Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97139
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor簡韶逸zh_TW
dc.contributor.advisorShao-Yi Chienen
dc.contributor.author林秉誼zh_TW
dc.contributor.authorPin-Yi Linen
dc.date.accessioned2025-02-27T16:22:28Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-13-
dc.identifier.citation[1] Qualcomm, “Making immersive virtual reality possible in mobile,” https://www.qualcomm.com/content/dam/qcomm-martech/dmassets/documents/whitepaper-makingimmersivevirtualrealitypossibleinmobile.pdf, 2016. 1
[2] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 7244–7251. 3
[3] T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, “Review on convolutional neural networks (cnn) in vegetation remote sensing,” ISPRS journal of photogrammetry and remote sensing, vol. 173, pp. 24–49, 2021. 4
[4] G. W. Humphreys and J. Sui, “Attentional control and the self: The selfattention network (san),” Cognitive neuroscience, vol. 7, no. 1-4, pp. 5–17, 2016. 4
[5] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 3, pp. 611–625, 2017. 9, 15
[6] D. Nist´er, “An efficient solution to the five-point relative pose problem,” IEEE transactions on pattern analysis and machine intelligence, vol. 26, no. 6, pp. 756–770, 2004. 9
[7] R. I. Hartley, “In defense of the eight-point algorithm,” IEEE Transactions on pattern analysis and machine intelligence, vol. 19, no. 6, pp. 580–593, 1997. 9
[8] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981. 9
[9] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n) solution to the pnp problem,” International journal of computer vision, vol. 81, no. 2, pp. 155–166, 2009. 10
[10] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, 2007, pp. 225–234. 10
[11] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruction in real-time,” in 2011 IEEE intelligent vehicles symposium (IV). Ieee, 2011, pp. 963–968. 10
[12] R. Mur-Artal and J. D. Tard´os, “Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017. 10
[13] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative to sift or surf,” in Proceedings of IEEE International Conference on Computer Vision (ICCV). Ieee, 2011, pp. 2564–2571. 10
[14] C. S. Chen, “Bundle adjustment lecture slides.” [Online]. Available: https://sites.google.com/view/3dcv2021 11
[15] S.-i. Amari, “Backpropagation and stochastic gradient descent method,” Neurocomputing, vol. 5, no. 4-5, pp. 185–196, 1993. 12
[16] A. Ranganathan, “The levenberg-marquardt algorithm,” Tutoral on LM algorithm, vol. 11, no. 1, pp. 101–110, 2004. 12
[17] J. Engel, T. Sch¨ops, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,” in Proceedings of European Conference on Computer Vision (ECCV). Springer, 2014, pp. 834–849. 12
[18] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 3, pp. 611–625, 2018. 12
[19] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in 2007 6th IEEE and ACM international symposium on mixed and augmented reality. IEEE, 2007, pp. 225–234. 15
[20] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile and accurate monocular slam system,” IEEE transactions on robotics, vol. 31, no. 5, pp. 1147–1163, 2015. 15
[21] H. Jin, P. Favaro, and S. Soatto, “Real-time 3d motion and structure of point features: a front-end system for vision-based control and interaction,” in Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), vol. 2. IEEE, 2000, pp. 778–779. 15
[22] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense tracking and mapping in real-time,” in 2011 international conference on computer vision. IEEE, 2011, pp. 2320–2327. 15
[23] J. St¨uhmer, S. Gumhold, and D. Cremers, “Real-time dense geometry from a handheld camera,” in Joint Pattern Recognition Symposium. Springer, 2010, pp. 11–20. 15
[24] J. Engel, T. Sch¨ops, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,” in European conference on computer vision. Springer, 2014, pp. 834–849. 15
[25] A. Concha, M. Burri, J. Briales, C. Forster, and L. Oth, “Instant visual odometry initialization for mobile ar,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 11, pp. 4226–4235, 2021. 15
[26] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald, “Robust real-time visual odometry for dense rgb-d mapping,” in 2013 IEEE International Conference on Robotics and Automation. IEEE, 2013, pp. 5724–5731. 16
[27] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of rgb-d slam systems,” in Proc. of the International Conference on Intelligent Robot Systems (IROS), Oct. 2012. 25
[28] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000. 26, 28
[29] F. Steinbr¨ucker, J. Sturm, and D. Cremers, “Real-time visual odometry from dense rgb-d images,” in 2011 IEEE international conference on computer vision workshops (ICCV Workshops). IEEE, 2011, pp. 719–722. 28
[30] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Realtime dense surface mapping and tracking,” in 2011 10th IEEE international symposium on mixed and augmented reality. Ieee, 2011, pp. 127–136. 28
[31] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion: A fully integrated energy-efficient visual-inertial odometry accelerator for autonomous navigation of nano drones,” in 2018 IEEE symposium on VLSI circuits. IEEE, 2018, pp. 133–134. 49
[32] Z. Li, Y. Chen, L. Gong, L. Liu, D. Sylvester, D. Blaauw, and H.-S. Kim, “An 879gops 243mw 80fps vga fully visual cnn-slam processor for wide-range autonomous exploration,” in 2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 2019, pp. 134–136. 49
[33] I. Hong, G. Kim, Y. Kim, D. Kim, B.-G. Nam, and H.-J. Yoo, “A 27 mw reconfigurable marker-less logarithmic camera pose estimation engine for mobile augmented reality processor,” IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2513–2523, 2015. 49
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97139-
dc.description.abstract隨著移動設備的發展,尤其是增強現實(AR)和虛擬現實(VR)的應用,對能在這些設備的資源限制下運行的高效視覺里程計(VO)算法的需求日益增加。本文提出了一種記憶體高效的RGB-D視覺里程計(RGBD VO)解決方案,通過將算法優化與硬體協同設計相結合,實現減少了十倍的記憶體使用量。該方法在準確度與性能之間取得平衡,適用於資源受限平台上的實時應用。
  我們介紹了一種記憶體高效的RGBD VO算法,該算法消除了影像金字塔的需求,顯著降低了記憶體消耗。所提出的硬體架構將記憶體使用量優化了32.78%,將晶片面積縮小了12.25%,並將性能提升了1.68倍,相較於現有方法。基於台積電40nm技術的實現,在處理深度圖時,其數據處理量是傳統方法的近三倍。
  本文使用廣泛認可的RGB-D基準測試數據集對該方法進行了評估,結果表明,我們的方法在準確度上與傳統方法相當,甚至略優。通過結合基於特徵和基於直接法的優化技術,我們的方法在最小化記憶體使用的同時確保了姿態估算的高精度,儘管記憶體需求有所減少。
  這項工作為實時視覺里程計提供了一個高效的解決方案,特別適用於移動設備和AR/VR應用,這些應用中對記憶體和計算能力有較高的要求。該方法不僅滿足實時需求,還顯示出在下一代移動設備和沉浸式技術中的廣泛應用潛力。
zh_TW
dc.description.abstractThe growth of mobile devices, especially for augmented and virtual reality (AR/VR), has increased the need for efficient visual odometry (VO) algorithms that can operate within limited device resources. This thesis presents a memory-efficient RGB-D visual odometry (RGBD VO) solution that combines algorithmic optimization with hardware co-design, achieving a tenfold reduction in memory usage. The method balances accuracy and performance, making it ideal for real-time applications on resource-constrained platforms.

We introduce a memory-efficient RGBD VO algorithm that eliminates the need for image pyramids, significantly reducing memory usage. The proposed hardware architecture optimizes memory by 32.78%, reduces chip area by 12.25%, and improves performance by 1.68x compared to existing methods. Implemented using TSMC 40nm technology, it processes nearly three times the data, especially when handling depth maps, compared to conventional approaches.

The thesis evaluates the method using a widely recognized RGB-D benchmark dataset, showing that our approach achieves a comparable or slightly better accuracy than traditional methods. By combining feature-based and direct-based optimization techniques, our method minimizes memory usage while ensuring high accuracy in pose estimation, despite the reduced memory requirements.

This work provides an efficient solution for real-time visual odometry, especially for mobile and AR/VR applications, where memory and processing power are limited. The approach meets real-time requirements and demonstrates potential for use in next-generation mobile devices and immersive technologies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:22:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:22:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMaster’s Thesis Acceptance Certificate i
Acknowledgement iii
Chinese Abstract v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 Visual Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Rgbd Visual Odometry . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Related Work 9
2.1 Indirect Methods of Visual Odometry . . . . . . . . . . . . . . . 9
2.2 Direct-Based Methods of Visual Odometry . . . . . . . . . . . . 11
3 Methodology 15
3.1 Review of VO Algorithm . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Feature-Based oOptimization . . . . . . . . . . . . . . . . . . . . 16
3.3 Direct-Based Optimization . . . . . . . . . . . . . . . . . . . . . 19
3.4 Memory-Efficient Optimization . . . . . . . . . . . . . . . . . . 22
4 Experiments 25
4.1 Dataset and Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Accuracy of Proposed Algorithm . . . . . . . . . . . . . . . . . . 26
4.3 Iterations of Feature-based and Direct-based . . . . . . . . . . . . 29
5 Hardware Implementation 33
5.1 Hardware Overview . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Using the Previous σ for Direct-Based Methods . . . . . . . . . . 36
5.3 SRAM Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.1 Buffering Partial Destination Frame . . . . . . . . . . . . 38
5.3.2 Dual Mode Buffer . . . . . . . . . . . . . . . . . . . . . 43
5.4 Folding Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6 Hardware Analysis 45
6.1 Proposed Architecture Evaluation . . . . . . . . . . . . . . . . . 45
6.1.1 Performance Improvement by Using the Previous σ Value 46
6.1.2 Improvement in SRAM Usage . . . . . . . . . . . . . . . 46
6.1.3 Chip Area Reduction due to Folding Modules . . . . . . . 47
6.2 Chip Implementation Result . . . . . . . . . . . . . . . . . . . . 48
6.3 Comparison with competing designs . . . . . . . . . . . . . . . . 49
7 Conclusion 51
Reference 53
-
dc.language.isoen-
dc.subject樣式設計zh_TW
dc.subject插入zh_TW
dc.subject樣式zh_TW
dc.subject格式化zh_TW
dc.subject元件zh_TW
dc.subjectInserten
dc.subjectComponenten
dc.subjectFormattingen
dc.subjectStyleen
dc.subjectStylingen
dc.title針對移動設備之記憶體高效RGBD視覺里程計設計zh_TW
dc.titleMemory-Efficient RGBD Visual Odometry for Mobile Devicesen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee施吉昇;陳冠文;林淵翔zh_TW
dc.contributor.oralexamcommitteeChi-Sheng Shih;Kuan-Wen Chen;Yuan-Hsiang Linen
dc.subject.keyword元件,格式化,樣式,樣式設計,插入,zh_TW
dc.subject.keywordComponent,Formatting,Style,Styling,Insert,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202500673-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2025-02-28-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf14.44 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved