請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97129完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 靳宗洛 | zh_TW |
| dc.contributor.advisor | Tsung-Luo Jinn | en |
| dc.contributor.author | 王胤棨 | zh_TW |
| dc.contributor.author | Yin-Chi Wang | en |
| dc.date.accessioned | 2025-02-27T16:19:45Z | - |
| dc.date.available | 2025-02-28 | - |
| dc.date.copyright | 2025-02-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-10 | - |
| dc.identifier.citation | Alinsug, M.V., Yu, C.W., and Wu, K. (2009). Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC Plant Biology 9, 37.
Andrási, N., Pettkó-Szandtner, A., and Szabados, L. (2020). Diversity of plant heat shock factors: regulation, interactions, and functions. Journal of Experimental Botany 72, 1558-1575. Bannister, AJ., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research 21, 381–395 Berger, S.L. (2002). Histone modifications in transcriptional regulation. Current Opinion in Genetics & Development 12, 142-148. Berger, S.L. (2007). The complex language of chromatin regulation during transcription. Nature 447, 407–412. Bernatavichute, Y.V., Zhang, X., Cokus, S., Pellegrini, M., and Jacobsen, S.E. (2008). Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One 39, e3156. Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research 56, 1159-1168. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143, 251-262. Cheeseman, J.M. (1988). Mechanisms of salinity tolerance in plants. Plant Physiology 87, 547-550. Chen, C.Y., Tu, Y.T., Hsu, J.C., Hung, H.C., Liu, T.C., Lee, Y.H., Chou, C.C., Cheng, Y.S., and Wu, K. (2020). Structure of Arabidopsis HISTONE DEACETYLASE 15. Plant Physiology 184, 1585-1600. Cortijo, S., Charoensawan, V., Brestovitsky, A., Buning, R., Ravarani, C., Rhodes, D., van Noort, J., Jaeger, K.E., and Wigge, P.A. (2017). Transcriptional regulation of the ambient temperature response by H2A. Z nucleosomes and HSF1 transcription factors in Arabidopsis. Molecular Plant 10, 1258-1273. de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S., and van Kuilenburg, A.B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochemical Journal 15, 737-749. Demidchik, V. (2015). Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany 109, 212-228. Du, J., Johnson, L.M., Jacobsen, S.E., and Patel, D.J. (2015). DNA methylation pathways and their crosstalk with histone methylation. Nature Reviews Molecular Cell Biology 16, 519-532. Fang, Y., and Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72, 673-689. Fong, P., Tian, L., and Chen, Z. (2006). Arabidopsis thaliana histone deacetylase 1 (AtHD1) is localized in euchromatic regions and demonstrates histone deacetylase activity in vitro. Cell Research 16, 479-488. Friedrich, T., Oberkofler, V., Trindade, I., Altmann, S., Brzezinka, K., Lamke, J., Gorka, M., Kappel, C., Sokolowska, E., Skirycz, A., Graf, A., and Baurle, I. (2021). Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications 12, 3426. Giesguth, M., Sahm, A., Simon, S., and Dietz, K.J. (2015). Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS letters 589, 718-725. Gregoretti, I.V., Lee, Y.M., and Goodson, H.V. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. Journal of Molecular Biology 338, 17-31. Heckathron, S.A., Downs, C.A., and Coleman, J.A. (1999). Small heat shock proteins protect electron transport in chloroplasts and mitochondria during stress. American Zoologist 39, 865–876. Howell, S.H. (2021). Evolution of the unfolded protein response in plants. Plant, Cell & Environment 44, 2625-2635. Hollender, C., and Liu, Z. (2008). Histone deacetylase genes in Arabidopsis development. Journal of Integrative Plant Biology 50, 875-885. Ikeda, M., Mitsuda, N., and Ohme-Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiology 157, 1243-1254. Klose, R.J., and Zhang, Y. (2007). Regulation of histone methylation by demethylimination and demethylation. Nature Reviews Molecular Cell Biology 8, 307-318. Kolmos, E., Chow, B.Y., Pruneda-Paz, J.L., Kay, S.A. (2014). HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. PNAS 111, 16172-16177. Kotak, S., Vierling, E., Bäumlein, H., and Koskull-Döring, P.v. (2007). A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. The Plant Cell 19, 182-195. Kumar, S.V., and Wigge, P.A. (2010). H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136-147. Larkindale, J., Hall, J.D., Knight, M.R., and Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant physiology 138, 882-897. Lin, K.F., Tsai, M.Y., Lu, C.A., Wu, S.J., and Yeh, C.H. (2018). The roles of Arabidopsis HSFA2, HSFA4a, and HSFA7a in the heat shock response and cytosolic protein response. Botanical Studies 59, 15. Liu, C., Lu, F., Cui, X., and Cao, X. (2010). Histone methylation in higher plants. Annual Review of Plant Biology 61, 395-420. Liu, H.C., and Charng, Y.Y. (2013). Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiology 163, 276-290. Liu, H.C., Liao, H.T., and Charng, Y.Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, Cell & Environment 34, 738-751. Liu, X., Yang, S., Zhao, M., Luo, M., Yu, C.W., Chen, C.Y., Tai, R., and Wu, K. (2014). Transcriptional repression by histone deacetylases in plants. Molecular Plant 7, 764-772. Lohmann, C., Eggers-Schumacher, G., Wunderlich, M., and Schöffl, F. (2004). Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Molecular Genetics and Genomics 271, 11-21. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260. Luo, M., Tai, R., Yu, C.W., Yang, S., Chen, C.Y., Lin, W.D., Schmidt, W., and Wu, K. (2015). Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. Plant Journal 82, 925-936. Luo, M., Yu, C.W., Chen, F.F., Zhao, L., Tian, G., Liu, X., Cui, Y., Yang, J.Y., and Wu, K. (2012). Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis. PLoS Genetics 8, e1003114. Manghwar, H., and Li, J. (2022). Endoplasmic reticulum stress and unfolded protein response signaling in plants. International Journal of Molecular Sciences 23, 828 Mittler, R., Finka, A., and Goloubinoff, P. (2012). How do plants feel the heat? Trends in Biochemical Sciences 37, 118-125. Nawkar, G.M., Lee, E.S., Shelake, R.M., Park, J.H., Ryu, S.W., Kang, C.H., and Lee, S.Y. (2018). Activation of the transducers of unfolded protein response in plants. Frontiers in Plant Science 9, 214. North, B.J., Marshall, B.L., Borra, M.T., Denu J.M., and Verdin, E. (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Molecular Cell 11, 437-444. Nover, L., Bharti, K., Döring, P., Mishra, S.K., Ganguli, A., and Scharf, K.-D. (2001). Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress & Chaperones 6, 177. Ohama, N., Sato, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22, 53-65. Pick, T., Jaskiewicz, M., Peterhänsel, C., and Conrath, U. (2012). Heat shock factor HsfB1 primes gene transcription and systemic acquired resistance in Arabidopsis. Plant Physiology 159, 52-55. Queitsch, C., Hong, S.W., Vierling, E., and Lindquist, S. (2000). Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. The Plant Cell 12, 479-492. Schramm, F., Ganguli, A., Kiehlmann, E., Englich, G., Walch, D., and von Koskull-Doring, P. (2006). The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Molecular Biology 60, 759-772. Scharf, K.D., Siddique, M., and Vierling, E. (2001). The expanding family of small heat shock proteins and their potential for engineering stress tolerance in plants. Plant Physiology 126, 712-718. Stroud, H., Do, T., Du, J., Zhong, X., Feng, S., Johnson, L., Patel, D.J., and Jacobsen, S.E. (2014). Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nature Structural & Molecular Biology 21, 64-72. Sun, W., Van Montagu, M., and Verbruggen, N. (2002). Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta 1577, 1-9. Tasset, C., Singh Yadav, A., Sureshkumar, S., Singh, R., van der Woude, L., Nekrasov, M., Tremethick, D., van Zanten, M., and Balasubramanian, S. (2018). POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. PLoS Genetics 14, e1007280. Tejedor‐Cano, J., Prieto‐Dapena, P., Almoguera, C., Carranco, R., Hiratsu, K., Ohme‐Takagi, M., and Jordano, J. (2010). Loss of function of the HSFA9 seed longevity program. Plant, Cell & Environment 33, 1408-1417. Tilak, P., Kotnik, F., Née, G., Seidel, J., Sindlinger, J., Heinkow, P., Eirich, J., Schwarzer, D., and Finkemeier, I. (2023). Proteome-wide lysine acetylation profiling to investigate the involvement of histone deacetylase HDA5 in the salt stress response of Arabidopsis leaves. Plant Journal 115, 275-292. Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology 42, 579-620. von Koskull-Döring, P., Scharf, K.D., and Nover, L. (2007). The diversity of plant heat stress transcription factors. Trends in Plant Science 12, 452-457. Vu, L.D., Gevaert, K., and De Smet, I. (2019). Feeling the heat: searching for plant thermosensors. Trends in Plant Science 24, 210-219. Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environmental and experimental botany 61, 199-223. Wang, W., Ye, R., Xin, Y., Fang, X., Li, C., Shi, H., Zhou, X., and Qi, Y. (2011). An importin β protein negatively regulates MicroRNA activity in Arabidopsis. Plant Cell 23, 3565-3576. Wu, C. (1995). Heat Shock Transcription Factors: Structure and Regulation. Annual Review of Cell and Developmental Biology 11, 441-469. Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T., and Lin, C.S. (2009). Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 24, 16. Yoshida, T., Sakuma, Y., Todaka, D., Maruyama, K., Qin, F., Mizoi, J., Kidokoro, S., Fujita, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2008). Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochemical and Biophysical Research Communications 368, 515-521. Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiology 156, 173-84. Xu, Y., Li, Q., Yuan, L., Huang, Y., Hung, F.Y., Wu, K., and Yang, S. (2022). MSI1 and HDA6 function interdependently to control flowering time via chromatin modifications. Plant Journal 109, 831-843. Zang, D., Wang, J., Zhang, X., Liu, Z., and Wang, Y. (2019). Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression. Journal of Experimental Botany 70, 5355-5374. Zhou, J.J., Cho, J.S., Han, H., Blitz, I.L., Wang, W., and Cho, K.W.Y. (2023). Histone deacetylase 1 maintains lineage integrity through histone acetylome refinement during early embryogenesis. Elife 27, e79380. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97129 | - |
| dc.description.abstract | 先前研究已經闡明部分與植物熱逆境反應相關的轉錄調控網絡,然而關於轉錄靜默和染色質重塑的機制仍然未知。組蛋白去乙醯基酶 (HDACs) 是與轉錄靜默緊密相連的關鍵染色質調控因子,對植物適應不良環境至關重要。阿拉伯芥微陣列分析顯示,熱逆境誘導HDA5的表達,但其功能與機制仍然不明。在本研究中透過兩種熱耐性測試:基礎耐熱性及後天耐熱性確認HDA5在熱逆境反應途徑中作為負調控因子。進一步透過蛋白交互作用實驗發現,在19個熱休克因子(HSFs)中,HDA5會與HSFA1d,HSFA8,HSFA9以及HSFB2b在細胞核中有相互作用。qPCR分析表明,在hda5-1突變株中,與野生型相比,多個HSFs的表達量增加,並且其下游基因HSP22與HSP101的表現量顯著增加。ChIP-qPCR分析發現,在hda5-1突變體中,HSP22啟動子的H3K9乙醯化的程度顯著提升,而在HSP101啟動子則未出現變化。此外,HSP22啟動子上的H3K9乙醯化與H3K4二甲基化的豐度之間存在拮抗關係,且HSP101啟動子的H3K4二甲基化的程度呈下降趨勢。在原生質體次細胞定位實驗中中發現HDA5在正常生長環境下出現在細胞核中,在熱逆境的環境下則是完全轉移至細胞核外,這表明HDA5可能間接調控熱相關基因 (heat-responsive genes)。Dual-luciferase reporter實驗顯示,HDA5與HSFB2b共同作用,顯著抑制了HSP22的轉錄活性。根據上述研究結果推測,HDA5在熱反應中可能透過非組蛋白為目標的蛋白質去乙醯化(deacetylation)與調控組蛋白修飾相關蛋白來實現對轉錄組的轉錄沉默,而非直接參與組蛋白修飾(histone modification)。 | zh_TW |
| dc.description.abstract | Research has highlighted the complex regulatory networks involved in plant heat shock responses (HSR), yet the mechanisms underlying chromatin remodeling and transcriptional silencing during HS adaptation remain elusive. Histone deacetylases (HDACs) are key chromatin regulators linked to transcriptional silencing, essential for plant resilience in adverse environments. Arabidopsis microarray data indicates that heat stress induces HDA5, but its precise role remains unclear. This study reveals that HDA5 functions as a negative regulator in the heat stress response and that thermotolerance tests confirm its regulatory role under both baseline and acquired heat stress conditions. Further analysis of protein-protein interactions data showed that among 19 heat shock factors (HSFs), HDA5 interacts with HSFA1d, HSFA8, HSFA9, and HSFB2b in the nucleus. qPCR analysis revealed that in the hda5-1 mutant, several HSFs were upregulated compared to the wild type (Col-0), with downstream genes HSP22 and HSP101 showing significant increases in expression. ChIP-qPCR analysis revealed an increase in H3K9 acetylation at the HSP22 loci in the hda5-1 mutant, while no changes were observed at the HSP101 loci. Additionally, an antagonistic relationship between H3K9 acetylation and H3K4 dimethylation was observed at the HSP22 loci, accompanied by a downtrend in H3K4 dimethylation at the HSP101 loci. Subcellular localization studies showed that HDA5 relocates from the nucleus to the cytoplasm under HS, suggesting that HDA5 may regulate heat-responsive genes indirectly. Dual-luciferase reporter assays revealed that HDA5, in conjunction with HSFB2b, significantly inhibits the transcriptional activity of HSP22. These findings propose a novel role for HDA5 in transcriptional silencing during HS, potentially through the deacetylation of non-histone proteins or modulation of histone modification-related proteins, rather than direct histone modification. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:19:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-27T16:19:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv List of figures viii List of tables x Abbreviations xi Introduction 1 Heat Shock Response (HSR) and Thermotolerance 1 Heat Shock Factors (HSFs) and Transcriptional Regulation 4 Heat Shock Proteins (HSPs) 8 Histone Acetylation and Methylation 10 Histone Deacetylases (HDACs) 12 Functions of HDA5 13 Motivation and Objectives 14 Material and Methods 16 Plant Materials and Growth Conditions 16 DNA/RNA Preparation, cDNA Synthesis and qRT-PCR 17 Thermotolerance Tests 18 Western Blot Analysis and Protein Abundancy Assay 18 Agro-Infiltration in Nicotiana benthamiana Leaves 19 Arabidopsis Mesophyll Protoplasts Isolation and Plasmid Transfection 20 Bimolecular Fluorescence Complementation (BiFC) Assay 21 Yeast Two Hybrid (Y2H) 22 Split-Luciferase Complementation Imaging (LCI) Assay 23 Nuclear-Cytoplasmic Fractionation 23 Chromatin Immunoprecipitation (ChIP)-qPCR 25 Dual Luciferase Reporter (DLR) Assay 27 Results 28 Gene Expression Patterns of Arabidopsis HDA5 Under Heat Stress Conditions 28 Characterization of the hda5 Knock-out Line and pCaMV 35S/ HDA5 Native Promoter-Driven HDA5 Transgenic Lines 28 hda5-1 Shown Insensitive Phenotypes Toward Multiple HS Conditions 29 Interactions Between HDA5 and Heat Shock Factors (HSFs). 31 Gene Expression Profiles of HS- Responsive Genes in hda5-1. 33 Accumulation of HSP101 and Acetyl-H3 Levels in hda5-1 During Heat Stress 34 HDA5 Participating in the Regulation of the HSP18.2, HSP22 and HSP101 Loci in HS 36 HDA5 Is Relocated from the Nucleus to the Cytosol under Heat Stress Conditions. 39 HDA5 and HSFB2b Repress the Transcriptional Activity of HSP22. 40 Discussion 41 HDA5 Functions as a Negative Regulator in HSR. 41 HDA5-Mediated Regulation of Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs) Across Multiple Pathways. 43 HDA5 Interacts with HSFB2b. 46 HDA5 Affects the Histone Modifications of HSP18.2, HSP22 and HSP101 loci. 47 HDA5 Completely Relocated Outside the Nucleus During HS. 48 HDA5 May Activates HSFB2b to Repress the HSP22 via Deacetylation. 49 HDA5 is Involved in Regulating Histone Modification-Related Proteins in HS. 50 Perspective and Future Works 51 Tables 53 Figures 58 Supplemental Figures 85 References 86 Appendix 92 | - |
| dc.language.iso | en | - |
| dc.subject | 表觀遺傳 | zh_TW |
| dc.subject | 熱休克蛋白 | zh_TW |
| dc.subject | 熱休克轉錄因子 | zh_TW |
| dc.subject | 耐熱性 | zh_TW |
| dc.subject | 非生物逆境 | zh_TW |
| dc.subject | 甲基化 | zh_TW |
| dc.subject | 去乙醯基化 | zh_TW |
| dc.subject | 去乙醯基蛋白 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | heat shock protein | en |
| dc.subject | Arabidopsis | en |
| dc.subject | epigenetic | en |
| dc.subject | histone deacetylase | en |
| dc.subject | deacetylation | en |
| dc.subject | methylation | en |
| dc.subject | abiotic stress | en |
| dc.subject | thermotolerance | en |
| dc.subject | heat shock factor | en |
| dc.title | 阿拉伯芥組蛋白去乙醯基酶HDA5在熱逆境中之功能性研究 | zh_TW |
| dc.title | Functional study of histone deacetylase HDA5 in response to thermal stress in Arabidopsis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭秋萍;鄭石通;楊健志;葉靖輝 | zh_TW |
| dc.contributor.oralexamcommittee | Chiu-Ping Cheng;Shih-Tong Jeng;Chien-Chih Yang;Ching-Hui Yeh | en |
| dc.subject.keyword | 阿拉伯芥,表觀遺傳,去乙醯基蛋白,去乙醯基化,甲基化,非生物逆境,耐熱性,熱休克轉錄因子,熱休克蛋白, | zh_TW |
| dc.subject.keyword | Arabidopsis,epigenetic,histone deacetylase,deacetylation,methylation,abiotic stress,thermotolerance,heat shock factor,heat shock protein, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202500611 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-02-11 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| dc.date.embargo-lift | 2025-02-28 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 6.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
