Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97177
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹益齊zh_TW
dc.contributor.advisorI-Chi Chanen
dc.contributor.author林業凱zh_TW
dc.contributor.authorYeh-Kai Linen
dc.date.accessioned2025-02-27T16:32:42Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-14-
dc.identifier.citationCebada-Relea, A. J., López, M., & Aenlle, M. (2022). Time-domain numerical modelling of the connector forces in a modular pontoon floating breakwater under regular and irregular oblique waves. Ocean Engineering, 243, 110263.
張振緯. (2021). 波浪通過泥質底床上之水面結構物的理論分析. 國立臺灣大學土木工程學系學位論文, 2021, 1-131.
Shamsnia, S. H., Soltanpour, M., Bavandpour, M., & Gualtieri, C. (2019). A study of wave dissipation rate and particles velocity in muddy beds. Geosciences, 9(5), 212.
Dai, J., Wang, C. M., Utsunomiya, T., & Duan, W. (2018). Review of recent research and developments on floating breakwaters. Ocean Engineering, 158, 132-151.
Soltanpour, M., Shamsnia, S. H., Shibayama, T., & Nakamura, R. (2018). A study on mud particle velocities and mass transport in wave-current-mud interaction. Applied Ocean Research, 78, 267-280.
Hejazi, K., Soltanpour, M., & Sami, S. (2013). Numerical modeling of wave–mud interaction using projection method. Ocean Dynamics, 63, 1093-1111.
Hsu, W. Y., Hwung, H. H., Hsu, T. J., Torres‐Freyermuth, A., & Yang, R. Y. (2013). An experimental and numerical investigation on wave‐mud interactions. Journal of Geophysical Research: Oceans, 118(3), 1126-1141.
Niu, X., & Yu, X. (2011). A numerical model for wave propagation over muddy slope. Coastal Engineering Proceedings, (32), 27-27.
Diamantoulaki, I., & Angelides, D. C. (2010). Analysis of performance of hinged floating breakwaters. Engineering Structures, 32(8), 2407-2423.
Zhang, D. H., & Ng, C. O. (2006). A numerical study on wave-mud interaction. 中國海洋工程 (英文版).
Ng, C. O. (2000). Water waves over a muddy bed: a two-layer Stokes' boundary layer model. Coastal engineering, 40(3), 221-242.
Williams, A. N., & Abul-Azm, A. G. (1997). Dual pontoon floating breakwater. Ocean Engineering, 24(5), 465-478.
Sakakiyama, T., & Byker, E. W. (1989). Mass transport velocity in mud layer due to progressive waves. Journal of waterway, port, coastal, and ocean engineering, 115(5), 614-633.
Hsiao, S. V., & Shemdin, O. H. (1980). Interaction of ocean waves with a soft bottom. Journal of Physical Oceanography, 10(4), 605-610.
Macpherson, H. (1980). The attenuation of water waves over a non-rigid bed. Journal of Fluid Mechanics, 97(4), 721-742.
Dalrymple, R. A., & Liu, P. L. (1978). Waves over soft muds: a two-layer fluid model. Journal of Physical Oceanography, 8(6), 1121-1131.
Noble, H. M. (1976, May). Use of wave-maze flexible floating breakwater to protect offshore structures and landings. In Offshore Technology Conference (pp. OTC-2542). OTC.
Noble, H. M. (1969, December). Wave-maze, floating breakwater. In Civil Engineering in Oceans Conf Proceedings (2nd).
Kamel, A. M., & Davidson, D. D. (1968). Hydraulic characteristics of mobile breakwaters composed of tires or spheres. TR H-68-2.
Newman, J. N. (1965). Propagation of water waves over an infinite step. Journal of Fluid Mechanics, 23(2), 399-415.
Stitt, R. L., & Nobel, H. M. (1963). Introducing Wave-Maze Floating Breakwater. unnumbered report, Temple City, California.
Dean, R. G., & Ursell, F. (1959). Interaction of a fixed, semi-immersed circular cylinder with a train of surface waves (Vol. 37). Massachusetts Institute of Technology, Hydrodynamics Laboratory.
Gade, H. G. (1958). Effects of a nonrigid, impermeable bottom on plane surface waves in shallow water. Journal of Marine Research , 16, 61-82.
Macagno, E. O. (1953). Fluid mechanics: experimental study of the effects of the passage of a wave beneath an obstacle. Proceedings of the Academic des Sciences.
Ursell, F. (1947, July). The effect of a fixed vertical barrier on surface waves in deep water. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 43, No. 3, pp. 374-382). Cambridge University Press.
Dean, W. R. (1945, November). On the reflexion of surface waves by a submerged plane barrier. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 41, No. 3, pp. 231-238). Cambridge University Press.
Joly, J. (1905). On floating breakwaters. With 2 plates. The Scientific proceedings of the Royal Dublin Society, Vol. X, pp. 378-383.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97177-
dc.description.abstract浮式防波堤的應用領域十分廣泛,浮式防波堤能保護港口、 風力發電機組、 養殖區等,域創造平靜的水域,保護其免受強烈海浪和風暴的損害。對於浮式平台的解析研究、,大將平平台方簡化為一 固定底床、, 化單黏性牛頓流體。本文平以解析解的簡式,考慮水波通過 具有黏彈性底泥的水面障礙物。
本文假設黏彈性底泥屬邊界層厚度等級,平黏彈性底床帶入動量簡程式,得出底泥與水域交界面的關係並作一水域的方邊界條件。再以特徵函數展開之簡式,求解水域的勢能函數,解決週期波通過 具黏彈性底床之水面障礙物時,水波 底泥及水面障礙物三者的相互關係。
在邊界層厚度等級的黏彈性底泥方,隨底泥的增厚,可以觀察到透射係數隨之增加,反射係數減少。但不論影響一何、,在邊界層厚度等級底泥的前提方,影響都不大。而彈性對水波的影響,當底泥的彈性越高,底泥對水波的衰弱效果越弱。但上述影響力大都僅侷限在水波一淺水波時有較明顯的影響,當水波一深水波時底泥的影響大幅方降。
zh_TW
dc.description.abstractThe applications for floating breakwaters are very extensive. Floating breakwaters can function as protection of ports, wind turbine installations, aquaculture areas, and other domains by creating an area with calm waters and protecting them from strong waves or storms. In the analytical study of floating platforms, the area beneath the platform is often simplified down to a fixed seabed or modeled as a simple viscous Newtonian fluid. This paper will provide an analytical solution considering the water waves passing through a surface obstacle with a viscoelastic seabed.
In this study, it is assumed that the magnitude of the viscoelastic seabed’s depth is within the realm of its boundary layer thickness. The viscoelastic seabed is incorporated into the momentum equation to derive the relationship between the seabed and the water area above it, which is used as the lower boundary condition for the upper water region. Then, using the eigenfunction expansion method, the potential function of the water region is solved, thus we’ll be able to address the three way interaction between water waves, seabed, and the surface obstacle when periodic waves pass through a water surface obstacle with a viscoelastic seabed beneath.
With a viscoelastic seabed of boundary layer thickness, as the thickness of the seabed increases, the transmission coefficient increases, and the reflection coefficient decreases. However, regardless of the thickness, under the assumption of a boundary layer thickness viscoelastic seabed, the effects are not significant. The effects of elasticity on water waves shows that the higher the elasticity of the seabed, the weaker the attenuation effect on the water waves. However, most of these effects are only noticeable when the passing water waves are shallow water waves, and when the passing water waves are deep water waves, the influence of the seabed significantly diminishes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:32:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:32:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 ............................................................. i
英文摘要 ............................................................ ii
目次 ................................................................ iv
圖次 ............................................................... vii
表次 ................................................................ ix
符號表 ............................................................... x
第 章、緒論 .......................................................... 1
1.1研究背景 ...................................................... 1
1.2文獻回顧 ...................................................... 3
1.2.1浮式防波堤 .............................................. 3
1.2.2波浪通過結構物 .......................................... 5
1.2.3波浪通過泥質底床 ........................................ 6
1.3研究目的與簡式 ............................................... 11
1.3.1研究目的 ............................................... 11
1.3.2研究簡式 ............................................... 11
1.4章節架構 ..................................................... 12
第二章、理論模型的建立與解析 ......................................... 13
2.1問題描述 ..................................................... 13
2.2控制簡程式 ................................................... 14
2.2.1水域之控制簡程式 ....................................... 14
2.2.2底泥之控制簡程式 ....................................... 15
2.3邊界條件 ..................................................... 16
2.3.1水域邊界條件 ........................................... 16
2.3.2底泥之邊界條件 ......................................... 17
2.4各水域連接之邊界條件 ......................................... 19
2.5水域之通解 ................................................... 20
2.6特徵值簡程式 ................................................. 22
2.6.1、I區和III區 𝑘 特徵值簡程式 ............................. 22
2.6.2、II區 𝜆 特徵值簡程式 .................................... 23
2.7特徵值簡程式求解 ............................................. 23
2.7.1、I區特徵值簡程式求解 ................................... 23
2.7.2、I區數值簡法求解 ....................................... 25
2.7.3、II區特徵值簡法求解 .................................... 25
2.8求解帶定係數 ................................................. 26
2.8.1勢能函數之待定係數 ..................................... 26
2.8.2連續積分等式 ........................................... 29
2.8.3矩陣求解待定係數 ....................................... 32
2.9結果分析 ..................................................... 35
第三章、成果分析 ..................................................... 38
3.1、模型參數 .................................................... 38
3.2、反射 透射系數分析 .......................................... 38
3.2、速度剖面分析 ................................................ 47
第四章、結論與未來展望 ............................................... 52
4.1結論 ......................................................... 52
4.2、未來展望與建議 .............................................. 53
參考文獻 ............................................................ 54
附錄A Matlab求解程式碼 .............................................. 57
附錄B 積分式推導過程 ............................................... 68
附錄C 口試委員提問 建議與修正 ..................................... 73
-
dc.language.isozh_TW-
dc.title黏彈性海床上波與結構物問題分析zh_TW
dc.titleAnalysis on wave-structure interaction above a viscoelastic seabeden
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee呂冠鴻;黃友麟zh_TW
dc.contributor.oralexamcommitteeGuan-Hung Lu;Yu-Lin Huangen
dc.subject.keyword解析解,週期波,特徵函數展開,水面結構物,黏彈性底泥,zh_TW
dc.subject.keywordanalytic solution,periodic wave,eigenfunction expansion,surface structure,viscoelastic seabed,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202500715-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-02-28-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf1.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved