請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97140
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳文中 | zh_TW |
dc.contributor.advisor | Wen-Jong Wu | en |
dc.contributor.author | 蔡宛庭 | zh_TW |
dc.contributor.author | Wan-Ting Tsai | en |
dc.date.accessioned | 2025-02-27T16:22:45Z | - |
dc.date.available | 2025-02-28 | - |
dc.date.copyright | 2025-02-27 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-11 | - |
dc.identifier.citation | [1] Y. Qiu et al., "Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging," Sensors, vol. 15, no. 4, pp. 8020-8041, 2015.
[2] K. Suzuki, K. Higuchi, and H. Tanigawa, "A silicon electrostatic ultrasonic transducer," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 36, no. 6, pp. 620-627, 1989. [3] A. Caronti et al., "Capacitive micromachined ultrasonic transducer (CMUT) arrays for medical imaging," Microelectronics Journal, vol. 37, no. 8, pp. 770-777, 2006. [4] Y. Huang et al., "Comparison of conventional and collapsed region operation of capacitive micromachined ultrasonic transducers," ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 10, pp. 1918-1933, 2006. [5] S. Horowitz, T. Nishida, L. Cattafesta, and M. Sheplak, "Development of a micromachined piezoelectric microphone for aeroacoustics applications," the journal of the acoustical society of America, vol. 122, no. 6, pp. 3428-3436, 2007. [6] G.-L. Luo, Y. Kusano, and D. A. Horsley, "Airborne piezoelectric micromachined ultrasonic transducers for long-range detection," journal of microelectromechanical systems, vol. 30, no. 1, pp. 81-89, 2020. [7] R. J. Przybyla, H.-Y. Tang, A. Guedes, S. E. Shelton, D. A. Horsley, and B. E. Boser, "3D ultrasonic rangefinder on a chip," IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 320-334, 2014. [8] S. Harput and A. Bozkurt, "Ultrasonic phased array device for acoustic imaging in air," IEEE sensors journal, vol. 8, no. 11, pp. 1755-1762, 2008. [9] A. Debray and J. Mouly, "Ultrasound Sensing Technologies 2020 Report," Yole Développement, 2020. [10] J. Curie and P. Curie, "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées," Bulletin de minéralogie, vol. 3, no. 4, pp. 90-93, 1880. [11] G. Lippmann, "Principe de la conservation de l’électricité (Principle of the conservation of electricity)," in Annales de chimie et de physique, 1881, vol. 24, p. 145. [12] N. Ma, B.-P. Zhang, W.-G. Yang, and D. Guo, "Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics," Journal of the European Ceramic Society, vol. 32, no. 5, pp. 1059-1066, 2012. [13] W. Voigt, Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik). BG Teubner, 1910. [14] 鄭泊瑜, "以壓電式微加工超聲波傳感器實現之空間距離感測系統," 碩士, 工程科學及海洋工程學系, 國立臺灣大學, 台北市, 2021. [15] B. Noheda et al., "Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr 0.52 Ti 0.48 O 3," Physical Review B, vol. 61, no. 13, pp. 8687-8695, 04/01/ 2000. [16] L. Znaidi, "Sol–gel-deposited ZnO thin films: A review," Materials Science and Engineering: B, vol. 174, no. 1-3, pp. 18-30, 2010. [17] L. L. Hench and J. K. West, "The sol-gel process," Chemical reviews, vol. 90, no. 1, pp. 33-72, 1990. [18] K. Tsuchiya, T. Kitagawa, and E. Nakamachi, "Development of RF magnetron sputtering method to fabricate PZT thin film actuator," Precision engineering, vol. 27, no. 3, pp. 258-264, 2003. [19] T. Morita, M. K. Kurosawa, and T. Higuchi, "A cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method (/spl phi/2.4 mm, L= 10 mm stator transducer)," IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 5, pp. 1178-1187, 1998. [20] T. Morita, "Piezoelectric materials synthesized by the hydrothermal method and their applications," Materials, vol. 3, no. 12, pp. 5236-5245, 2010. [21] W. J. Hyun, E. B. Secor, M. C. Hersam, C. D. Frisbie, and L. F. Francis, "High‐resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics," Advanced Materials, vol. 27, no. 1, pp. 109-115, 2015. [22] D. Corker, R. Whatmore, E. Ringgaard, and W. Wolny, "Liquid-phase sintering of PZT ceramics," Journal of the European Ceramic Society, vol. 20, no. 12, pp. 2039-2045, 2000. [23] J. Akedo, "Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices," Journal of Thermal Spray Technology, vol. 17, pp. 181-198, 2008. [24] X. M. Zhao, Y. Xia, and G. M. Whitesides, "Fabrication of three‐dimensional micro‐structures: Microtransfer molding," Advanced Materials, vol. 8, no. 10, pp. 837-840, 1996. [25] 郭昱均, "高效率壓電厚膜氣膠沉積製程設備之開發," 碩士, 國立臺灣大學工程科學及海洋工程學系學位論文, 國立臺灣大學, 台北市, 2021. [26] "IEEE Standard on Piezoelectricity," ANSI/IEEE Std 176-1987, 1988. [27] S. A. Prasad et al., "Analytical electroacoustic model of a piezoelectric composite circular plate," AIAA journal, vol. 44, no. 10, pp. 2311-2318, 2006. [28] M. Rossi, "Acoustics and electroacoustics," 1988. [29] J. Merhaut, Theory of electroacoustics. 1981. [30] S. B. Horowitz, A. D. Mathias, J. R. Fox, J. P. Cortes, M. Sanghadasa, and P. Ashley, "Effects of scaling and geometry on the performance of piezoelectric microphones," Sensors and Actuators A: Physical, vol. 185, pp. 24-32, 2012. [31] S. Woinowsky-Krieger and S. Timoshenko, Theory of plates and shells. McGraw-Hill New York, NY, USA, 1959. [32] P. M. Morse and K. U. Ingard, Theoretical acoustics. Princeton university press, 1986. [33] J. Benesty, Microphone array signal processing. Springer Verlag, 2008. [34] M. Brandstein and D. Ward, Microphone arrays: signal processing techniques and applications. Springer Science & Business Media, 2013. [35] S. U. Pillai, Array signal processing. Springer Science & Business Media, 2012. [36] K. K. Shung and M. Zippuro, "Ultrasonic transducers and arrays," IEEE Engineering in Medicine and Biology Magazine, vol. 15, no. 6, pp. 20-30, 1996. [37] S.-C. Lin and W.-J. Wu, "Piezoelectric micro energy harvesters based on stainless-steel substrates," Smart Materials and Structures, vol. 22, no. 4, p. 045016, 2013. [38] S.-C. Lin and W.-J. Wu, "Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method," Journal of Micromechanics and Microengineering, vol. 23, no. 12, p. 125028, 2013. [39] 林莛凱, "提升氣膠沉積法製作之鋯鈦酸鉛(PZT)微型壓電能量擷取器元件效能之研究與實作," 碩士, 工程科學及海洋工程學研究所, 國立臺灣大學, 台北市, 2017. [40] 余俊緯, "以壓電式微加工超音波傳感器相控陣列實現三維空間距離感測系統," 碩士, 工程科學及海洋工程學系, 國立臺灣大學, 台北市, 2023. [41] P. Muralt et al., "Piezoelectric micromachined ultrasonic transducers based on PZT thin films," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 12, pp. 2276-2288, 2005. [42] 陳昭廷, "高效能微型能量擷取器之研製與工作模態最佳化研究," 碩士, 工程科學及海洋工程學研究所, 國立臺灣大學, 台北市, 2016. [43] M. Serridge and T. R. Licht, "Piezoelectric accelerometers and vibration preamplifiers: theory and application handbook," 1987. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97140 | - |
dc.description.abstract | 隨著物聯網與工業4.0的發展,傳感器需求持續增長,微機電系統(MEMS)技術的成熟推動了壓電式微加工超音波感測器(PMUT)的廣泛應用。PMUT因其小型化、低功耗與高性能,廣泛應用於消費電子、車用電子、智慧工廠及醫療領域。相較傳統單體感測器,PMUT陣列具備更優異的性能,其可進行距離測量與三維空間掃描,適用於智慧工廠及先進駕駛輔助系統(ADAS)等應用。
本研究旨在開發壓電式微加工超音波感測器陣列,以實現指向性麥克風的功能。製程上採用不鏽鋼基板,結合微機電製程與氣膠沉積技術製作壓電感測器陣列元件,並與自行設計含有pogo pin的PCB板整合,取代傳統使用探針連接試片的方式,提升了系統的穩定性與實用性。 在性能量測中,當量測距離為30 cm,高音喇叭驅動電壓為12 Vpp時,感測器共振頻率為39.5 kHz。在聲壓位準94 dB的條件下,感測器輸出電壓為19.15 mV,背景雜訊為0.82 mV,對應的訊噪比為27.37 dB。並計算得出感測器平均靈敏度為 - 40.65 dBV,其推算之聲壓位準的相對誤差小於1.83%。在遠距離測量中,當高音喇叭以8-12 Vpp驅動且以訊噪比12 dB為閥值時,感測器的有效量測距離達1.5 m。此外,指向性量測顯示,感測器在水平與垂直方向上均呈現全指向性分佈。 在感測器陣列的應用中,基於測量結果,選取共振頻率相近的33至36號感測器組成一維線性均勻陣列,實現了指向性麥克風的功能,並進一步驗證了壓電感測器陣列結合波束形成技術在不同聲源角度下的方向估算能力。 | zh_TW |
dc.description.abstract | The rapid advancement of the Internet of Things (IoT) and Industry 4.0 has significantly increased the demand for sensors. The maturation of micro-electromechanical systems (MEMS) technology has enabled the widespread adoption of piezoelectric micromachined ultrasonic transducers (PMUTs). With their miniaturized design, low power consumption, and high performance, PMUTs have shown great potential in consumer electronics, automotive applications, smart manufacturing, and healthcare. Compared to conventional single-element sensors, PMUT arrays offer superior performance, supporting both precise distance measurement and three-dimensional spatial scanning. These attributes make PMUT arrays ideal for smart factories and advanced driver assistance systems (ADAS)
This study aims to develop a piezoelectric micromachined ultrasonic sensor array to realize directional microphone functionality. The fabrication process utilizes stainless steel substrates in conjunction with MEMS technology and aerosol deposition techniques to produce piezoelectric sensing elements. These elements are integrated with a custom-designed PCB board featuring pogo pins, replacing traditional probe-based sample connections. This design enhances both the stability and practicality of the system. In performance evaluations, the sensor demonstrated a resonance frequency of 39.5 kHz when tested at a distance of 30 cm with a tweeter driving voltage of 12 Vpp. Under a sound pressure level (SPL) of 94 dB, the sensor achieved an output voltage of 19.15 mV with background noise of 0.82 mV, resulting in a signal-to-noise ratio (SNR) of 27.37 dB. The average sensitivity of the sensor was calculated to be -40.65 dBV, and the relative error in SPL estimation was less than 1.83%. For long-range detection, the sensor achieved an effective measurement range of 1.5 m when the tweeter was driven at 8–12 Vpp and an SNR threshold of 12 dB was used. Additionally, directivity measurement revealed an omnidirectional distribution of the sensor’s performance in both horizontal and vertical orientations. For sensor array applications, measurement results identified sensors numbered 33 to 36, which exhibited closely matched resonance frequencies, as suitable candidates to form a one-dimensional linear uniform array. This array not only successfully achieved directional microphone functionality but also validated the piezoelectric sensor array’s ability to estimate directional angles using beamforming techniques across various sound source conditions. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:22:45Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-27T16:22:45Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iv ABSTRACT v 目次 vii 圖次 x 表次 xiv 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目的 6 1.4 論文架構 8 第二章 壓電理論 9 2.1 壓電材料起源 9 2.2 壓電效應 9 2.2.1 正壓電效應 11 2.2.2 逆壓電效應 12 2.3 壓電材料 12 2.3.1 壓電材料之種類 12 2.3.2 壓電材料之選擇 13 2.4 壓電膜製備技術 14 2.4.1 溶膠-凝膠法 15 2.4.2 濺鍍法 16 2.4.3 水熱合成法 17 2.4.4 網版/鋼版印刷法 18 2.4.5 氣膠沉積法 19 2.4.6 壓電膜製備技術比較 20 第三章 壓電式超音波感測器之理論 22 3.1 壓電式聲學感測器模型 22 3.2 聲學感測器性能指標 25 3.2.1 共振頻率 25 3.2.2 強度位準與聲壓位準 26 3.2.3 靈敏度 26 3.2.4 訊噪比 27 3.3 相位陣列與波束形成 27 3.3.1 相位陣列 28 3.3.2 波束形成 29 3.3.3 壓電感測器陣列指向性響應 29 第四章 壓電式超音波感測器陣列設計與製造 32 4.1 壓電式超音波感測器元件模擬 32 4.1.1 模型設計 32 4.1.2 運算求解與結果分析 34 4.1.3 壓電感測器元件陣列化設計 40 4.2 壓電式超音波感測器陣列製程與組裝 41 4.2.1 微機電製程 42 4.2.2 氣膠沉積製程 47 4.2.3 壓電元件退火 48 4.2.4 壓電元件極化 49 4.2.5 壓電感測器陣列元件組裝 51 第五章 實驗結果與討論 56 5.1 介面電路設計與量測 56 5.1.1 介面電路設計 56 5.1.2 介面電路增益推導與實際量測 60 5.2 壓電式超音波感測器陣列元件性能量測 64 5.2.1 量測系統架設 64 5.2.2 輸出性能分析 67 5.3 壓電式超音波感測器陣列元件指向性量測 73 5.3.1 量測系統架設 73 5.3.2 指向性表現分析 75 5.4 PMUT陣列之指向性麥克風與聲源角度偵測實現 77 5.4.1 PMUT陣列之指向性麥克風功能實現 78 5.4.2 PMUT陣列之聲源角度偵測實現 80 第六章 結論與未來展望 82 6.1 結論 82 6.2 未來展望 83 參考文獻 84 | - |
dc.language.iso | zh_TW | - |
dc.title | 以壓電式微加工超音波感測器陣列實現指向性麥克風系統 | zh_TW |
dc.title | Airborne Piezoelectric Micromachined Ultrasonic Sensor Array for Directional Microphone System | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 李世光;謝宗霖;王昭男 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Kung Lee;Tzong-Lin Jay Shieh;Chao-Nan Wang | en |
dc.subject.keyword | 壓電式微加工超音波感測器,壓電材料,氣膠沉積法,微機電製程,相位陣列, | zh_TW |
dc.subject.keyword | piezoelectric micromachined ultrasonic transducers (PMUT),piezoelectric materials,aerosol deposition,MEMS technology,phased array, | en |
dc.relation.page | 86 | - |
dc.identifier.doi | 10.6342/NTU202500621 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-02-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 9.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。