Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97131
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿廷zh_TW
dc.contributor.advisorYu-Ting Hsuen
dc.contributor.author吳文元zh_TW
dc.contributor.authorWen-Yuan Wuen
dc.date.accessioned2025-02-27T16:20:19Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-11-
dc.identifier.citationAbazari, S. R., Aghsami, A., & Rabbani, M. (2021). Prepositioning and distributing relief items in humanitarian logistics with uncertain parameters. Socio-Economic Planning Sciences, 74, 100933. https://doi.org/10.1016/j.seps.2020.100933
Apte, A. (2010). Humanitarian Logistics: A New Field of Research and Action. Foundations and Trends® in Technology, Information and Operations Management, 3(1), 1-100. https://doi.org/10.1561/0200000014
Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief. International Journal of Logistics Research and Applications, 11(2), 101-121. https://doi.org/10.1080/13675560701561789
Barbarosogu, G., & Arda, Y. (2004). A two-stage stochastic programming framework for transportation planning in disaster response. Journal of the Operational Research Society, 55, 43-53. https://doi.org/10.1057/palgrave.jors.2601652
Barreto, S., Ferreira, C., Paixão, J., & Santos, B. S. (2007). Using clustering analysis in a capacitated location-routing problem. European Journal of Operational Research, 179(3), 968-977. https://doi.org/10.1016/j.ejor.2005.06.074
Ben-Porat, O., & Tennenholtz, M. (2017). Shapley Facility Location Games. In Web and Internet Economics (pp. 58-73). Springer International Publishing. https://doi.org/10.1007/978-3-319-71924-5_5
Berkoune, D., Renaud, J., Rekik, M., & Ruiz, A. (2012). Transportation in disaster response operations. Socio-Economic Planning Sciences, 46(1), 23-32. https://doi.org/10.1016/j.seps.2011.05.002
Bouhafs, L., hajjam, A., & Koukam, A. (2006, 2006//). A Combination of Simulated Annealing and Ant Colony System for the Capacitated Location-Routing Problem. Knowledge-Based Intelligent Information and Engineering Systems, Berlin, Heidelberg.
Chan, Y., Carter, W. B., & Burnes, M. D. (2001). A multiple-depot, multiple-vehicle, location-routing problem with stochastically processed demands. Computers & Operations Research, 28(8), 803-826. https://doi.org/10.1016/S0305-0548(00)00009-5
Chang, J.-C. (1996). Natural hazards in Taiwan. GeoJournal, 38(3). https://doi.org/10.1007/bf00204716
Cheng, S. S. (2013). Crisis communication failure: A case study of typhoon Morakot. Asian Social Science, 9(3), 18. https://doi.org/10.5539/ass.v9n3p18
Chu, J. C., Yan, S., & Huang, H. (2017). A Multi-Trip Split-Delivery Vehicle Routing Problem with Time Windows for Inventory Replenishment Under Stochastic Travel Times. Networks and Spatial Economics, 17(1), 41-68. https://doi.org/10.1007/s11067-015-9317-3
Coppola, D. (2006). Introduction to international disaster management. Elsevier.
Coutaz, G. (2018). Chapter 4 Evolution of Disaster Risk Management in Taiwan. In (pp. 61-84). Emerald Publishing Limited. https://doi.org/10.1108/978-1-78743-093-820181005
CWA. (2024). Earthquake Information. https://scweb.cwa.gov.tw/zh-tw/earthquake/details/2024040307580972019
Derbel, H., Jarboui, B., Hanafi, S., & Chabchoub, H. (2012). Genetic algorithm with iterated local search for solving a location-routing problem. Expert Systems with Applications, 39(3), 2865-2871. https://doi.org/10.1016/j.eswa.2011.08.146
Eckstein, D., Künzel, V., & Schäfer, L. (2021). The global climate risk index 2021. Bonn: Germanwatch.
Edrissi, A., Poorzahedy, H., Nassiri, H., & Nourinejad, M. (2013). A multi-agent optimization formulation of earthquake disaster prevention and management. European Journal of Operational Research, 229(1), 261-275. https://doi.org/10.1016/j.ejor.2013.03.008
Fathalikhani, S., Hafezalkotob, A., & Soltani, R. (2018). Cooperation and coopetition among humanitarian organizations. Kybernetes, 47(8), 1642-1663. https://doi.org/10.1108/K-10-2017-0369
Fazel Zarandi, M. H., Hemmati, A., Davari, S., & Burhan Turksen, I. (2013). Capacitated location-routing problem with time windows under uncertainty. Knowledge-Based Systems, 37, 480-489. https://doi.org/10.1016/j.knosys.2012.09.007
Ghasemi, P., Goodarzian, F., Muñuzuri, J., & Abraham, A. (2022). A cooperative game theory approach for location-routing-inventory decisions in humanitarian relief chain incorporating stochastic planning. Applied Mathematical Modelling, 104, 750-781. https://doi.org/10.1016/j.apm.2021.12.023
Goemans, M. X., & Skutella, M. (2004). Cooperative facility location games. Journal of Algorithms, 50(2), 194-214. https://doi.org/10.1016/S0196-6774(03)00098-1
Gutjahr, W. J., & Fischer, S. (2018). Equity and deprivation costs in humanitarian logistics. European Journal of Operational Research, 270(1), 185-197. https://doi.org/10.1016/j.ejor.2018.03.019
Kovács, G., & Spens, K. M. (2007a). Humanitarian logistics in disaster relief operations. International Journal of Physical Distribution & Logistics Management, 37(2), 99-114. https://doi.org/10.1108/09600030710734820
Kovács, G., & Spens, K. M. (2007b). Humanitarian logistics in disaster relief operations. International Journal of Physical Distribution & Logistics Management, 37(2), 99-114. https://doi.org/10.1108/09600030710734820
Laporte, G., Nobert, Y., & Arpin, D. (1986). An exact algorithm for solving a capacitated location-routing problem. Annals of Operations Research, 6(9), 291-310. https://doi.org/10.1007/BF02023807
Le Cozannet, G., Kervyn, M., Russo, S., Ifejika Speranza, C., Ferrier, P., Foumelis, M., Lopez, T., & Modaressi, H. (2020). Space-Based Earth Observations for Disaster Risk Management. Surveys in Geophysics, 41. https://doi.org/10.1007/s10712-020-09586-5
Lu, Z.-C., Gu, Z.-M., & Hu, S.-H. (2013). A Model for Locating Urgent Relief Distribution Centers [A Model for Locating Urgent Relief Distribution Centers]. Journal of the Chinese Institute of Transportation, 25(1), 65-90. https://doi.org/10.6383/jcit.201303_25(1).0003
Mahmassani, H. S., & Peeta, S. (1993). Network performance under system optimal and user equilibrium dynamic assignments: implications for advanced traveler information systems. Transportation Research Record, 1408, 83.
Mallozzi, L. (2011). Cooperative games in facility location situations with regional fixed costs. Optimization Letters, 5(1), 173-181. https://doi.org/10.1007/s11590-010-0200-3
Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM (JACM), 7(4), 326-329.
Mohamed Shaluf, I. (2007). Disaster types. Disaster Prevention and Management: An International Journal, 16(5), 704-717. https://doi.org/10.1108/09653560710837019
MOTC. (2024). MOTC News Details. https://www.motc.gov.tw/ch/app/news_list/view?module=news&id=14&serno=e7d0c4b1-2436-4b23-a858-78d4266aab6a
Muggy, L. L. H. S., Jessica. (2014). Game theory applications in humanitarian operations: a review. Journal of Humanitarian Logistics and Supply Chain Management, 4(1), 4-23. https://doi.org/10.1108/JHLSCM-07-2013-0026
Nagurney, A., Flores, E. A., & Soylu, C. (2016). A Generalized Nash Equilibrium network model for post-disaster humanitarian relief. Transportation Research Part E: Logistics and Transportation Review, 95, 1-18. https://doi.org/10.1016/j.tre.2016.08.005
Nash Jr, J. F. (1950). Equilibrium points in n-person games. Proceedings of the national academy of sciences, 36(1), 48-49.
National Fire Agency, N. Ministry of the Interior Fire Administration Global Information Network of the Republic of China _ Disaster Management _ Disaster Prevention and Relief Information Communications _ Emergency Management Information System (EMIC)
Retrieved Nov 26 from https://www.nfa.gov.tw/cht/index.php?code=list&ids=1537
National Fire Agency, N. (2024, 2024/01/01). 7atural Disaster Loss Statistics in Taiwan (1994–2022). https://www.nfa.gov.tw/cht/index.php?code=list&ids=233
Osicka, O., Guajardo, M., & Van Oost, T. (2020). Cooperative game‐theoretic features of cost sharing in location‐routing. International Transactions in Operational Research, 27(4), 2157-2183. https://doi.org/10.1111/itor.12698
Prins, C., Prodhon, C., Ruiz, A., Soriano, P., & Calvo, R. (2007). Solving the Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-Granular Tabu Search Heuristic. Transportation Science, 41, 470-483. https://doi.org/10.1287/trsc.1060.0187
Safeer, M., Anbuudayasankar, S. P., Balkumar, K., & Ganesh, K. (2014). Analyzing Transportation and Distribution in Emergency Humanitarian Logistics. Procedia Engineering, 97, 2248-2258. https://doi.org/10.1016/j.proeng.2014.12.469
Sheu, J.-B. (2016). Supplier hoarding, government intervention, and timing for post-disaster crop supply chain recovery. Transportation Research Part E: Logistics and Transportation Review, 90, 134-160. https://doi.org/https://doi.org/10.1016/j.tre.2015.09.013
Shin, T. C. (2004). An Overview of the 1999 Chi-Chi, Taiwan, Earthquake. Bulletin of the Seismological Society of America, 91(5), 895-913. https://doi.org/10.1785/0120000738
Tuzun, D., & Burke, L. I. (1999). A two-phase tabu search approach to the location routing problem. European Journal of Operational Research, 116(1), 87-99. https://doi.org/10.1016/S0377-2217(98)00107-6
Verdonck, L., Beullens, P., Caris, A., Ramaekers, K., & Janssens, G. K. (2016). Analysis of collaborative savings and cost allocation techniques for the cooperative carrier facility location problem. Journal of the Operational Research Society, 67(6), 853-871. https://doi.org/10.1057/jors.2015.106
Von Neumann, J., & Morgenstern, O. (2007). Theory of games and economic behavior: 60th anniversary commemorative edition. In Theory of games and economic behavior. Princeton university press. https://www.jstor.org/stable/j.ctt1r2gkx
Yáñez-Sandivari, L., Cortés, C. E., & Rey, P. A. (2021). Humanitarian logistics and emergencies management: New perspectives to a sociotechnical problem and its optimization approach management. International Journal of Disaster Risk Reduction, 52, 101952. https://doi.org/10.1016/j.ijdrr.2020.101952
Yu, V. F., Lin, S.-W., Lee, W., & Ting, C.-J. (2010). A simulated annealing heuristic for the capacitated location routing problem. Computers & Industrial Engineering, 58(2), 288-299. https://doi.org/10.1016/j.cie.2009.10.007
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97131-
dc.description.abstract本研究探討人道主義物流中的選址與路徑問題(Location-Routing Problem, LRP),旨在優化災害應變過程中的資源分配與物流運作。台灣因地理位置及自然環境,常遭受颱風、地震及洪水等天然災害,這些災害對緊急救援與物資配送構成重大挑戰。為此,本研究提出結合合作與非合作賽局理論的雙階段框架,模擬多方利害關係人的互動,進而提升物流效率與資源分配公平性。
第一階段採用廣義納什均衡(Generalized Nash Equilibrium, GNE)模型,模擬非政府組織(Non-Governmental Organizations, NGOs)間的競爭性資源分配,確保各單位在共享約束下實現最佳效益。第二階段利用合作賽局理論,探討設施選址及車輛路徑的最佳化。研究中採用夏普利值(Shapley value)作為成本分配機制,確保合作各方的公平性並促進協作。
案例研究以台灣東部某地震為背景,透過應變管理資訊系統(Emergency Management Information Cloud , EMIC)進行數據處理與地理資訊分析。結果顯示,合作策略能顯著降低物流成本,且敏感性分析驗證了模型在不同需求與資源情境下的適應性。
本研究對人道主義物流領域的貢獻在於提出整合合作與非合作視角的全面框架,不僅能優化資源分配與路徑決策,亦能為政策制定者提供具體建議,以促進災害應變過程的效率、公平與協作。
zh_TW
dc.description.abstractThis research addresses the Location-Routing Problem (LRP) in humanitarian logistics, aiming to optimize resource allocation and logistics operations during disaster responses. Taiwan’s vulnerability to natural disasters, such as typhoons, earthquakes, and floods, presents significant challenges for emergency relief and distribution of essential supplies. To tackle these challenges, a two-stage framework integrating cooperative and non-cooperative game theory is proposed, modeling interactions among multiple stakeholders to enhance logistics efficiency and fairness in resource allocation.
In the first stage, a Generalized Nash Equilibrium (GNE) model simulates competitive resource allocation among Non-Governmental Organizations (NGOs), ensuring strategically balanced outcomes under shared constraints. The second stage applies cooperative game theory to optimize facility locations and vehicle routing. The Shapley value is utilized as a cost-sharing mechanism to ensure fairness among cooperating stakeholders and foster sustained collaboration.
A case study, based on a major earthquake in eastern Taiwan, demonstrates the practical applicability of the framework. Data processing and geospatial analysis were conducted using the Emergency Management Information Cloud (EMIC). Results show that cooperative strategies significantly reduce logistical costs, and sensitivity analyses confirm the framework’ adaptability under various demand and resource scenarios.
This study contributes to the field of humanitarian logistics by presenting a comprehensive framework that integrates cooperative and non-cooperative perspectives. It optimizes resource allocation and routing decisions while offering actionable insights for policymakers to design effective and equitable disaster response frameworks.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:20:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:20:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Objectives and Contributions 3
1.3 Thesis Organization 5
Chapter 2 Literature Review 6
2.1 Disaster Management 6
2.2 Humanitarian Logistics 8
2.2.1 Location Problems: 10
2.2.2 Routing Problems: 11
2.2.3 Location-Routing Problems (LRPs): 12
2.3 Game Theory 14
2.3.1 Cooperative Game in Logistics 15
2.3.2 Non-cooperative Game in Logistics 16
2.4 Summary 16
Chapter 3 Methodology 19
3.1 Problem Statement 19
3.2 Research Framework 20
3.3 Flow Model 22
3.3.1 Generalized Nash Equilibrium 22
3.3.2 Model Development 24
3.4 Location Routing Problem 26
3.4.1 Cooperative Game-Theoretic Framework 27
3.4.2 Model Development 28
3.5 Solution Algorithm 33
3.5.1 First Stage: Flow Model with Generalized Nash Equilibrium 33
3.5.2 Second Stage: Location-Routing Model with Cooperative Game Approach 34
Chapter 4 Case Study 38
4.1 Case and Assumptions 38
4.1.1 Data Processing 39
4.1.2 Assumptions 42
4.1.3 Case Overview 44
4.2 Computation Results 47
4.2.1 Flow Model 47
4.2.2 Location-Routing Model 50
4.3 Sensitivity Analysis 53
4.4 Discussion and Summary 56
Chapter 5 Conclusions and Suggestions 58
5.1 Conclusions 58
5.2 Limitations and Suggestion for Future Research 59
5.2.1 Limitation 59
5.2.2 Suggestions for Future Research 59
REFERENCE 61
-
dc.language.isoen-
dc.subject夏普利值zh_TW
dc.subject人道主義物流zh_TW
dc.subject選址與路徑問題zh_TW
dc.subject合作賽局zh_TW
dc.subject非合作賽局zh_TW
dc.subjectShapley valueen
dc.subjectnon-cooperative gamesen
dc.subjectcooperative gamesen
dc.subjectlocation-routing problemen
dc.subjecthumanitarian logisticsen
dc.title應用合作與非合作賽局理論於人道主義物流中的路徑與選址問題zh_TW
dc.titleLocation-Routing Problem in Humanitarian Logistics with Cooperative and Non-Cooperative Gamesen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee朱致遠;陳柏華;盧宗成zh_TW
dc.contributor.oralexamcommitteeJames C. Chu;Albert Y. Chen;Chung-Cheng Luen
dc.subject.keyword人道主義物流,選址與路徑問題,合作賽局,非合作賽局,夏普利值,zh_TW
dc.subject.keywordhumanitarian logistics,location-routing problem,cooperative games,non-cooperative games,Shapley value,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202500288-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-02-28-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf2.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved