Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97121
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王宗興zh_TW
dc.contributor.advisorTsung-Shing Wangen
dc.contributor.author黃建嘉zh_TW
dc.contributor.authorJian-Jia Huangen
dc.date.accessioned2025-02-27T16:17:27Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-11-
dc.identifier.citation(1) Muttenthaler, M.; King, G. F.; Adams, D. J.; Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20 (4), 309-325.
(2)Tang, L.; Persky, A. M.; Hochhaus, G.; Meibohm, B. Pharmacokinetic aspects of biotechnology products. J. Pharm. Sci. 2004, 93 (9), 2184-2204.
(3) Henninot, A.; Collins, J. C.; Nuss, J. M. The current state of peptide drug discovery: back to the future? J. Med. Chem. 2018, 61 (4), 1382-1414.
(4) Craik, D. J.; Fairlie, D. P.; Liras, S.; Price, D. The future of peptide‐based drugs. Chem. Biol. Drug Des. 2013, 81 (1), 136-147.
(5) Rossino, G.; Marchese, E.; Galli, G.; Verde, F.; Finizio, M.; Serra, M.; Linciano, P.; Collina, S. Peptides as therapeutic agents: challenges and opportunities in the green transition era. Molecules 2023, 28 (20), 7165.
(6) Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: current applications and future directions. Signal Transduct. Target. Ther. 2022, 7 (1), 48.
(7) Bray, B. L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov. 2003, 2 (7), 587-593.
(8) Lam, K. S.; Hruby, V. J.; Lebl, M.; Knapp, R. J.; Kazmierski, W. M.; Hersh, E. M.; Salmon, S. E. The chemical synthesis of large random peptide libraries and their use for the discovery of ligands for macromolecular acceptors. Bioorg. Med. Chem. Lett. 1993, 3 (3), 419-424.
(9) Mehta, N. V.; Degani, M. S. The expanding repertoire of covalent warheads for drug discovery. Drug Discov. Today 2023, 103799.
(10) Korver, G. E.; Kam, C.-M.; Powers, J. C.; Hudig, D. Dipeptide vinyl sulfones suitable for intracellular inhibition of dipeptidyl peptidase I. Int. Immunopharmacol. 2001, 1 (1), 21-32.
(11) Rut, W.; Groborz, K.; Zhang, L.; Sun, X.; Zmudzinski, M.; Pawlik, B.; Wang, X.; Jochmans, D.; Neyts, J.; Młynarski, W. SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol. 2021, 17 (2), 222-228.
(12) Tiew, K.-C.; He, G.; Aravapalli, S.; Mandadapu, S. R.; Gunnam, M. R.; Alliston, K. R.; Lushington, G. H.; Kim, Y.; Chang, K.-O.; Groutas, W. C. Design, synthesis, and evaluation of inhibitors of Norwalk virus 3C protease. Bioorg. Med. Chem. Lett. 2011, 21 (18), 5315-5319.
(13) Schüller, A.; Yin, Z.; Chia, C. B.; Doan, D. N.; Kim, H.-K.; Shang, L.; Loh, T. P.; Hill, J.; Vasudevan, S. G. Tripeptide inhibitors of dengue and West Nile virus NS2B–NS3 protease. Antiviral Res. 2011, 92 (1), 96-101.
(14) Stebbins, J. L.; Santelli, E.; Feng, Y.; De, S. K.; Purves, A.; Motamedchaboki, K.; Wu, B.; Ze’ev, A. R.; Liddington, R. C.; Pellecchia, M. Structure-based design of covalent Siah inhibitors. Chem. Biol. 2013, 20 (8), 973-982.
(15) de Araujo, A. D.; Lim, J.; Good, A. C.; Skerlj, R. T.; Fairlie, D. P. Electrophilic helical peptides that bond covalently, irreversibly, and selectively in a protein–protein interaction site. ACS Med. Chem. Lett. 2017, 8 (1), 22-26.
(16) Gehringer, M.; Laufer, S. A. Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J. Med. Chem. 2018, 62 (12), 5673-5724.
(17) Oksenberg, D.; Dufu, K.; Patel, M. P.; Chuang, C.; Li, Z.; Xu, Q.; Silva‐Garcia, A.; Zhou, C.; Hutchaleelaha, A.; Patskovska, L. GBT 440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half‐life in a murine model of sickle cell disease. Br. J. Haematol. 2016, 175 (1), 141-153.
(18) Thompson, R. C. Peptide aldehydes: Potent inhibitors of serine and cysteine proteases. Methods Enzymol. 1977, 46, 220-225.
(19) Zhang, N.-H.; Song, L.-B.; Wu, X.-J.; Li, R.-P.; Zeng, M.-S.; Zhu, X.-F.; Wan, D.-S.; Liu, Q.; Zeng, Y.-X.; Zhang, X.-S. Proteasome inhibitor MG-132 modifies coxsackie and adenovirus receptor expression in colon cancer cell line LoVo. Cell Cycle 2008, 7 (7), 925-933.
(20) Kisselev, A. F.; Goldberg, A. L. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. 2001, 8 (8), 739-758.
(21) Gampe, C.; Verma, V. A. Curse or cure? A perspective on the developability of aldehydes as active pharmaceutical ingredients. J. Med. Chem. 2020, 63 (23), 14357-14381.
(22) O'Brien, P. J.; Siraki, A. G.; Shangari, N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit. Rev. Toxicol. 2005, 35 (7), 609-662.
(23) Perni, R. B.; Pitlik, J.; Britt, S. D.; Court, J. J.; Courtney, L. F.; Deininger, D. D.; Farmer, L. J.; Gates, C. A.; Harbeson, S. L.; Levin, R. B. Inhibitors of hepatitis C virus NS3·4A protease 2. Warhead SAR and optimization. Bioorg. Med. Chem. Lett. 2004, 14 (6), 1441-1446.
(24) Ma, Y.; Yang, K. S.; Geng, Z. Z.; Alugubelli, Y. R.; Shaabani, N.; Vatansever, E. C.; Ma, X. R.; Cho, C.-C.; Khatua, K.; Xiao, J. A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals. Eur. J. Med. Chem. 2022, 240, 114570.
(25) Vankadara, S.; Wong, Y. X.; Liu, B.; See, Y. Y.; Tan, L. H.; Tan, Q. W.; Wang, G.; Karuna, R.; Guo, X.; Tan, S. T. A head-to-head comparison of the inhibitory activities of 15 peptidomimetic SARS-CoV-2 3CLpro inhibitors. Bioorg. Med. Chem. Lett. 2021, 48, 128263.
(26) LoPachin, R. M.; Gavin, T. Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem. Res. Toxicol. 2014, 27 (7), 1081-1091.
(27) Li, L.; Chenna, B. C.; Yang, K. S.; Cole, T. R.; Goodall, Z. T.; Giardini, M.; Moghadamchargari, Z.; Hernandez, E. A.; Gomez, J.; Calvet, C. M. Self-masked aldehyde inhibitors: a novel strategy for inhibiting cysteine proteases. J. Med. Chem. 2021, 64 (15), 11267-11287.
(28) Nakamura, M.; Yamaguchi, M.; Sakai, O.; Inoue, J. Exploration of cornea permeable calpain inhibitors as anticataract agents. Bioorg. Med. Chem. 2003, 11 (7), 1371-1379.
(29) Lin, H.; Wang, M.; Zhang, Y. W.; Tong, S.; Leal, R. A.; Shetty, R.; Vaddi, K.; Luengo, J. I. Discovery of potent and selective covalent protein arginine methyltransferase 5 (PRMT5) inhibitors. ACS Med. Chem. Lett. 2019, 10 (7), 1033-1038.
(30) Uhl, E.; Wolff, F.; Mangal, S.; Dube, H.; Zanin, E. Light‐controlled cell‐cycle arrest and apoptosis. Angew. Chem., Int. Ed. 2021, 60 (3), 1187-1196.
(31) Galasiti Kankanamalage, A. C.; Kim, Y.; Rathnayake, A. D.; Alliston, K. R.; Butler, M. M.; Cardinale, S. C.; Bowlin, T. L.; Groutas, W. C.; Chang, K.-O. Design, synthesis, and evaluation of novel prodrugs of transition state inhibitors of norovirus 3CL protease. J. Med. Chem. 2017, 60 (14), 6239-6248.
(32) Deslongchamps, P.; Dory, Y. L.; Li, S. The relative rate of hydrolysis of a series of acyclic and six-membered cyclic acetals, ketals, orthoesters, and orthocarbonates. Tetrahedron 2000, 56 (22), 3533-3537.
(33) Vlahov, I. R.; Qi, L.; Santhapuram, H. K. R.; Felten, A.; Parham, G. L.; Zou, N.; Wang, K.; You, F.; Vaughn, J. F.; Hahn, S. J. Design and synthesis of a folate-receptor targeted diazepine-ring-opened pyrrolobenzodiazepine prodrug conjugate. Bioorg. Med. Chem. Lett. 2020, 30 (7), 126987.
(34) Burkhart, D. J.; Barthel, B. L.; Post, G. C.; Kalet, B. T.; Nafie, J. W.; Shoemaker, R. K.; Koch, T. H. Design, synthesis, and preliminary evaluation of doxazolidine carbamates as prodrugs activated by carboxylesterases. J. Med. Chem.
(35) Han, Y. H.; Moon, H. J.; You, B. R.; Park, W. H. The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol. Rep. 2009, 22 (1), 215-221.
(36) Sufian, A.; Badirujjaman, M.; Barman, P.; Bhabak, K. P. Dual‐stimuli‐activatable hybrid prodrug for the self‐immolative delivery of an anticancer agent and hydrogen sulfide with turn‐on fluorescence. Chem.–Eur. J. 2023, 29 (66), e202302197.
(37) Sharma, A.; Khan, M. A.; Tirpude, N. V. Leupeptin maintains redox homeostasis via targeting ROS-autophagy-inflammatory axis in LPS-stimulated macrophages and cytokines dichotomy in Con-A challenged lymphocyte. Peptides 2023, 168, 171066.
(38) Williams, J. A.; Hou, Y.; Ni, H.-M.; Ding, W.-X. Role of intracellular calcium in proteasome inhibitor-induced endoplasmic reticulum stress, autophagy, and cell death. Pharm. Res. 2013, 30, 2279-2289.
(39) Wang, Y.-R.; Qin, S.; Han, R.; Wu, J.-C.; Liang, Z.-Q.; Qin, Z.-H.; Wang, Y. Cathepsin L plays a role in quinolinic acid-induced NF-κB activation and excitotoxicity in rat striatal neurons. PLoS One 2013, 8 (9), e75702.
(40) Dong, Y.; Wu, Y.; Zhao, G.-L.; Ye, Z.-Y.; Xing, C.-G.; Yang, X.-D. Inhibition of autophagy by 3-MA promotes hypoxia-induced apoptosis in human colorectal cancer cells. Eur. Rev. Med. Pharmacol. Sci. 2019, 23 (3).
(41) He, H.; Liu, X.; Lv, L.; Liang, H.; Leng, B.; Zhao, D.; Zhang, Y.; Du, Z.; Chen, X.; Li, S. Calcineurin suppresses AMPK-dependent cytoprotective autophagy in cardiomyocytes under oxidative stress. Cell Death Dis. 2014, 5 (1), e997-e997.
(42) Reeg, S.; Castro, J. P.; Hugo, M.; Grune, T. Accumulation of polyubiquitinated proteins: A consequence of early inactivation of the 26S proteasome. Free Radic. Biol. Med. 2020, 160, 293-302.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97121-
dc.description.abstract肽醛類化合物因其能與目標蛋白形成可逆共價鍵,被廣泛用作高效的抑制劑。然而,其高反應性容易導致脫靶效應,而且代謝不穩定性導致快速降解,限制了其更廣泛的應用。為了解決這些問題,我們開發了以噁唑烷保護醛基的策略,該策略結合了多種刺激響應性觸發基團來降低醛基的反應性,並能透過特定條件來釋放出醛基。
我們以MG132和Ac-LVK-CHO兩個肽醛為基礎合成的前驅藥物在微酸性和生理條件下皆有很好的水解穩定性。酵素抑制實驗也證實,此保護策略顯著降低了肽醛的活性;且在特定條件下觸發去保護反應恢復了與原藥相當的酵素抑制活性。在正交性實驗顯示,MG132-2NB和Ac-LVK-DiCN表現出部分正交性而MG132-pinBB和Ac-LVK-NIm分別對透過H2O2和nitroreductase去保護,表現出幾乎完全的正交性,在western blot實驗也證明可調控特定藥物被去保護影響細胞內蛋白表達。
因此本研究證明了以噁唑烷保護醛基的策略可以調控肽醛的活性,並且可選擇性和可控性地讓特定肽醛恢復活性,有助於增加肽醛的專一性。
zh_TW
dc.description.abstractPeptide aldehydes are widely utilized as potent inhibitors due to their ability to form reversible covalent bonds with target proteins. However, their high reactivity leads to off-target effects, and their metabolic instability results in rapid degradation, posing significant challenges for their broader application. To address these issues, we developed an oxazolidine-based caging system that incorporates diverse stimuli-responsive trigger groups, enabling precise spatiotemporal control of inhibitor activation. The oxazolidine cage allowed the integration of trigger groups such as photolabile (2-nitrobenzyl and coumarin derivatives), ROS-sensitive (aryl pinacol boronate), and hypoxia-responsive (nitroimidazole) groups, offering flexibility in prodrug design. The synthesized prodrugs demonstrated excellent hydrolytic stability under mildly acidic (pH 5.0) and physiological (pH 7.4) conditions.
Enzyme inhibition assays confirmed that caging significantly reduced inhibitor activity, with IC50 values increasing up to 153-fold for MG132 derivatives and 92-fold for Ac-LVK-CHO derivatives. Controlled decaging using specific stimuli, such as UV light (365 nm), visible light (520 nm), reactive oxygen species (H2O2), or nitroreductase, restored enzymatic inhibition activity to level comparable to those of the uncaged parent drugs.
Orthogonality experiments revealed that MG132-2NB and Ac-LVK-DiCN exhibit partial orthogonality. Photodecaging at 365 nm activated both MG132-2NB and Ac-LVK-DiCN, while 520 nm selectively triggered Ac-LVK-DiCN decaging. Similarly, MG132-pinBB and Ac-LVK-NIm responded selectively to H₂O₂ and nitroreductase, respectively, showing nearly complete orthogonality.
This study establishes the oxazolidine-based caging system as a robust platform for improving the stability, selectivity, and controllability of peptide aldehyde inhibitors, providing a versatile solution to challenges in reactivity and specificity.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:17:27Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:17:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Table of Contents v
List of Figures vii
Abbreviations x
Chapter 1. Introduction 1
1.1. Peptide drug 1
1.2. The Characteristic of Aldehyde Warhead 2
1.3. The Strategy of Protected Aldehyde Group 5
Chapter 2 Results and Discussions 11
2.1 Molecular Design 11
2.2 Synthesis 14
2.3. Determination of Hydrolytic Stability 22
2.4. Enzymatic Inhibition Assays of MG132, Ac-LVK-CHO and Their Prodrugs 23
2.5. Validation of Decaging Efficiency for MG132 Prodrugs to Release Peptide Aldehyde Under Specific Conditions 26
2.6. Validation of Decaging and Peptide Aldehyde Release for Ac-LVK-CHO Prodrugs by LC-MS and HPLC 28
2.7. Enzymatic Activity Assays Demonstrating the Inhibitory Effects of Prodrugs Before and After Decaging 31
2.8 Cell Viability of MG132 and Their Derivatives 34
2.9. Cell Viability of Ac-LVK-CHO and Their Derivatives 36
2.10. Verification of Cellular Response to Prodrug Before and After Decaging via Western Blot 38
2.11. Orthogonality of Photo-responsive Trigger Demonstrated by HPLC Analysis 46
2.12. Orthogonality of ROS- and Hypoxia-Responsive Triggers Demonstrated by HPLC Analysis 49
2.13. Western Blot Validation of Selective Decaging: MG132-pinBB by H₂O₂ and Ac-LVK-NIm by Hypoxia 53
2.14. Orthogonality of ROS- and Hypoxia-Responsive Triggers Demonstrated by Western Blot 55
Chapter 3. Conclusion and Perspectives 58
Chapter 4. Materials and Methods 60
4.1. General Methods and Instruments 60
4.2. Cell Culture 61
4.3. Determination of Hydrolytic Sability 61
4.4. 20S Proteasome Enzyme Inhibition Assay 62
4.5. Cathepsin B Enzyme Inhibition Assay 63
4.6. Cell Viability Assay 65
4.7. Validation of Decaging Efficiency by HPLC 68
4.8. Western Blot Analysis 71
4.9. Enzymetic Assay of Prodrug Decaging 75
4.10. Synthesis and Characterization of Compounds 77
Referances 111
Appendix I 118
Appendix II: Supplementary 153
-
dc.language.isoen-
dc.subject活性調控zh_TW
dc.subject肽醛zh_TW
dc.subject噁唑烷保護zh_TW
dc.subject正交性zh_TW
dc.subjectPeptidyl aldehydeen
dc.subjectOrthogonalityen
dc.subjectActivity regulationen
dc.subjectOxazolidine cageen
dc.title帶有多功能性與正交性觸發基團的噁唑烷籠型結構用於控制肽醛活性zh_TW
dc.titleOxazolidine-Based Cages with Versatile and Orthogonal Triggers for Controlling Peptide Aldehyde Activityen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee朱忠瀚;謝俊結zh_TW
dc.contributor.oralexamcommitteeChung-Han Chu;Jiun-Jie Shieen
dc.subject.keyword肽醛,噁唑烷保護,活性調控,正交性,zh_TW
dc.subject.keywordPeptidyl aldehyde,Oxazolidine cage,Activity regulation,Orthogonality,en
dc.relation.page153-
dc.identifier.doi10.6342/NTU202500593-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2030-02-10-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2030-02-10
8.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved