請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97119完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李翔傑 | zh_TW |
| dc.contributor.advisor | Hsiang-Chieh Lee | en |
| dc.contributor.author | 黃光磊 | zh_TW |
| dc.contributor.author | Kuang-Lei Huang | en |
| dc.date.accessioned | 2025-02-27T16:16:55Z | - |
| dc.date.available | 2025-02-28 | - |
| dc.date.copyright | 2025-02-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-27 | - |
| dc.identifier.citation | Brien A. Holden, Timothy R. Fricke, David A. Wilson, Monica Jong, Kovin S. Naidoo, Padmaja Sankaridurg, Tien Y. Wong, Thomas J. Naduvilath, and Serge Resnikoff. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology, 123(5):1036–1042, May 2016.
Padmaja Sankaridurg, Nina Tahhan, Himal Kandel, Thomas Naduvilath, Haidong Zou, Kevin D. Frick, Srinivas Marmamula, David S. Friedman, Ecosse Lamoureux, Jill Keeffe, Jeffrey J. Walline, Timothy R. Fricke, Vilas Kovai, and Serge Resnikoff. Imi impact of myopia. Investigative Ophthalmology & Visual Science, 62(5):2–2, 04 2021. T.-J. Wang, T.-H. Chiang, T.-H. Wang, L. L.-K. Lin, and Y.-F. Shih. Changes of the ocular refraction among freshmen in national taiwan university between 1988 and 2005. Eye, 23(5):1168–1169, May 2009. 衛生福利部國民健康署. 兒童青少年視力監測調查. https://www.hpa.gov.tw/Pages/List.aspx?nodeid=45, 2017. John V. Forrester, Andrew D. Dick, Paul G. McMenamin, Fiona Roberts, and Eric Pearlman. Chapter 1 - anatomy of the eye and orbit. In John V. Forrester, Andrew D. Dick, Paul G. McMenamin, Fiona Roberts, and Eric Pearlman, editors, The Eye (Fourth Edition), pages 1–102.e2. W.B. Saunders, fourth edition edition, 2016. Edward S. Perkins and Hugh Davson. human eye. https://www.britannica.com/science/human-eye, October 2024. Daniel Ian Flitcroft, Mingguang He, Jost B. Jonas, Monica Jong, Kovin Naidoo,Kyoko Ohno-Matsui, Jugnoo Rahi, Serge Resnikoff, Susan Vitale, and Lawrence Yannuzzi. Imi– defining and classifying myopia: A proposed set of standards for clinical and epidemiologic studies. Investigative Ophthalmology & Visual Science, 60(3):M20–M30, 02 2019. M. Wang, J. Butterworth, F. Malecaze, and P. Calvas. Axial length of myopia: a review of current research. Ophthalmologica, 225:127–134, 2010. Terri L. Young, Ravikanth Metlapally, and Amanda E. Shay. Complex trait genetics of refractive error. Archives of Ophthalmology, 125(1):38–48, 01 2007. Edward A. H. Mallen, Yazan Gammoh, Muawyah Al-Bdour, and Fouad N. Sayegh. Refractive error and ocular biometry in jordanian adults. Ophthalmic and Physiological Optics, 25(4):302–309, 2005. Yanyun Fan, Yikeng Huang, and Xionggao Huang. Association between axial length to corneal curvature radius ratio and myopia in adult patients. Journal of Ophthalmology, 2024(1):4981095, 2024. Paul N. Baird, Seang-Mei Saw, Carla Lanca, Jeremy A. Guggenheim, Earl L. Smith III, Xiangtian Zhou, Kyoko-Ohno Matsui, Pei-Chang Wu, Padmaja Sankaridurg, Audrey Chia, Mohamad Rosman, Ecosse L. Lamoureux, Ryan Man, and Mingguang He. Myopia. Nature Reviews Disease Primers, 6(1):99, Dec 2020. J. B. Jonas and L. Xu. Histological changes of high axial myopia. Eye, 28(2):113–117, Feb 2014. Jasmin Rezapour, Christopher Bowd, Jade Dohleman, Akram Belghith, James A. Proudfoot, Mark Christopher, Leslie Hyman, Jost B. Jonas, Massimo A. Fazio,Robert N. Weinreb, and Linda M. Zangwill. The influence of axial myopia on optic disc characteristics of glaucoma eyes. Scientific Reports, 11(1):8854, Apr 2021. Akiko Ogawa and M. Tanaka. The relationship between refractive errors and retinal detachment–analysis of 1,166 retinal detachment cases. Japanese journal of ophthalmology, 32 3:310–5, 1988. Jerry Vongphanit, Paul Mitchell, and Jie Jin Wang. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology, 109(4):704–711, Apr 2002. Nick Astbury and Balasubramanya Ramamurthy. How to avoid mistakes in biometry. Community Eye Health, 19(60):70–71, December 2006. Thomas C. Prager, David R. Hardten, and Benjamin J. Fogal. Enhancing intraocular lens outcome precision: An evaluation of axial length determinations, keratometry, and iol formulas. Ophthalmology Clinics, 19(4):435–448, Dec 2006. M. S. Rajan, I. Keilhorn, and J. A. Bell. Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations. Eye, 16(5):552–556, Sep 2002. David Huang, Eric A. Swanson, Charles P. Lin, Joel S. Schuman, William G. Stinson, Warren Chang, Michael R. Hee, Thomas Flotte, Kenton Gregory, Carmen A. Puliafito, and James G. Fujimoto. Optical coherence tomography. Science, 254(5035):1178–1181, 1991. Ireneusz Grulkowski, Jonathan J. Liu, Benjamin Potsaid, Vijaysekhar Jayaraman, Chen D. Lu, James Jiang, Alex E. Cable, Jay S. Duker, and James G. Fujimoto. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers. Biomed. Opt. Express, 3(11):2733–2751, Nov 2012. Ireneusz Grulkowski, Jonathan J. Liu, Jason Y. Zhang, Benjamin Potsaid, Vijaysekhar Jayaraman, Alex E. Cable, Jay S. Duker, and James G. Fujimoto. Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. Ophthalmology, 120(11):2184–2190, Nov 2013. John Holmes and Julia Welzel. Oct in dermatology. In Wolfgang Drexler and James G. Fujimoto, editors, Optical Coherence Tomography: Technology and Applications, pages 2189–2207. Springer International Publishing, Cham, 2015. Petra Wilder-Smith, Linda Otis, Jun Zhang, and Zhongping Chen. Dental oct. In Wolfgang Drexler and James G. Fujimoto, editors, Optical Coherence Tomography: Technology and Applications, pages 2209–2244. Springer International Publishing,Cham, 2015. Irina A. Kuznetsova, Natalia D. Gladkova, Valentin M. Gelikonov, Jerome L. Belinson, Natalia M. Shakhova, and Felix I. Feldchtein. Oct in gynecology. In Wolfgang Drexler and James G. Fujimoto, editors, Optical Coherence Tomography: Technology and Applications, pages 2305–2334. Springer International Publishing,Cham, 2015. Wei Kang, Xin Qi, Hui Wang, and Andrew M. Rollins. Optical coherence tomography for gastrointestinal endoscopy. In Wolfgang Drexler and James G. Fujimoto, editors, Optical Coherence Tomography: Technology and Applications, pages 2051–2075. Springer International Publishing, Cham, 2015. James G. Fujimoto and Wolfgang Drexler. Introduction to oct. In Wolfgang Drexler and James G. Fujimoto, editors, Optical Coherence Tomography: Technology and Applications, pages 3–64. Springer International Publishing, Cham, 2015. Hrebesh M. Subhash and Ruikang K. Wang. Optical coherence tomography: Technical aspects. In Rongguang Liang, editor, Biomedical Optical Imaging Technologies: Design and Applications, pages 163–212. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. Maciej Wojtkowski, Susana Marcos, Sergio Ortiz, and Ireneusz Grulkowski. Application of fourier domain oct imaging technology to the anterior segment of the human eye. In Wolfgang Drexler and James G. Fujimoto, editors, Optical Coherence Tomography: Technology and Applications, pages 1617–1648. Springer International Publishing, Cham, 2015. Sergio Ortiz, Damian Siedlecki, Laura Remon, and Susana Marcos. Optical coherence tomography for quantitative surface topography. Appl. Opt., 48(35):6708–6715, Dec 2009. David Huang, Yan Li, and Maolong Tang. Anterior eye imaging with optical coherence tomography. In Wolfgang Drexler and James G. Fujimoto, editors, Optical Coherence Tomography: Technology and Applications, pages 1649–1683. Springer International Publishing, Cham, 2015. Jinzhen Tan, Rui Qiu, Xueqing Ding, Cuixia Dai, Jing Meng, Jingxiu Zhao, Fei Ma, and Sumin Qi. Correction of refractive distortion in whole-eye optical coherence tomography imaging of the mouse eye. Journal of Biophotonics, 15(12):e202200146,2022. Ahmadreza Baghaie, Zeyun Yu, and Roshan M. D'Souza. Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution? Medical Image Analysis, 37:129–145, 2017. Martin F. Kraus, Benjamin Potsaid, Markus A. Mayer, Ruediger Bock, Bernhard Baumann, Jonathan J. Liu, Joachim Hornegger, and James G. Fujimoto. Motion correction in optical coherence tomography volumes on a per a-scan basis using orthogonal scan patterns. Biomed. Opt. Express, 3(6):1182–1199, Jun 2012. Joseph A. Izatt, Michael A. Choma, and Al-Hafeez Dhalla. Theory of optical coherence tomography. In Wolfgang Drexler and James G. Fujimoto, editors, Optical Coherence Tomography: Technology and Applications, pages 65–94. Springer International Publishing Switzerland, Cham, 2015. Michael A. Choma, Marinko V. Sarunic, Changhuei Yang, and Joseph A. Izatt. Sensitivity advantage of swept source and fourier domain optical coherence tomography. Opt. Express, 11(18):2183–2189, Sep 2003. Volker Westphal, Andrew M. Rollins, Sunita Radhakrishnan, and Joseph A. Izatt. Correction of geometric and refractive image distortions in optical coherence tomography applying fermat’s principle. Opt. Express, 10(9):397–404, May 2002. Mingtao Zhao, Anthony N Kuo, and Joseph A Izatt. 3d refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea. Opt. Express, 18(9):8923–8936, Apr 2010. Sergio Ortiz, Damian Siedlecki, Ireneusz Grulkowski, Laura Remon, Daniel Pascual, Maciej Wojtkowski, and Susana Marcos. Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging. Opt. Express, 18(3):2782–2796, Feb 2010. Adrian Podoleanu, Ismini Charalambous, Lucian Plesea, Aristide Dogariu, and Richard Rosen. Correction of distortions in optical coherence tomography imaging of the eye. Physics in Medicine & Biology, 49(7):1277, mar 2004. Cuixia Dai, Chuanqing Zhou, Shanhui Fan, Zhe Chen, Xinyu Chai, Qiushi Ren, and Shuliang Jiao. Optical coherence tomography for whole eye segment imaging. Opt. Express, 20(6):6109–6115, Mar 2012. Yu-Cherng Chang, Keke Liu, Carolina de Freitas, Alex Pham, Florence Cabot, Siobhan Williams, Ethan Adre, Giovanni Gregori, Marco Ruggeri, Sonia H. Yoo, Arthur Ho, Jean-Marie Parel, and Fabrice Manns. Assessment of eye length changes in accommodation using dynamic extended-depth oct. Biomed. Opt. Express, 8(5):2709–2719, May 2017. Yuan Tian, Mark Draelos, Ryan P. McNabb, Kris Hauser, Anthony N. Kuo, and Joseph A. Izatt. Optical coherence tomography refraction and optical path length correction for image-guided corneal surgery. Biomed. Opt. Express, 13(9):5035–5049, Sep 2022. Francesco LaRocca, Stephanie J. Chiu, Ryan P. McNabb, Anthony N. Kuo, Joseph A. Izatt, and Sina Farsiu. Robust automatic segmentation of corneal layer boundaries in sdoct images using graph theory and dynamic programming. Biomed. Opt. Express, 2(6):1524–1538, Jun 2011. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms, fourth edition. MIT Press, 2022. Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000. Stephanie J. Chiu, Xiao T. Li, Peter Nicholas, Cynthia A. Toth, Joseph A. Izatt, and Sina Farsiu. Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation. Opt. Express, 18(18):19413–19428, Aug 2010. Carl de Boor. A Practical Guide to Splines. Springer New York, NY, 2001. Richard Szeliski. Image alignment and stitching: A tutorial. Foundations and Trends® in Computer Graphics and Vision, 2(1):1–104, 2007. Eugene Hecht. Optics Global Edition. Pearson Deutschland, 2016. Michalina Gora, Karol Karnowski, Maciej Szkulmowski, Bartlomiej J. Kaluzny, Robert Huber, Andrzej Kowalczyk, and Maciej Wojtkowski. Ultra high-speed swept source oct imaging of the anterior segment of human eye at 200 khz with adjustable imaging range. Opt. Express, 17(17):14880–14894, Aug 2009. Roger Steinert and David Huang. Anterior Segment Optical Coherence Tomography (1st ed.). CRC Press, 2008. Hyung-Jin Kim, Minji Kim, Min Gyu Hyeon, Youngwoon Choi, and Beop-Min Kim. Full ocular biometry through dual-depth whole-eye optical coherence tomography. Biomed. Opt. Express, 9(2):360–372, Feb 2018. David L. Cooke and Timothy L. Cooke. A comparison of two methods to calculate axial length. Journal of Cataract & Refractive Surgery, 45(3), 2019. Giacomo Savini, Kenneth J. Hoffer, Laura Carballo, Leonardo Taroni, and Domenico Schiano-Lomoriello. Comparison of different methods to calculate the axial length measured by optical biometry. Journal of Cataract & Refractive Surgery, 48(6), 2022. David A. Atchison and George Smith. Chromatic dispersions of the ocular media of human eyes. J. Opt. Soc. Am. A, 22(1):29–37, Jan 2005. S. Remtulla and P.E. Hallett. A schematic eye for the mouse, and comparisons with the rat. Vision Research, 25(1):21–31, 1985. Gurinder Bawa, Tatiana V. Tkatchenko, Ivan Avrutsky, and Andrei V. Tkatchenko. Variational analysis of the mouse and rat eye optical parameters. Biomed. Opt. Express, 4(11):2585–2595, Nov 2013. Masahiko Daimon and Akira Masumura. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt., 46(18):3811–3820, Jun 2007. Nina Sultanova, S. Kasarova, and I. Nikolov. Dispersion properties of optical polymers. ACTA PHYSICA POLONICA A, 116:585–587, 10 2009. Yin-Peng Huang, Ting-Yen Tsai, Ting-Hao Chen, Chuan-Bor Chueh, You-Nan Tsai, Yu-Wei Chang, Yi-Chung Wu, Hung-Wen Chen, Meng-Tsan Tsai, Yi-Ping Hung, and Hsiang-Chieh Lee. A generic framework for fourier-domain optical coherence tomography imaging: Software architecture and hardware implementations. IEEE Access, 8:191726–191736, 2020. Sudi Patel and Larysa Tutchenko. The refractive index of the human cornea: A review. Contact Lens and Anterior Eye, 42(5):575–580, Oct 2019. Alberto de Castro, Sergio Ortiz, Enrique Gambra, Damian Siedlecki, and Susana Marcos. Three-dimensional reconstruction of the crystalline lens gradient index distribution from oct imaging. Opt. Express, 18(21):21905–21917, Oct 2010. Zhengyu Duan, Kai Huang, Zhongzhou Luo, Ke Ma, Gengyuan Wang, Xiaodong Hu, Jinze Zhang, Xiaoling Luo, Yuancong Huang, Gangjun Liu, Xiaoyan Ding, Peng Xiao, and Jin Yuan. Portable boom-type ultrahigh-resolution oct with an integrated imaging probe for supine position retinal imaging. Biomed. Opt. Express, 13(6):3295–3310, Jun 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97119 | - |
| dc.description.abstract | 全球近視盛行率快速增長,特別是在亞太地區和台灣,近視的診斷與預防成為重要議題。光學同調斷層掃描術(Optical coherence tomography, OCT)是現代眼科診斷的重要技術,具有非接觸式檢測和高解析度影像的優勢。然而,由於角膜表面的高曲率特徵以及眼球內部折射率的非均勻分布,傳統OCT系統受到光學畸變的影響,導致影像無法準確反映眼球內部的真實結構。
在本論文研究中,開發了一種折射畸變修正演算法,用於修正OCT全眼影像中的光學畸變,從而重建眼球內部組織的真實結構。透過逐段修正的方式,依序針對角膜、前房、水晶體、玻璃體與視網膜,分別應用對應的相折射率(Phase index)與群折射率(Group index)進行影像修正。採用一種基於圖論(Graph theory)的層分割演算法,來搜尋並分割眼球結構組織的界面。並運用反向光線追跡(Inverse ray tracing)的概念,進行影像扭轉(Image warping)以修正畸變。演算法同時會計算眼球結構特徵參數,包括角膜曲率、眼角膜中央厚度與光軸位置等。在系統方面,本研究中使用低掃頻速率的高折射率差光柵垂直共振腔面射型雷射(High-contrast grating vertical-cavity surface-emitting laser, HCG-VCSEL)作為掃頻式光學同調斷層掃描術(Swept-source OCT, SS-OCT)的光源。透過額外架設馬赫-曾德爾干涉儀(Mach-Zehnder interferometer)收集校準訊號,並利用雙通道擷取重採樣技術校正干涉頻譜圖線性度,以進一步增加成像深度,實現全眼的OCT成像。 研究驗證的部分,演算法經自製假體的影像測試,證實其修正準確性。實驗結果展示了小鼠全眼影像的修正效果,以及眼球結構參數的量測結果。最後,將演算法整合至實驗室現有以C++程式語言撰寫的MFC操作介面,實現實時影像修正。應用於長距離OCT系統對眼球模型成像,利用演算法輔助調整眼球模型傾角並量測眼軸長。最後量化分析量測數值的精確度。 | zh_TW |
| dc.description.abstract | The global prevalence of myopia is increasing, particularly in the Asia-Pacific region and Taiwan. Accurate diagnosis and prevention of myopia have become critical issues. Optical coherence tomography (OCT), a key diagnostic tool in modern ophthalmology, offers non-contact measurement and high-resolution imaging. However, the cornea's high curvature and the eye's non-uniform refractive index cause optical distortion, hindering accurate imaging of internal ocular structures.
This study develops a refractive distortion correction algorithm to address optical distortion in whole-eye OCT imaging, thereby reconstructing ocular structures. By employing a sequential correction approach, the algorithm applies phase indices and group indices for each ocular region. A graph-theory-based layer segmentation algorithm is used to delineate the interfaces of ocular structures, followed by inverse ray tracing to perform image warping. Additionally, the algorithm computes ocular structural parameters such as corneal curvature, central corneal thickness, and optical axis position. A high-contrast grating vertical-cavity surface-emitting laser (HCG-VCSEL) with a low sweep rate was used as the light source for the swept-source OCT (SS-OCT) system. A Mach-Zehnder interferometer was set up to collect calibration signals, and dual-channel acquisition resampling techniques were employed to correct the frequency-domain linearity of the interference spectrum. This configuration enhanced the imaging depth of the OCT system, enabling whole-eye OCT imaging. The algorithm was validated using phantom images, confirming its correction accuracy. The corrected whole-eye images of mice were demonstrated, and ocular structural parameters were measured. The algorithm was integrated into an existing MFC-based interface developed in C++ to achieve real-time image correction. It was applied to image a phantom eye, assisting in alignment adjustment and axial length measurement. Finally, the accuracy of the measurements was quantitatively analyzed. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:16:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-27T16:16:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 摘要 iii Abstract v 目次 vii 圖次 xi 表次 xvi 第一章 緒論 1 1.1 研究背景 1 1.2 近視與眼球結構 2 1.3 眼科診斷技術現狀 4 1.4 影像畸變 (Distortion) 6 1.4.1 幾何畸變 (Geometric Distortion) 6 1.4.2 光學畸變 (Optical Distortion) 7 1.4.3 運動偽影 (Motion Artifact) 9 1.5 論文動機 10 1.6 論文架構 10 第二章 光學同調斷層掃描術 11 2.1 概述 11 2.2 光學同調斷層掃描術基本原理 12 2.2.1 低同調干涉術理論 12 2.2.2 利用干涉頻譜重建樣品結構 15 2.3 掃頻式光學同調斷層掃描術 (Swept-source OCT) 17 2.4 光學同調斷層掃描術之系統特性 18 2.4.1 軸向解析度 (Axial Resolution) 18 2.4.2 橫向解析度與景深 (Lateral Resolution and Depth of Focus) 19 2.4.3 靈敏度與靈敏度滾降 (Sensitivity and Sensitivity Roll-off) 20 2.4.4 影像深度與取樣率 (Imaging Depth and Sampling Rate) 21 2.4.5 訊噪比 (Signal-to-noise Ratio, SNR) 22 第三章 折射畸變修正演算法 23 3.1 概述 23 3.2 折射畸變修正演算法流程 24 3.3 影像預處理 24 3.3.1 影像尺寸比例調整 24 3.3.2 消除偽影 (Artifact Mitigration) 25 3.3.3 影像裁切 27 3.3.4 影像去雜訊 (Denoising) 27 3.4 基於圖論之層分割演算法 28 3.4.1 圖論 (Graph Theory) 28 3.4.2 建立圖與權重計算 29 3.4.3 最短路徑問題 30 3.4.4 低訊噪比區域的界面重新評估 32 3.5 基於反向光線追跡之影像扭轉 34 3.5.1 修正路徑長偏差 34 3.5.2 修正路徑偏折 35 3.5.3 影像畸變修正實作 35 第四章 實驗架構與方法 39 4.1 長距離 SS-OCT 系統 39 4.1.1 系統架構 39 4.1.2 低掃頻速率光源 40 4.1.3 雙通道擷取重採樣技術 40 4.1.4 系統特性 42 4.2 影像之眼球特徵計算 43 4.2.1 推算眼球光軸位置 43 4.2.2 眼球參數計算方法 44 4.3 小鼠眼球折射率 45 4.4 小鼠眼球成像 46 第五章 實驗結果與討論 48 5.1 折射畸變修正演算法驗證 48 5.1.1 瓊脂糖凝膠 48 5.1.2 水滴 51 5.2 鼠眼影像修正結果 54 5.3 實時眼球模型特徵量測 56 5.4 討論 60 第六章 結論與未來展望 61 6.1 結論 61 6.2 未來展望 61 參考文獻 63 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 全眼成像 | zh_TW |
| dc.subject | 眼軸長量測 | zh_TW |
| dc.subject | 反向光線追跡 | zh_TW |
| dc.subject | 層分割演算法 | zh_TW |
| dc.subject | 光學畸變 | zh_TW |
| dc.subject | 光學同調斷層掃描術 | zh_TW |
| dc.subject | layer segmentation algorithm | en |
| dc.subject | optical distortion | en |
| dc.subject | whole eye imaging | en |
| dc.subject | optical coherence tomography | en |
| dc.subject | axial length measurement | en |
| dc.subject | inverse ray tracing | en |
| dc.title | 折射畸變修正演算法與長距離光學同調斷層掃描術於眼科應用之整合開發 | zh_TW |
| dc.title | Integrated Development of Refractive Distortion Correction Algorithm and Long-range Optical Coherence Tomography in Ophthalmic Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡睿哲;施博仁;孫家偉 | zh_TW |
| dc.contributor.oralexamcommittee | Jui-che Tsai;Po-Jen Shih;Chia-Wei Sun | en |
| dc.subject.keyword | 光學同調斷層掃描術,全眼成像,光學畸變,層分割演算法,反向光線追跡,眼軸長量測, | zh_TW |
| dc.subject.keyword | optical coherence tomography,whole eye imaging,optical distortion,layer segmentation algorithm,inverse ray tracing,axial length measurement, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202500280 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-01-29 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2027-01-16 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 31.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
