………………………………………58
3.2 Fabrication of nano-holes array on InGaN/GaN quantum wells…...........................................................................60
3.3 Optical properties ..............................…………………62
3.4 Summary……………....................................................66
Chapter 4
Conclusion
.............................................................................................74
References
.............................................................................................76
dc.language.isoen
dc.title以陽極氧化鋁技術於氮化銦鎵/氮化鎵量子井上製作奈米孔洞以釋放應變及產生表面電漿子奈米金屬顆粒之製備zh_TW
dc.titleStrain Release of InGaN/GaN Quantum Wells through Nano-hole Fabrication and Formation of Metal Particles for Surface Plasmon Study with the Anodic Aluminum Oxide Techniqueen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉(Yean-Woei Kiang),張宏鈞(Hung-Chun Chang),吳育任(Yuh-Renn Wu)
dc.subject.keyword表面電漿子,陽極氧化鋁,應變釋放,zh_TW
dc.subject.keywordsurface plasmon,AAO,strain release,en
dc.relation.page79
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf7.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved